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Abstract: In recent years, obesity has become one of the major diseases that affect human health and consume human health 
resources, especially when it causes comorbidities such as hypertension, diabetes, cardiovascular disease and kidney disease. Many 
studies have demonstrated that obesity is associated with the development of chronic kidney disease and can exacerbate the 
progression of end-stage renal disease. This review described the mechanisms associated with the development of obesity- 
associated nephropathy and the current relevant therapeutic modalities, with the aim of finding new therapeutic targets for obesity- 
associated nephropathy. The mechanisms of obesity-induced renal injury include, in addition to the traditional alterations in renal 
hemodynamics, the involvement of various mechanisms such as macrophage infiltration in adipose tissue, alterations in adipokines 
(leptin and adiponectin), and ectopic deposition of lipids. At present, there is no “point-to-point” treatment for obesity-induced kidney 
injury. The renin-angiotensin-aldosterone system (RAAS) inhibitors, sodium-dependent glucose transporter 2 (SGLT-2) inhibitors and 
bariatric surgery described in this review can reduce urinary protein to varying degrees and delay the progression of kidney disease. In 
addition, recent studies on the therapeutic effects of intestinal flora on obesity may reduce the incidence of obesity-related kidney 
disease from the perspective of primary prevention. Both of these interventions have their own advantages and disadvantages, so the 
continuous search for the mechanism of obesity-induced related kidney disease will be extremely helpful for the future treatment of 
obesity-related kidney disease. 
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Introduction
Obesity has become a world health problem that affects health. Especially in such a fast-paced and high-stress living 
environment, eating disorders or overeating have further contributed to the increase of people with obesity.1 The 
prevalence of obesity worldwide has shown a continuous increase over the past 50 years. According to a summary 
analysis of body mass indices of adolescents and children in various countries around the world from 1975 to 2016, the 
prevalence of obesity has increased in all countries, with some regional differences.2 The prevalence of obesity is higher 
in females than in males.3 Income level is positively correlated with the prevalence of obesity and overweight, and the 
prevalence of obesity in high-income countries increased significantly in the past, but the prevalence of obesity and 
overweight children in some high-income countries, such as the United States, Denmark, and Sweden, has gradually 
stabilized since 2000. Meanwhile, the prevalence of obesity in low- and middle-income countries has been on the rise. 
Even in India, where the prevalence of obesity among women of childbearing age is 5.1% and the prevalence of 
overweight is 15.5%, which is related to the level of urbanization and economic development.2,4 Current trends suggest 
that by 2025 the global prevalence of adult obesity will reach 18% among men and 21% among women.5 Obesity causes 
several complications such as hyperinsulinemia, disorders of lipid metabolism, nonalcoholic fatty liver, coronary artery 
disease, cardiovascular disease, various types of cancer and chronic kidney disease (CKD).6–9 In recent years, with the 
increase in the people with obesity, obesity has also become an important cause of CKD. An analysis of data from a UK 
biobank showed that for every 0.06 increase in waist-to-hip ratio estimated using genetic methods, the risk of CKD 
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would increase by 30%; and for every 5 kg/m2 increase in body mass index (BMI), the risk of CKD would increase by 
50%.10 In the UK, about one-third of CKD patients are associated with overweight or obesity.11 Another 14-year cohort 
study from Korean adults showed that high baseline levels of BMI and waist-to-hip ratio were independent risk factors 
for the development of CKD, and obesity was associated with the incidence of CKD.12 The fact that BMI is associated 
with obesity-related kidney injury is reflected in the assessment of the degree of obesity. However, BMI is indistinguish-
able when a person’s body composition changes, such as changes in the distribution of muscle and adipose tissue, 
visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT). Excessive VAT is associated with more insulin 
resistance and increased risk of kidney disease compared to SAT.13,14 Some studies have shown that abdominal or central 
obesity, reflected as waist circumference or waist-to-hip ratio, is a better indicator of cardiometabolic risk and mortality 
than BMI, and is more strongly associated with renal impairment.15,16 Obesity-induced renal injury (as shown in 
Figure 1) is mainly characterized by inflammation and oxidative stress, lipid accumulation in the glomerulus, and altered 
renal hemodynamics.6 In this paper, we describe the mechanisms associated with the development of obesity-associated 
nephropathy and the current relevant therapeutic modalities, with the aim of finding new therapeutic targets for obesity- 
associated nephropathy.

Histopathology of Obesity-Associated Nephropathy
The characteristic histopathologic manifestations of obesity-associated nephropathy are glomerulomegaly, focal seg-
mental glomerulosclerosis (FSGS), and hypodensity of podocytes. In a large study of renal biopsies by Kambham et al17 

it was found that, when matched for age and sex, the mean glomerular diameter was larger in biopsy samples from 
patients with obesity-associated nephropathy compared with normal controls (226 μm vs 169 μm). In an animal 
experimental model of obesity-associated nephropathy, glomerular cluster volume increases exponentially with body 
weight, which is associated with an increase in the number and surface area of glomerular capillaries induced by obese 
glomerular hyperfiltration.18 The increase in glomerular volume causes figures are alterations in the podocytes, which are 
reflected in increased width of the peduncle, mild and segmental loss of the peduncle, decreased density and number of 
podocytes, and even detachment of the podocytes from the basement mem- brane.19,20 These podocyte alterations are 
associated with adaptive hypertrophy brought about by glomerulomegaly. Podocytes are unable to proliferate, their 

Figure 1 Obesity-induced kidney injury.
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hypertrophic capacity is limited, and as the glomerular volume expands, mechanical strain due to tensile tension and 
shear stress reaches a breaking point, allowing individual podocytes to fail and detach. Reduced podocyte density may 
reflect an adaptive hypertrophic response to glomerulomegaly and continued podocyte depletion that has not yet reached 
the threshold for the development of segmental sclerosis.21,22 This podocyte alteration ruptures glomerular filtration and 
plays an important role in the development of proteinuria and obesity-associated nephropathy.

Focal segmental glomerulosclerosis (FSGS) is another pathologic feature of obesity-associated nephropathy, but 
FSGS caused by obesity-associated nephropathy is milder and slower in progression than primary FSGS.23 Among the 
five histologic subtypes of FSGS (not otherwise specified, perihilar, cellular, tip variant, and collapsing variant), obesity- 
associated nephropathy exhibits a preponderance of the perihilar variant.24 In a Chinese cohort of patients with obesity- 
related nephropathy, the mean percentage of glomeruli with FSGS was only 6%.25 In a Spanish study, 95 extremely obese 
patients with normal renal function (mean BMI of 53.6 kg/m2), with a mean duration of obesity of 20 years, had 
pathologic findings that showed glomerulomegaly in 38% of cases and FSGS lesions in only 5%.26 This suggests that 
unlike primary FSGS, the renal changes caused by obesity-related nephropathy are adaptive FSGS.27 In adaptive FSGS, 
podocyte injury is more heterogeneous and less severe, and the pedicle is predominantly intact except for irreversible 
podocyte denudation. Intercellular proliferation of podocyte injury adjacent to initial foci of podocyte depletion may be 
mediated by interruption of pro-survival signaling by renin or by increased noxious stimuli (tensile tension and 
angiotensin). Proliferation of podocyte stress zones in obesity-associated nephropathy promotes the expansion of 
segmental lesions, ultimately leading to total glomerular fibrosis.28

Hemodynamic Changes in Obesity-Associated Nephropathy
Many studies have shown that obesity is one of the main causes of essential hypertension.29,30 Hypertension is one of the 
main risk factors for the development of cardiovascular disease and kidney diseases.31 Increased renal and perirenal 
adipose tissue in people with obesity causes compression of the kidneys, leading to increased sodium reabsorption by the 
kidneys.32 Early obesity is in a state of hypoxia and increased metabolic demand, manifested by increased renal plasma 
flow and increased renal glomerular filtration rate. The high filtration stimulates the glomerular-tubular balance, causing 
increased sodium-water reabsorption by the proximal tubules, which raises blood pressure and contributes to the 
progression of CKD.33,34 In addition, plasma levels of natriuretic peptide are associated with the development of 
hypertension in obese people. Natriuretic peptides are polypeptide hormones produced by the heart, including atrial 
natriuretic peptide and B- type natriuretic peptide. It binds to natriuretic peptide receptors to regulate water and salt 
metabolism balance in the body by relaxing vascular smooth muscle and promoting renal sodium excretion and 
drainage.35 In people with obesity, the concentration of natriuretic peptide receptor type C in adipose tissue increases 
and natriuretic peptide receptor C-mediated clearance increases, causing a decrease in plasma natriuretic peptide 
concentration. That weakens the inhibitory effect on the renin-angiotensin-aldosterone system (RAAS) and the diastolic 
effect on vascular smooth muscle and increasing sodium and water retention, causing the occurrence of hypertension.36,37 

Activation of the RAAS in obesity is the main mechanism for the development of hypertension. It has been shown that 
activation of sympathetic nerve activity (SNA) plays a role in the development of obesity hypertension.38,39 Activation of 
the SNA in turn stimulates an increase in renin levels, further contributing to an increase in blood pressure.40 Activation 
of the SNA may be associated with increased leptin, insulin resistance, and activation of peripheral chemoreceptors due 
to hypoxia in people with obesity.41,42 It has been shown that when a high-salt diet was changed to a low-salt diet, blood 
pressure decreased significantly more in the group of people with obesity than in the non-obesity group, suggesting that 
obesity-related hypertension is associated with salt sensitivity.43 The development of salt-sensitive hypertension may be 
related to glomerular hyperfiltration, metabolic changes and neurohumoral mechanisms caused by long-term chronic 
obesity.32 In a cross-sectional study by verhave et al, the high sodium intake was found to be positively associated with 
urinary albumin excretion in people with obesity, suggesting that increased salt sensitivity due to obesity is associated 
with renal injury.44 Many studies have confirmed that plasma aldosterone levels are increased in people with obesity.45,46 

Tuck et al found that reduced plasma renin and aldosterone levels were associated with weight loss through diet control 
for weight loss.47 Traditionally, aldosterone production is increased by activation of the RAAS system, which binds to the 
mineralocorticoid receptor (MR) to exert its sodium-saving and potassium-excreting effects. Later Goodfriend et al 
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confirmed through a series of experimental studies that elevated levels of plasma free fatty acids (FFAs) stimulate an 
increase in aldosterone levels.48,49 Shibata et al found an increase in blood pressure and proteinuria in rats given a high- 
salt diet and aldosterone infusion, but no significant changes in blood pressure and proteinuria in rats given a low-salt diet 
and aldosterone infusion, suggesting that the aldosterone-induced increase in blood pressure and renal injury may be 
dependent on the increasing of salt sensitivity.50 Activation of the RAAS induces the production of fibrogenic factors (eg, 
TGF-b) that cause matrix in deposition in the kidney. It has been shown that blocking MR reduces tubulointerstitial 
fibrosis. Angiotensinogen II (Ang II) can cause functional and interstitial fibrosis in the proximal tubule through 
phenotypic transformation of renal epithelial-mesenchymal change (EMT) to renal injury.51,52 In addition, podocytes 
play an important role in glomerular exertion of filtration function. Obesity causes changes such as hyperfiltration in the 
kidney, increased glomerular capillary blood pressure and expansion of the basement membrane, causing deformation 
and detachment of the podocytes, further aggravating renal function injury.53 In addition to the alterations in podocytes 
caused by pathophysiological conditions, recent studies have shown that lipid accumulation and inflammatory vesicles in 
people with obesity are also important contributors to podocyte injury.54

Inflammation and Oxidative Stress of Obesity-Associated Nephropathy
The role of obesity in driving inflammation and oxidative stress in CKD was illustrated in a cross-sectional study 
conducted by Luis et al.55 Also, in a cross-sectional study conducted by Chen et al in 2324 subjects, it was confirmed that 
inflammation plays an important role in the increased risk of obesity-induced CKD.56 The inflammatory response people 
with obesity is low-grade, chronic and localized and is accompanied by macrophage infiltration, the degree of obesity is 
proportional to the degree of macrophage infiltration,57 and there is a greater increase in macrophages in visceral fat 
compared to subcutaneous adipose tissue.58,59 Macrophage infiltration plays an important role in inflammation caused by 
adipose tissue.60,61 Macrophage infiltration in the people with obesity is closely related to the injury and apoptosis of 
adipocytes caused by obesity-induced vascular thinning of adipose tissue and hypoxia.62,63 Macrophages have two 
phenotypes, M1 and M2, with M1 having pro-inflammatory and M2 anti-inflammatory effects.64,65 Obesity can 
contribute to the conversion of M2 to M1 phenotype,65,66 which causes an increase in pro-inflammatory factors (eg, 
TNF-α, IL-6, etc.) and leads to an increased production of intracellular reactive oxygen species (ROS). It in turn causes 
cellular injury and oxidative stress.63,67 Furthermore, the release of free fatty acids (FFAs) from adipose tissue in the 
people with obesity promotes the polarization of macrophages within adipose tissue toward the M1 phenotype.65 

Recently, Chen et al showed through animal studies that Kdm6a (histone lysine demethylase 6a) regulates M1 and M2 
imbalance within adipose tissue by regulating the expression of Ire1α(a transmembrane protein located in the endoplas-
mic reticulum that senses endoplasmic reticulum stress).68 The phenotypic conversion of macrophages is a complex 
process,69 but a better understanding of the process could be useful in the treatment of obesity-associated nephropathy in 
terms of inhibiting the conversion of macrophages to M1 type and achieving a reduction in inflammation. Wang et al70 by 
injecting an anti-inflammatory small molecule dye (IR-61) into mice by peritoneal administration, confirmed that IR-61 
has the function of directly targeting the mitochondria of adipose tissue macrophages (ATMs) and inhibits macrophage 
activation by increasing mitochondrial oxidative phosphorylation, and also inhibits the expression of pro-inflammatory 
factors in visceral fat in mice on high-fat diet (HFD), which achieves inhibition of obesity-induced inflammation and 
obesity-associated diseases. In addition, miRNAs have been found to play an important role in the polarization of 
macrophages,71 and more studies are needed to confirm whether macrophage-induced related diseases are treated by 
targeting miRNAs.

In recent years, the pathogenic effects of nucleotide-binding oligomerized structural domain-like receptor protein 3 
(NLRP3) inflammasome on the kidney have attracted extensive attention from researchers. The NLRP3 inflammasome is 
an intracellular multiprotein complex (NLRP3/ASC/caspase-1 complex) containing NLRP3, apoptosis-associated 
speckled protein (ASC), and caspase-1.72 NLRP3 inflammasome can be activated by many exogenous and endogenous 
substances, and the activation of NLRP3 inflammasome in obesity-associated nephropathy may be related to hyperfiltra-
tion caused by the RAAS system, mitochondrial dysfunction, and activation of endoplasmic reticulum.73 NLRP3 
inflammasome acts on the progression of obesity-associated nephropathy through the caspase-1-IL-1β/IL-18 axis after 
being activated by signaling.74 Inflammatory cytokines such as IL-1β and IL-18 act in an autocrine or paracrine manner 
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to induce podocyte damage and dysfunction. Additionally, it may be associated with non-inflammatory effects of NLRP3 
inflammasome, such as pyroptosis cell death, cytoskeletal changes and altered cellular metabolism.75,76 A recent study 
showed that hyperfiltration remained unchanged in obese subjects whose IL-1β/Caspase-1 levels remained high after 
undergoing bariatric surgery, suggesting that inflammasome signaling plays a role in the development of obesity- 
associated nephropathy as early as the glomerular hyperfiltration stage.77 The exact pathogenic mechanisms of inflam-
masome at various stages of the development of obesity-associated nephropathy remain to be explored.

Leptin in Obesity-Associated Nephropathy
Leptin is an adipose tissue-derived hormone and the amount of leptin in the blood is proportional to the fat content.78 

Leptin is an important hormone for maintaining homeostasis by acting mainly on the central nervous system to suppress 
food intake and promote energy expenditure leading to weight loss.79 It has been shown that leptin gene expression is 
increased in adipose tissue in people with obesity.80 In people with obesity, there is “leptin resistance”, where weight and 
intake are not reduced even though leptin levels are increased in people with obesity.81 The central nervous system is the 
main part of leptin metabolism and exerts its effects by acting on the leptin receptor (LepR) (Figure 2). The arcuate 
nucleus of the hypothalamus (ARC) is the main site of leptin regulation.82 Leptin interacts with the receptor to activate 
Janus kinase 2 (JAK2), which downstream can cause transcriptional activator 3 (STAT3), insulin receptor substrate 
(IRS)-phosphatidylinositol 3 kinase (PI3K), sh2-containing protein tyrosine phosphatase 2 (SHP2)-mitogen-activated 
protein kinase (MAPK), and 5 ‘adenosine monophosphate-activated protein kinase. Activation of the JAK2 signaling 
pathway causes increased transcription of suppressor of cytokine signaling 3 (SOCS3), which in turn inhibits the JAK2 

Figure 2 The basic pathway of leptin. Leptin binds to LepR to activate associated JAK2 phosphorylation, causing activation of the SHP2/MAPK pathway and the 
transcriptional activator STAT3. The SHP2/MAPK signaling pathway has an important role in the cardiometabolic effects of leptin. Activation of STAT3 regulates leptin- 
induced reduction in food intake and elevated blood pressure, and also induces transcription of SOCS3, which has an attenuating effect on LepR-mediated signaling. 
Activation of the IRS2-PI3K pathway contributes to the effects of leptin on SNA and blood pressure. PTP1B attenuates leptin signaling by dephosphorylating JAK2. 
Abbreviations: LepR, leptin receptor; JAK2, Janus kinase 2; STAT3, transcriptional activator 3; IRS, insulin receptor substrate; PI3K, phosphatidylinositol 3 kinase; SHP2, 
sh2-containing protein tyrosine phosphatase 2; MAPK, mitog en-activated protein kinase; SOCS3, suppressor of cytokine signaling 3; mTOR, mammalian target of rapamycin; 
Akt, v-Akt murine thymoma viral oncogene homolog; PTP1B, protein tyrosine phosphatase 1B.
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signaling pathway and reduces leptin action.78,79,83 In addition, protein tyrosine phosphatase 1B (PTP1B) is also involved 
in the inhibition of leptin signaling.79 In addition to the regulation of diet and body weight, leptin can also increase 
sympathetic nerve activity (SNA) in certain tissues, such as cardiovascular sympathetic nerve activity and renal 
sympathetic nerve activity (RSNA), through receptor action in the central nervous system.84,85 Harlan et al82 found in 
diet-induced mice that deletion of the highest concentration of leptin receptor in the ARC abolished the effect of leptin on 
increased renal sympathetic excitability. The increase in plasma leptin concentration can cause activation of the RAAS by 
increasing RSNA and affect renal hemodynamic changes,32,78,82 which may be related to the involvement of the IRS2- 
PI3K pathway.78,86 In addition, it has been shown that leptin is associated with glomerular fibrosis,87 which is related to 
the fact that leptin increases TGF-β expression in glomerular cells and activates the JAK/STAT signaling pathway.88 

Also, leptin can affect renal endothelial cells and cause renal fibrosis by increasing reactive oxygen species (ROS).89 

Recently, Liu et al significantly reduced RSNA and elevated blood pressure in HFD mice by siRNA knockdown of Sirt1 
(an energy-sensing enzyme located downstream of the leptin signaling pathway), and also reduced leptin-induced levels 
of tumor necrosis factor α (TNF-α), cytokine interleukin 6 (IL-6), and interleukin 1β (IL-1β), providing a treatment of 
leptin-induced RSNA and hypertension in the people with obesity.90,91 In addition, Heiss et al found that the gut 
microflora-GLP-1 axis could modulate diet-induced hypothalamic inflammation and improve leptin sensitivity.92

Characteristics of Adiponectin in the People with Obesity
Adiponectin is an amino acid protein secreted by adipose tissue. It has three structural forms: low molecular weight 
(LMW), which is trimeric, medium molecular weight (MMW), which is hexamers, and high molecular weight (HMW), 
which is multimeric. The globular adiponectin differs from the three oligomers in the above in that it is a C1q-like globular 
structural domain at the COOH terminus of adiponectin, present in the circulation, biologically active, and produced by 
hydrolysis of full-length adiponectin.93,94 Adiponectin has both anti-inflammatory and pro-inflammatory effects, which is 
one of the mechanisms that cause the development of various diseases.64,95 The reduced secretion of adiponectin in people 
with obesity may be related to the suppression of adiponectin transcription due to the persistent chronic inflammatory state 
of the body caused by obesity.64,96 Adiponectin exerts its function by interacting with adiponectin receptors (Figure 3). 

Figure 3 The mechanism of action of adiponectin: Adiponectin and insulin interact with their respective receptors to cause cascade signaling. Adiponectin binds to APL1 and 
APL2 to activate fatty acid oxidation and inhibit energy expenditure, exerting anti-inflammatory properties. Insulin regulates metabolism by causing glucose uptake and 
utilization, glycogen and protein synthesis through the PI3K/AKT pathway. 
Abbreviations: AdipoR1, adiponectin receptor 1; AdipoR2, adiponectin receptor 2; APPL-1, a protein that interacts with the adiponectin receptor; ACC, acetyl coenzyme 
a carboxylase; eNOS, nitric oxide synthase; PPAR-α, peroxisome proliferator-activated receptor alpha.
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Currently known are adiponectin receptor 1 (AdipoR1), adiponectin receptor 2 (AdipoR2) and T-cadherin (T-cadherin), 
AdipoR1 and AdipoR2 both have seven transmembrane structural domains distinct from G protein-coupled receptors, 
which are widely expressed in skeletal muscle and liver and have ceramidase activity, playing an important role in the 
regulation of metabolic processes.64,97 The binding of adiponectin to AdipoR1 activates the APPL1 (a protein that interacts 
with the adiponectin receptor)-AMPK-acetyl coenzyme a carboxylase (ACC)/nitric oxide synthase (eNOS) pathway, 
enhancing cellular β-oxidation, reducing lipid accumulation, and improving endothelial cell function. Adiponectin binding 
to AdipoR2 activates APPL1-peroxisome proliferator-activated receptor alpha (PPAR-α), increasing fatty acid oxidation 
and glucose uptake.95,98 In addition, adiponectin can act on macrophages to promote conversion to the M2 phenotype and 
exert the anti-inflammatory effects.94,99 Adiponectin and its receptors (mostly AdipoR1) are mainly present in glomerular 
and proximal tubular cells, exerting their protective function on the kidney.98,100 Studies have shown that obesity is an 
independent risk factor for the development of CKD.101,102 Many studies have shown that adiponectin levels are elevated in 
patients with CKD, especially when the glomerular filtration rate (eGFR) is less than15 ml/min/1.73 m2, which are 2–3 
times higher than normal in patients with end-stage renal disease (ESRD).64,103 Interestingly, Menon et al concluded 
through an MDRD study, based on a 10-year follow-up of CKD patients, that stage 3 and 4 mortality in CKD patients is 
strongly associated with increased adiponectin, which is very different from the anti-inflammatory protective function of 
adiponectin.104 Rhee et al through a prospective study of 500 patients with chronic kidney disease on regular hemodialysis 
found that a 10 μg/ml increase in adiponectin concentration was associated with an approximately 25% increase in the risk 
of death.105 Recently, Chen et al demonstrated through animal studies that adiponectin can upregulate AdipoR1 in renal 
tissues and further activate peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) to improve mitochondrial 
function within renal tubular epithelial cells, which provides an idea for the treatment of diabetic nephropathy.106 

Francisqueti et al showed that the γ Oz-treated group had lower proteinuria levels and increased glomerular filtration rate 
compared to the control group by using γ-glutamatergic (γ Oz) in obese mice with nephropathy for 10 weeks, it provides 
a new target for obesity-induced kidney injury.102

The Impact of Gut Microbes on People with Obesity
There are many normal flora in the human intestine that have physiological roles in regulating host energy metabolism 
and immune function.107 Among them, four bacteria phyla play a major role in the adult gastrointestinal tract, including 
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria.108 Studies in animal models have shown that obesity and 
high-fat diets can cause changes in intestinal flora, including a decrease in Bacteroides and an increase in Firmicutes.109 

In human studies, RNA sequencing of fecal samples from obese individuals has also shown a reduced proportion of 
Bacteroidetes compared to lean individuals.110 Altered intestinal microbes in the obese population disrupt the integrity of 
the intestinal barrier, causing pathological bacterial transfer into the blood and the initiation of inflammatory 
responses.111 Previously, animal studies have shown that a high-fat diet can cause an increase in plasma lipopolysac-
charide (LPS) concentrations, which promotes the secretion of inflammatory cytokines, and induce inflammation and 
oxidative stress in the body.112 In addition, changes in intestinal flora cause an increase in the storage of triglycerides and 
the proportion of short-chain fatty acids in the host, regulating lipid metabolism.111 The altered intestinal flora in the 
obese population described above causes systemic inflammation and oxidative stress that can have an impact on the 
kidneys. The development of obesity-associated nephropathy can also cause dysbiosis of the intestinal flora. Therefore, 
by “reversing” the alteration of intestinal flora (including the intake of probiotics and prebiotics), organ damage and 
dysfunction caused by intestinal dysbiosis can be reduced.

The Role of Other Obesity-Induced Effects on the Development of Chronic 
Kidney Disease
In addition to the basic pathophysiological factors mentioned above, in people with obesity, excessive fat content can 
cause metabolic disorders and the phenomenon of “ectopic deposition”. In the kidney, the accumulation of free fatty 
acids (FFAs) and triglycerides can lead to inflammation, activation of oxidative stress and alteration of signaling 
pathways, which can further lead to apoptosis of kidney cells and fibrosis of the kidney.113 In addition to increasing 
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macrophage infiltration through the IKKβ and JNK pathways, FFAs can act directly on TLR4 to exert an inflammatory 
cascade response. Other immune cells such as neutrophils, lymphocytes, and T cells also play a role in the production of 
inflammation.114,115 Recently, Watanabe et al showed that adipose tissue neutrophils promote macrophage infiltration and 
inflammation by activating NF-kB to enable IL-1β expression, revealing a role for neutrophils in adipose tissue 
inflammation.116 In addition, disturbed cholesterol metabolism in people with obesity results in cholesterol deposition 
and impaired renal function.117 In patients with advanced CKD, HDL levels are reduced and are accompanied by 
a significant decrease in antioxidant enzyme activity, resulting in impaired anti-inflammatory and antioxidant properties. 
Moreover, the anti-inflammatory effect of HDL was changed to pro-inflammatory by the modification of oxidative 
enzymes and apolipoproteins under the effect of systemic inflammation and oxidative stress.118,119

Advances in the Treatment of Obesity-Associated Nephropathy
Weight Loss
For kidney injury caused by obesity, weight loss is the most basic treatment.120 Common methods about weight loss 
include diet and exercise management, weight loss drugs, weight loss surgery. Many studies have shown that weight loss 
with diet management resulted in a significant reduction in proteinuria.121,122 In addition, weight loss can lower blood 
pressure, reduce renal hyperfiltration, and have a protective function for the kidneys.123 Studies have shown that a low 
glycemic index diet and a low-calorie diet not only reduce proteinuria but also have a significant effect on hypertension, 
insulin resistance, and hyperlipidemia in people with obesity (Table 1).124,125 In addition, behavioral interventions 

Table 1 Studies on the Effects of Different Treatments on Obesity-Induced Kidney Injury

Subjects Methods Results Reference

Human 
Overweight 

Chronic proteinuria 

nephropathies

Hypocaloric diet for 5 months and exclude people 
taking drugs with anti-proteinuria effects

Weight loss 
Reduction in proteinuria

Morales et al121

Human 

Obesity-related 
Glomerulopathy

Energy reduction diet and aerobic exercise The remission rate of proteinuria in the 

BMI reduction group was about 56%

Shen et al124

Human 
Obesity

Bariatric surgery Weight loss 
Reduce the risk of developing CKD

Friedman et al127

Human 
Obesity

Intragastric balloon plus dietary and exercise Significant weight loss Friedman128

Human 
Obesity with proteinuria

Aldosterone antagonists (spironolactone) More than 50% reduction in proteinuria 
compared to baseline values

Morales et al131

Human 
Type 2 diabetes 

Nephropathy

Finerenone (MRAs) combined RAAS blockers Significant decrease in UACR compared 
to placebo

Bakris et al132

Human 

Type 2 diabetes 

Chronic kidney Disease

Finerenone combined RAAS blockers Slowing the progression of CKD Bakris et al133

Human 

Chronic kidney Disease

Dapagliflozin (SGLT2 inhibitors) Decline in mGFR 

Reduction in bodyweight

Cherney et al134

Human 

Chronic kidney Disease

Dapagliflozin Reduced risk of hospitalization and 

prolonged survival in patients with CKD

McMurray et al135

(Continued)
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including goal setting, self-monitoring and stimulus control are also beneficial for weight loss.125 Bariatric surgery has 
been shown to have a positive effect on obesity-induced kidney disease.119,126,127 It has been shown that bariatric surgery 
is accompanied not only by a significant reduction in proteinuria, but also by significant changes in the reduction of 
hypertension and inflammatory factors, especially 1–5 years after surgery.128 Recently, endoscopic bariatric therapies 
have been rapidly developed to reduce gastric volume and delay gastric emptying, mainly through intragastric balloon 
placement,129 sleeve gastroplasty, and aspiration therapy.130

Renin-Angiotensin-Aldosterone System (RAAS) Inhibitors
In the treatment of obesity-induced kidney injury, the control of proteinuria is an important way to slow the progression 
of kidney disease.120 RAAS inhibitors are the basic drugs for early protection of kidney function, and typical drugs are 
angiotensin-converting enzyme inhibitor (ACEI) and angiotensin-receptor blockers (ARB), which can reduce proteinuria, 
improve renal blood flow and reduce blood pressure to protect kidney function. In a meta-analysis of RAAS inhibitors on 
chronic kidney disease outcomes, RAAS inhibitors did not appear to have a more beneficial effect on renal prognosis 
with ACEI or ARB compared with other blood pressure-lowering drugs. However, compared with placebo, RAAS 
inhibitors were able to reduce blood pressure and urinary protein excretion with significant renoprotective effects, 
demonstrating the important role of blood pressure control in improving end-stage renal disease and urinary 
protein.140 In a clinical trial study by Morales et al showed that RAAS system inhibitors combined with spironolactone 
(mineralocorticoid receptor antagonist, MRA) consistently reduced proteinuria, lowered blood pressure, and delayed the 
progression of nephropathy.131 Finerenone (selective MRA) has been shown to reduce proteinuria in patients with CKD 
in the short term.132 Bakris et al showed a significantly lower incidence of the primary composite outcome (including 
renal failure, at least 40% reduction in eGFR at baseline, and death from nephropathy causes) with finerenone compared 
to placebo in a randomized double-blind trial than in the placebo group.133

Sodium-Dependent Glucose Transporter 2 (SGLT-2) Inhibitor
SGLT2 inhibitors act on proximal renal tubular SGLT2 to promote urinary glucose excretion by inhibiting glucose and 
sodium reabsorption, while also lowering blood pressure, improving glomerular hyperfiltration, and slowing the 
progression of nephropathy. As a novel hypoglycemic drug, SGLT2 inhibitors not only lower blood glucose, but also 
reduce the risk of proteinuria and death in obesity and diabetes and slow the progression of nephropathy.23,141 In a recent 
clinical trial of DAPA-CKD, results suggested that dapagliflozin significantly reduced the risk of cardiovascular 
hospitalization and the risk of adverse renal outcomes, regardless of concomitant cardiovascular disease.135 

Interestingly, another 6-week randomized double-blind clinical trial of dapagliflozin in non-diabetic patients with 
combined CKD showed no significant difference in the short-term effect of dapagliflozin compared with placebo on 
proteinuria, but there was a significant reduction in eGFR and body weight, and the impact about renal outcomes needs to 

Table 1 (Continued). 

Subjects Methods Results Reference

Animals 

Obese mice

α-cyclodextrin Regulated gut microbiota and Reduced fat 

volume in HFD-fed mice

Nihei et al136

Animals 

CKD rats

Melatonin Reduces activation of the RAAS and 

damage to renal tissue

Ishigaki et al137

Animals 

Obese mice

Melatonin Inhibiting the activation of inflammatory 

vesicles

Liu et al138

Human 

Obesity

Semaglutide (GLP-1 receptor agonist) Reducing body weight Wilding et al139

Abbreviations: MRAs, mineralocorticoid receptor antagonists; RAAS, renin-angiotensin-aldosterone system; UACR, urinary albumin-creatinine ratio; CKD, chronic kidney 
disease; mGFR, measured glomerular filtration rate.
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be explored in longer-term trials.134 Recently, in another DAPA-CKD trial with a median follow-up of 2.4 years, results 
showed that dapagliflozin reduced the incidence of adverse events and all-cause mortality in chronic kidney disease and 
cardiovascular disease in diabetic and non-diabetic patients.142 In addition, many studies have demonstrated that SGLT2 
inhibitors improve renal function by reducing pro-inflammatory factors and oxidative stress and regulating lipid 
metabolism.143

Other Treatment Modalities
In addition to the above common drugs, there are some other drugs or modalities that have been proved to have impact 
on renal function. Early studies have confirmed that gut microbes play a role in the development of obesity,144,145 so 
regulating the gut microflora has also become one of the potential methods for treating obesity. Probiotics have been 
considered to have a positive effect on the gastrointestinal tract, and many studies have demonstrated that probiotic 
treatment reduces obesity-related inflammation and fat storage.136 Recently, it has been found that food can be used as 
a probiotic carrier for the treatment of obesity, with common foods such as fermented dairy products and fruit juices.146 

Melatonin has been shown to have anti-inflammatory, antioxidant and endothelial protective functions in addition to 
regulating biological rhythms.113,147 Ishigaki et al improved renal RAAS activation and renal injury by 5/6 nephrecto-
mized (Nx) rats as a chronic progressive CKD model, and after 4 weeks of melatonin treatment, the melatonin-treated 
group reversed the decrease in intrarenal antioxidant activity, the increase in oxidative stress and the increase in markers 
of renal interstitial fibrosis compared to the control group.137 In obesity-induced renal injury, melatonin exerts renopro-
tective effects by reducing pro-inflammatory factors and adipokines.148 In addition, some studies have confirmed that 
melatonin can also reduce obesity-associated nephropathy by inhibiting inflammatory vesicles.138 Meanwhile, the novel 
hypoglycemic drug GLP-1 receptor agonist may protect renal function by reducing RAAS system activation, acting as an 
anti-inflammatory and anti-fibrotic agent, and having a sustained weight loss effect, but the long-term prognosis for the 
kidney still lacks relevant clinical trials and needs to be explored.139

Conclusion
With the increasing prevalence of obesity and other health problems associated with obesity, more and more people are 
expressing their concern about obesity and its related diseases. The pathophysiological mechanisms of obesity-induced 
kidney injury are mainly inflammation and oxidative stress, alteration of adipokines, lipid deposition. Those mechanisms 
cause the alteration of signaling pathways, the glomerular and tubular vascular endothelial and cellular injury and the 
activation of RAAS system, which further cause kidney injury and fibrosis. Among them, macrophage infiltration and 
phenotypic transformation play an important role in the inflammatory response caused by obesity, leptin mainly acts on 
the activation of renal RAAS system through the increase of sympathetic nerve activity (SNA) caused by acting on 
hypothalamic leptin receptors. Adiponectin, as an anti-inflammatory factor, plays an anti-inflammatory, antioxidant and 
endothelial function-protecting role, in people with obesity. The decrease of adiponectin is more likely to cause kidney 
injury. In addition, lipid deposition and disorders of cholesterol metabolism can directly or indirectly cause injury to the 
kidney and cause the progression of kidney disease.

Practical Application
Clinically, the risk of kidney-related diseases is reduced by means of weight loss, and on the other hand, drugs such as 
RAAS system inhibitors and SGLT-2 inhibitors are used to lower blood pressure and reduce proteinuria to improve renal 
function. Both of these interventions have their own advantages and disadvantages, so the continuous search for the 
mechanism of obesity-induced related kidney disease will be extremely helpful for the future treatment of obesity-related 
kidney disease.
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