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Pointwise error estimates in localization
microscopy
Martin Lindén1,*, Vladimir Ćurić1,*, Elias Amselem1 & Johan Elf1

Pointwise localization of individual fluorophores is a critical step in super-resolution locali-

zation microscopy and single particle tracking. Although the methods are limited by the

localization errors of individual fluorophores, the pointwise localization precision has so far

been estimated using theoretical best case approximations that disregard, for example,

motion blur, defocus effects and variations in fluorescence intensity. Here, we show that

pointwise localization precision can be accurately estimated directly from imaging data using

the Bayesian posterior density constrained by simple microscope properties. We further

demonstrate that the estimated localization precision can be used to improve downstream

quantitative analysis, such as estimation of diffusion constants and detection of changes

in molecular motion patterns. Finally, the quality of actual point localizations in live cell

super-resolution microscopy can be improved beyond the information theoretic lower bound

for localization errors in individual images, by modelling the movement of fluorophores and

accounting for their pointwise localization uncertainty.
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S
uper-resolution fluorescence microscopy and live cell single
particle tracking (SPT) rely on computer intensive data
analysis to find and localize single fluorescent emitters in

noisy images. Much effort has been spent on developing and testing
efficient spot localization algorithms1 and understanding the
theoretical limits for localization accuracy2–5. However, the
problem of estimating and using the actual precision is still unsolved.

PALM/STORM-type super-resolution imaging6,7 relies on the
serial activation and localization of sparse photo-switchable
fluorophores. Knowledge about the localization precision is
important to build up a high resolution image since uncertain
localizations will only contribute blur. Often, only the number of
photons, pixel size and background noise for each emitter is used
to estimate the precision, assuming that it achieves its theoretical
limit. However, theoretical estimates neglect many important
factors, and are prone to systematic errors in particular when the
background is variable and the emitter is moving, which is the
common situation for live cell super-resolution imaging.

Knowledge of the localization precision is also important in
SPT8, where it can be used to improve estimators of diffusion
constants9,10. It is common in live cell imaging that the spot
quality varies throughout an experiment, for example, due to
out-of-focus motion, drift, motion blur, fluorophore intensity
fluctuations, heterogeneous background or gradual photo-
bleaching of the background or labelled molecule.

Here, we investigate methods to extract and use localization
precision of single spots in super-resolved SPT, using a
combination of experimental data and highly realistic simulated
microscopy experiments11. We characterize precision estimators
based on Gaussian spot models, and find that a Bayesian
approach that incorporates basic information about physical
limitations in the detection system outperforms estimators based
on maximum-likelihood localizations and the Cramér-Rao lower
bound (CRLB)4,5. We then demonstrate how precision estimates
can be used to improve parameter inference, event detection,
and localization errors in SPT data, and give a variational
expectation maximization (EM) algorithm for a diffusive hidden
Markov model (HMM) which extends previously described
algorithms9,10,12–16 by accounting for multi-state diffusion,
localization uncertainty and motion blur.

Results
Pointwise precision with maximum-likelihood estimates.
Estimating localization precision is closely related to estimating
positions, where the maximum-likelihood estimate (MLE) is
generally considered the optimal method. A maximum-likelihood
method starts with a likelihood function, that is, the probability
density function of a probabilistic model for generating images of
spots (pixel counts in a small region around a spot) with the
emitter position among the adjustable parameters. The MLE is
the set of parameters that maximize the likelihood function for a
particular spot image. Following common practice, we model
electron multiplying CCD (EMCCD) camera noise with
the high-gain approximation plus Gaussian readout noise4,17

(see Methods). The spot shape is modelled by a symmetric
Gaussian intensity profile plus a constant background intensity.
The fit parameters are thus spot position (mx, my), background
intensity b, spot width s and spot amplitude N (see Methods,
equation (2)), while the camera noise parameters are assumed
known from camera calibration.

The localization error is the difference mest.� mtrue between
estimated and true positions. The precision describes the
statistical distribution of the error, either in a Bayesian posterior
sense, or in the frequentist sense of repeated localizations of
equivalent spots. The precision is related to the shape of the

likelihood maximum: a sharply peaked maximum means that
only a narrow set of parameters are likely, while a more flat
maximum means greater uncertainty and lower precision.

The CRLB is the smallest possible variance of an unbiased
estimator for a given set of model parameters, and is related to the
expected sharpness of the likelihood maximum. While this is strictly
speaking not a statement about a single image, but rather about the
average information content of data generated by a model, it is
often used to estimate localization precision. We use an accurate
analytical approximation developed by Rieger and Stallinga5 (see
Methods, equation (5)). A Bayesian alternative to the CRLB is to
consider the posterior distribution of the fit parameters for a
particular image. We use the Laplace approximation18 to derive an
approximate Gaussian posterior from the likelihood maximum (see
Methods, equation (6)). Both estimators estimate the root mean
square error (RMSE), but none of them are well characterized as
estimators of localization precision.

To test these estimators, we analysed simulated movies of
a fluorescent particle diffusing at D¼ 1mm2 s� 1 in an E. coli-like
geometry. The movies cover a broad range of experimentally relevant
imaging conditions and include realistic EMCCD noise, background
fluorescence, a non-Gaussian vectorial-based point-spread function
(PSF)19,20 for isotropic or rotationally mobile emitters21 (see
Methods). Examples of simulated spots are shown in Fig. 1.

Motion blur effects depends on the relative strengths of several
parameters. A simple scaling argument to gauge its importance is
to ignore out-of-plane motion and compare the s.d. of a Gaussian
diffraction-limited spot to that of the fluorophore’s in-plane
diffusion path during the exposure time tE. The latter is given byffiffiffiffiffiffiffiffiffiffiffiffi

DtE=3
p

(ref. 22), and the spot width s0 is related to the
wavelength l and numerical aperture (NA) through23

s0 � 0:21l=NA: ð1Þ

We consider
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtE=3s2

0

p
o0.5 to be weak blur, which corresponds

to tEo6 ms in our case.
A basic consistency check for any precision estimator is that

the estimated and true RMSE agree. Such a comparison is shown
in Fig. 2a for MLE localizations in a range imaging conditions

tE = 1 ms, |z| < 25 nm

tE = 1 ms, 600 photons per spot

tE = 20 ms, 600 photons per spot

N=100 ph.
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Figure 1 | Factors that influence localization precision. Simulated images

of a diffusing fluorophore with diffusion constant 1 mm2 s� 1, 1 photon per

pixel background, EMCCD noise and varying localization uncertainty due

to varying (a) spot amplitude N, (b,c) average defocus z and exposure time

tE. Image size 20-by-20 pixels, pixel size 80 nm, colorbar indicates photons

per pixel.
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with short exposure times. Both estimators show o10%
discrepancy under good conditions, where the spots are bright
and the average errors low. However, the CRLB formula
deteriorates significantly as conditions worsen and the errors
increase, because of the worse performance on defocused spots
(Supplementary Fig. 1).

A stricter criterion is conditional consistency, meaning that
estimated and true RMSE are consistent for each value of the
estimated precision. Such a comparison is shown in Fig. 2b. Here,
the box plot shows the range of results for different imaging
conditions. We recognize the deterioration of the CRLB at high

estimated RMSE. In addition, the wide boxes at low RMSE show a
bias towards underestimating the precision in some conditions.

Pointwise precision with maximum a posteriori estimates. Can
the MLE precision estimates be improved? One clue is that the
distribution of spot widths from MLE fits (Fig. 2c) contains a
sizable fraction of spots more narrow than the width s0 of a
diffraction-limited spot, which is unphysical. Indeed, the Laplace
estimator performs better on the sub-population of fits with
sZs0 (Supplementary Note 1). However, using this criterion to
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Figure 2 | True and estimated precision at short exposure times. (a) True and estimated RMSEs for MLE localizations in different imaging conditions.

Precisions are estimated using the CRLB and Laplace estimators, and error bars (mostly smaller than the symbols) indicate bootstrap s.e.m. Dashed and

dotted lines indicate 0% and ±10% bias, respectively. (b) Conditional RMSE (cRMSE) normalized by estimated RMSE. Symbols, boxes and lines show the

median, 25% and 75% quantiles, and the whole span for all localization conditions. (c) Distribution (probability density function, pdf) of fitted spot widths

s for the MLE and MAP fits, and spot width prior. The theoretical minimum width s0 is indicated by a vertical line. (d,e) Same as in a,b, but for MAP

localizations. (f) Probability plots of localization errors normalized by Laplace RMSE estimates for MLE and MAP fits. Only spots with estimated RMSE

smaller than 3 pixels are included, and a standard normal distribution, N(0,1), is included as reference.
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exclude points from the analysis is not a practical solution, as too
few points will remain. To utilize this physical insight while
retaining more spots, we instead constrain the parameter fits
using prior distributions, thus replacing MLE with maximum a
posteriori estimation (MAP). This allows some parameter fluc-
tuations to model intrinsic variations in the size and shape of
spots. To study only the effects of fluorophore motion and
varying imaging conditions, we run numerical experiments where
we use high photon counts to suppress purely statistical fluc-
tuations. The results (Supplementary Note 2) indeed show the
spot widths confined to a finite interval above s0. However, the
full distribution of all fit parameters is complex and strongly
dependent on experimental conditions. A prior modelled on this
basis would therefore be difficult to construct, and only applicable
in a narrow range of conditions.

Given the complications inherent in using a highly detailed
prior based on, for example, high intensity simulations, we
instead seek a less informative and more general prior to
regularize the problem, incorporate relevant scale information
and exclude unreasonable parameter values. We reparameterize
the model to enforce the lower bound on the spot width in each
fit, set an exponential prior on the dimensionless excess spot
width (s� s0)/s0, and a weak log-normal prior on the back-
ground. User input is limited to easily accessible quantities: s0

(via equation (1)), and an order-of-magnitude background
estimate (Supplementary Note 3) where simple inspection or a
local estimator24 should suffice. The resulting MAP estimator
performs better in all aspects, as seen in Fig. 2c-e.

So far, we have looked at averages, but the full distribution of
errors is also interesting. In particular, most9,10,12–16 (but not all25)
recent statistical models of SPT data assume Gaussian errors,
although this assumption has not been tested. If the Laplace
approximation (equation (6)) was exact, the errors normalized by
the estimated RMSE would be Gaussian with unit variance, and
produce a straight line in the Gaussian probability plot in Fig. 2f.
The MLE results only agree partly with the reference unit normal,
consistent with a sub-population of fits with underestimated
precision, but the MAP results show good agreement.

We also generalized the approach to an asymmetric Gaussian
spot model (see Methods), which performs better than the
symmetric one with increased motion blur, as seen in Fig. 3. Both
priors also improve localization errors and convergence rates
compared to the MLE fits (Supplementary Note 4). However, the
asymmetric prior is less robust w.r.t. its parameterization
(Supplementary Note 3). The combination of long exposure
and high spot intensity also remains difficult in either case,
but this can often be avoided experimentally, for example by
decreasing the exposure time.

A possible further development is to improve the Gaussian
localization model, perhaps using an experimentally derived PSF
model26. To explore this, we experimented with data using a
Gaussian spot model for both PSF simulation and localization
(Supplementary Note 5). We see only modest improvements,
however, and as experimentally derived PSFs are instrument-
specific, we do not pursue this further.

Overall, these results show that pointwise precision estimates
using the Laplace approximation works well in a wide range of
experimentally relevant conditions, if aided by some basic
information about PSF shape and background. In this case, we
see good support for the assumption of Gaussian-distributed
localization errors.

Validation on real data. To test the above conclusions on real
data, we imaged immobilized fluorescent beads, alternating
strong and weak excitation as shown in Fig. 4a. We used images

under strong excitation conditions to extract an approximate
ground truth for testing the precision estimates in the dim ima-
ges. We estimated the position and precision of spots using the
estimation procedures described above with a symmetric spot
model, except for changing the background prior to be centred
around the mean background (0.7 photons per pixel) seen in dim
frames. A drift-corrected ground truth was estimated by linear
interpolation between the mean positions obtained from each
block of 10 consecutive bright images. In addition, the intensity
differs by about a factor 10 between bright and dim frames.
Overall, the RMSEs of the ground truth should therefore be
approximately 10-fold lower than that of a single dim spot.

Figure 4e shows the resulting comparison between true and
estimated precision, with every point corresponding to a single
bead. It qualitatively reproduces the behaviour on simulated
images in Fig. 2, confirming our conclusion that the Laplace
approximation is preferable to the CRLB formula as a precision
estimator, and that the good performance of our prior is not
limited to that particular set of simulated data.

Estimating diffusion constants. Next, we consider how precision
estimates can improve estimates of diffusion constants, arguably
the most common analysis of SPT data. Using simulated data, we
estimated positions and precisions using the asymmetric MAP-
Laplace estimators described above, extracted uninterrupted tra-
jectories with ten steps, and finally estimated diffusion constants
using the covariance-based estimators of ref. 9 (see Methods) with
and without the use of precision estimates. Figure 5 shows the
resulting mean value and 1% quantiles under varying imaging
conditions, plotted against the signal-to-noise ratio, which is
defined as half the diffusive step-length s.d. divided by the
RMSE9. The use of estimated precision obviously improves
the variability of the diffusion estimates substantially. The
covariance-based estimators only use the average precision in
each trajectory. We also implemented a maximum-likelihood
estimator for the diffusion constant10 that makes explicit use of
pointwise precisions (see Methods), but found no further
improvement (Supplementary Fig. 2).

Analysis of multi-state data. We now turn to a more challenging
problem where pointwise precision does matter: data where both
the diffusion constant and localization error change significantly
on similar time scales. In SPT, changes in diffusion constant can
be used as a non-invasive reporter on intracellular binding and
unbinding events27. However, diffusive motion and localization
errors contribute additively to the observed step-length statistics
(equation (7)), and thus changes in diffusion constants and
localization errors cannot be reliable distinguished.

As an example, we consider a protein that alternates between
free diffusion (D¼ 1mm2 s� 1) and a bound state simulated by
slow diffusion (D¼ 0.1 mm2 s� 1). We study an ensemble of
trajectories with four binding/unbinding events, two of which
occur about 400 nm out of focus, and thus are accompanied by
substantial broadening of the PSF and increases in localization
errors. This defocus matches roughly the radius of an E. coli cell,
and the scenario could model tracking experiments with
cytoplasmic proteins that can bind to the inner cell membrane.

Using SMeagol11, we simulated 10,000 replicates of the above
set of events, at a camera frame rate of 200 Hz, continuous
illumination, and 300 photons per spot on average. Figure 6a
shows the z coordinates in the input trajectory, and the framewise
RMSE produced by asymmetric MAP localization as described
above. Different replicates contain identical reaction events, but
differ in the microscopic diffusion paths as well as noise
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realizations. Examples of simulated spots along a trajectory are
shown in Fig. 6b.

To analyse this challenging data set, we extend the Berglund
model for diffusing particles28 to multiple diffusion states
governed by a HMM, for which we derived a variational EM
algorithm (see Methods). We then analysed each simulated
trajectory with three different two-state HMMs: first, the
extended Berglund model, which explicitly models motion blur
and pointwise localization errors. Second, a Kalman-type limit of
the Berglund model, which models pointwise localization errors

but not blur effects. This is an interesting comparison, since
multi-state Kalman-type algorithms have been studied
previously13,15,16. Third, the variational Bayes single particle
tracking software (vbSPT), which neglects both blur effects and
localization errors27. We do not consider the ability of vbSPT to
estimate the number of diffusive states. Figure 6c shows the
inferred average state from the three different methods. As
expected, the two HMMs that include localization errors
outperform vbSPT at detecting the strongly defocused first and
third binding events. The Berglund model does not give the best
classification of the two short binding events. However, it does
give the lowest overall misclassification rate, 9.3% versus 10.1%
and 19% for the Kalman and vbSPT models, respectively.

Next, we look at estimated diffusion constants. Here, the
Kalman and vbSPT models make systematic errors as seen in the
bare parameters in Fig. 6d. However, by comparing the step-
length statistics between the different models, one can derive
heuristic correction factors (see Methods, equation (9)) which
reduce the bias substantially, as shown in Fig. 6e.

To finally compare the different HMMs on more well-behaved
data, we reran the same experiment but with all z coordinates
rescaled by a factor 1/5 in the PSF model (Fig. 6f,g), which
removes most of the z-dependent defocus effects. On this less
challenging data set, event detection is much improved and the
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differences between the three HMMs are much less pronounced,
although the Berglund model still has a slight edge in overall
misclassification (4.7% versus 6.5%, and 7.8%).

We conclude that explicit use of pointwise localization errors
make a significant improvement if these errors vary a lot in the
data, while the more accurate description of blur effects in the
Berglund model is a more incremental improvement.

Position refinement. Since the new HMM includes the true
trajectory as a hidden variable and performs a global analysis, it
can be used to refine individual localized positions, and in prin-
ciple beat the CRLB for single-image localizations. In essence, if a
particular position is estimated to be highly uncertain, and the
molecule is moving slowly, it may be better to estimate its posi-
tion using the average localizations in neighbouring frames.
Figure 7a illustrates the true, measured and refined positions for
part of a two-state trajectory. Figure 7b shows the relative change
of the RMSE for each frame in Fig. 6a after refinement, and
includes improvements of up to 50%. Large localization errors
and small diffusion constant lead to larger relative improvement,
as expected.

Discussion
Fluorophore positions are not the only useful kind of information
in super-resolution microscopy images. Here, we have shown that
pointwise localization precision can also be extracted and used to
improve quantitative data analysis. This is particularly important
for live cell data, where molecules and structures are moving, and
constraints on labelling and imaging often mean less bright spots
compared to fixed and stained cells.

In general, our results show that estimating localization
precision is harder than the localization problem itself, but still
feasible. The performance may in fact be somewhat improved in
real applications, since spot detection algorithms tend to
discard the least well-behaved spots (Supplementary Note 6).
For practical use, we find that an estimate based on the
Laplace approximation to the posterior density, combined
with external information about the fluorescent background
and PSF shape, performs well in a wide range of experimentally
relevant conditions. The CRLB formula has a more limited
range of validity, and is more sensitive to unphysical fit
parameters.

Since we have limited ourselves to 2D localization using
conventional optics, an extension to three dimensions (3D) is a
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natural next step. We expect that useful Laplace estimators can be
designed also for 3D localization precision, and that our strategy
to combine realistic simulations, numerically informed para-
meterizations of the localization models and physics-based priors
will be helpful in achieving this. Since SMeagol accepts user-
defined PSF models11, extending it to simulate 3D localization
based on engineered PSFs29,30 or dual-plane imaging31 is mainly
a question of implementing the appropriate PSF models with
enough accuracy, and should present no major difficulty. Three-
dimension localization techniques are inherently asymmetric and
yield different in-plane and axial precision5, which further
underscores the need for downstream analysis methods to
incorporate heterogeneous localization uncertainty.

Most super-resolution microscopy applications are however
not aimed at particle tracking, but imaging. For PALM/STORM-
type imaging of fixed samples, our MAP localization methods
does improve the precision somewhat, but the precision estimates
may also be used to optimize the resolution of the final image. A
simple possibility is to use the precision estimates to omit the
most uncertain points from the analysis, although this may set up
a difficult trade-off between localization errors and sampling
density. A more efficient approach that avoids this trade-off may
be to use the precision estimates as an additional input to
downstream structural analysis32. The modelling approach may
also have interesting consequences for live cell imaging, since the
same fluorophore may be detected in different positions over
different frames if the target is moving. For this case, we show in
Fig. 7 that the combination of estimating uncertainty and
modelling the fluorophore motion can produce refined position
estimates, in principle pushing the localization errors below the
single-image CRLB, by merging information from consecutive
frames in an optimal way.

Methods
Synthetic data. We generated synthetic microscopy data using SMeagol, a soft-
ware for accurate simulations of dynamic fluorescence microscopy at the single
molecule level11. We modelled the optics using the PSFgenerator20 implementation
of the Richards–Wolf PSF model19, with 639 nm wavelength and NA¼ 1.4. This is
a circularly symmetric PSF, appropriate for isotropic point sources or fluorophores
with high rotational mobility21. For the EMCCD camera, we use 80 nm pixels,
model EM register noise using the high-gain approximation4,17 with EM gain 50,
and add Gaussian readout noise with s.d. 10.

For localization and diffusion estimation tests, we simulated simple diffusion
(D¼ 1 mm2 s� 1) in a cylinder of length 20 mm and diameter 0.8 mm, similar to long
E. coli cells, to avoid confinement artifacts in the longitudinal direction. We
generated multiple data sets of 10,000–30,000 points, spanning a wide range of
conditions by combining different values of exposure time (1, 3, 6, 10, 16 or 22 ms),
background fluorescence (1 or 3 photons per pixel) and average spot brightness

(100–600 photons per spot). For estimating diffusion constants, we combined time
steps of 3, 10 and 30 ms with various exposure times.

For the simulated multi-state data, we hand-modified a single SMeagol input
trajectory from a simulated two-state model to contain four binding events with
different durations and z coordinates as seen Fig. 6a, and also thinned out the input
trajectory to create more variability in the particle paths between different
realizations. We then simulated many realizations from this input trajectory, using
the same PSF and camera noise as above, continuous illumination with a
sample time of 5 ms, an average spot intensity of 300 photons per spot, and a
time-dependent background that decays exponentially from 0.95 to 0.75
background photons per pixel with a time-constant of 0.75 s.

Real data. For estimating localization errors in the real imaging conditions, we
use immobilized fluorescent beads with the diameter of 0.1 mm (TetraSpeck
Fluorescent Microspheres, ThermoFischer T7284). The beads where diluted in
ethanol and then placed on a coverslip where we let them dry in before adding
water as a mounting medium.

Imaging was done with a Nikon Ti-E microscope, which was configured for
EPI-illumination with a 514 nm excitation laser (Coherent Genesis MX STM)
together with matching filters (Semrock dichroic mirror Di02-R514 with emission
filter Chroma HQ545/50M-2P 70351). Intensity modulation was made possible by
an acousto-optic tunable filter (AOTF) (AA Opto Electronics, AOTFnC) that was
triggered by a waveform generator (Tektronix, AFG3021B). The waveform used
was a sequence of square pulses, high for 200 and low for 1,800 ms. The two
illumination intensities, high and low, corresponds to 10.7 and 0.63 kW cm� 2,
respectively.

Fluorescent beads where viewed through a � 100 (CFI Apo TIRF � 100 oil,
NA¼ 1.49) objective with a � 2 (Diagnostic instruments DD20NLT) extension in
front an Andor Ultra 897 EMCCD camera (Andor Technology). This
configuration puts the pixel size to 80 nm, which is the same pixel size set in the
simulated data. The data set constituted of 1,000 frames (Fig. 4a) with an exposure
time of 30 ms. EMCCD noise characteristics (gain, offset, readout noise) were
determined by analysing a dark movie obtained with the shutter closed.

Localization. We perform MLE localization using an EMCCD noise model that
include EM register and readout noise4,17, which relates the probability q(ci|Ei) of
the offset-subtracted pixel count ci for a given pixel intensity Ei (expected number
of photons per frame) in pixel i. For the intensity E(x, y), we model the spot shape
with a symmetric Gaussian,

Eðx; yÞ¼ b
a2
þ N

2ps2
exp �

x�mxð Þ2 þ y� my

� �2

2s2

0
B@

1
CA; ð2Þ

with pixel size a, background b (expected number of photons per pixel), spot width
s, amplitude N (expected number of photons per spot) and spot position (mx, my),
and approximate the pixel intensity

Ei¼
Z

pixel i

Eðx; yÞdxdy ð3Þ

by numerical quadrature33. For localization with an asymmetric Gaussian, we
instead modelled the spot intensity by two principal widths s1,2 and a rotation
angle (Supplementary Note 7). The log likelihood of an image containing a single
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Figure 7 | Position refinement. Improved localization precision by modelling particle motion with the Berglund HMM. (a) Illustration of true, measured

(±s.d.) and HMM-refined positions. (b) Relative change of RMSE HMM refinement, for every frame in Fig. 6a, coloured according to the true hidden state.
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spot is then given by

ln LðyÞ¼ ln q0ðyÞþ
X

i2ROI

ln q cijEiðyÞð Þ; ð4Þ

where y¼ (mx, my, b, N, s) are fit parameters, q0 is a prior distribution (we set
ln q0¼ 0 for MLE localization), and we use a 9� 9 pixel region of interest (ROI).
To avoid the complications of spot identification, we use known positions to
determine the ROI and initial guess for (mx, my).

As detailed in Supplementary Note 8, we only retain fits that converge, end up
at most 4 pixels away from the true position (that is, mostly inside the ROI), yield
estimated uncertainties smaller than 16 pixels, and give a spot width smaller than 9
pixels (the ROI width). For conditional RMSE boxplots, we use 7.5 nm bins and
include imaging conditions with at least 300 spots per bin.

CRLB. The CRLB is a lower bound on the variance of an unbiased estimator34. We
use an accurate approximation to the CRLB for a symmetric Gaussian spot from
ref. 5,

e2
CRLB¼2

s2
a

N
1þ 4tþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2t

1þ 4t

r !
; ð5Þ

with t¼ 2ps2
ab/(Na2), s2

a ¼s2þ a2/12. The prefactor 2 accounts for EMCCD
excess noise4.

Laplace approximation. An alternative way to approximate the uncertainty of the
fit parameters is to Taylor expand the likelihood around the maximum-likelihood
parameters y* to second order, that is

ln LðyÞ � ln L y�ð Þþ @ ln L
@y y� y� y�ð Þj

þ 1
2

y� y�ð ÞT@
2 ln L

@y2 y� y� y�ð Þj :

ð6Þ

The first-order term is 0, since y* is a local maximum. This approximates the
likelihood by a Gaussian with covariance matrix given by the inverse Hessian, that
is, S¼ [@2 ln L/@y2]� 1. In a Bayesian setting, this expresses the (approximate)
posterior uncertainty about the fit parameters. The estimated uncertainties
(posterior variances) are given by the diagonal entries of the covariance matrix, for
example, e2

Lap: mxð Þ¼�mx ;mx
. We compute the Hessian numerically using Matlab’s

built-in optimization routines, and use the log of the scale parameters b, N, s for
fitting, since they are likely to have a more Gaussian-like posterior35.

Prior distributions. For MAP localizations in the main text, we used weak
normal priors with standard deviation ln(30) centred on the true value for the log
background intensity. For the spot width, we define s¼ s0(1þDs), where
s0¼ 0.21l/NA is the width of a focused spot, and put exponential priors with mean
value one on Ds. For asymmetric Gaussian spots with two principal widths, we
define analogous excess widths Ds1,2 and use independent exponential priors with
mean value 1/2. Other parameters were left with flat priors (for details, see
Supplementary Note 3).

Covariance-based diffusion estimator. If xk (k¼ 0, 1, y) is the measured
trajectory of a freely diffusing particle with diffusion constant D, the widely used
model for camera-based tracking by Berglund28 predicts that the measured step
lengths Dxk¼ xkþ 1� xk are zero-mean Gaussian variables with covariances given
by

Dx2
k

� �
¼2DDt 1� 2Rð Þþ 2e2; DxkDxk� 1h i¼2DDtR� e2; ð7Þ

and uncorrelated otherwise. Here, 0rRr1/4 is a blur coefficient that depends on
how the images are acquired ( for example, R¼ 1/6 for continuous illumination),
Dt is the measurement time-step, and e2 is the variance of the localization errors.

Substituting sample averages for Dx2
k

� �
and DxkDxk� 1h i and solving for D

yields a covariance-based estimator with good performance9. If e2 is known or can
be estimated independently, the first relation in equation (7) alone yields a further
improved estimate of D. As we argue in Supplementary Note 9, these estimators
apply also for variable localization errors if e2 is replaced by the average e2h i.

Maximum likelihood and multi-state diffusion. The Berglund model28 can also
be used directly for maximum-likelihood inference, which allows pointwise errors
to be modelled10. The basic assumption is to model the observed positions xk as
averages of the true diffusive particle path y(t) during the camera exposure, plus a
Gaussian localization error, that is,

xk¼
Z Dt

0
y kDtþ tð Þf ðtÞdtþ ekxk; ð8Þ

where f(t) is the normalized shutter function28, ek is the localization uncertainty
(s.d.) at time k, and xk are independent N(0, 1) random numbers. Continuous
illumination is described by a constant shutter function, f(t)¼ 1/Dt. The opposite
limit of instantaneous measurement (no blur) is described by a delta function for

f(t), which reduces equation (8) to a standard Kalman filter12, and leads to R¼ 0 in
equation (7).

In Supplementary Note 10, we derive a maximum-likelihood estimator that
learns both D and y(t). In Supplementary Note 11, we extend the model to
multi-state diffusion, by letting the diffusion constant switch randomly between
different values corresponding to different hidden states in an HMM, and derive a
variational EM algorithm for maximum-likelihood inference of model parameters,
hidden states and refined estimates of the measured positions.

To interpret estimated diffusion constants from simplified models, one may
‘derive’ corrected diffusion estimates D* by equating expressions for the step-length
variance D2

k

� �
from equation (7) with and without those effects present. For the

Kalman (R¼ 0) and vbSPT (R¼ e¼ 0) models, we get

D�¼DKalman

1� 2R
; and D�¼DvbSPT � e2h i=Dt

1� 2R
; ð9Þ

respectively, which is what we use in Fig. 6e.

Data availability. The data that support the findings of this study is available from
the corresponding author upon reasonable request. Documented Matlab code
for localization and EM-HMM analysis is freely available at https://github.com/
bmelinden/uncertainSPT. Scripted examples for generating synthetic data are
appended in Supplementary Data 1.
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