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Determination of Ochratoxin A 
contamination in grapes, processed 
grape products and animal-derived 
products using ultra-performance 
liquid chromatography-tandem 
mass spectroscopy system
Dongmei Wei1,2, Xiaohu Wu2, Jun Xu2, Fengshou Dong2, Xingang Liu2, Yongquan Zheng2 & 
Mingshan Ji1

We developed a sensitive and rapid analytical method to determine the level of Ochratoxin A 
contamination in grapes, processed grape products and in foods of animal origin (a total of 11 different 
food matrices). A pretreatment that followed a “quick, easy, cheap, effective, rugged, and safe” 
protocol was optimized to extract Ochratoxin A from the matrices, and the extracted Ochratoxin A 
was then detected with the use of a highly sensitive ultra-performance liquid chromatography-tandem 
mass spectrometry system. Good linearities of Ochratoxin A were obtained in the range of 0.1–500 µg 
L−1 (correlation coefficient (R2) > 0.9994 in each case). Mean recovery from the 11 matrices ranged 
from 70.3 to 114.7%, with a relative standard deviation ≤19.2%. The method is easy to use and yields 
reliable results for routine determination of Ochratoxin A in food products of grape and animal origin. 
In store-purchased foods and foods obtained from the field and wholesale suppliers, the Ochratoxin A 
concentration ranged from undetectable to 10.14 µg kg−1, with the more contaminated samples being 
mainly those of processed grape products. Our results indicate that the necessity for regulation of and 
supervision during the processing of grape products.

Ochratoxin A (OTA) is a secondary fungal metabolite produced mainly by Aspergillus and Penicillium species1,2. 
OTA exhibits potent nephrotoxicity, hepatotoxicity, cytotoxicity, and immunotoxicity and is a potential carcin-
ogen3–5. OTA has been classified as a possible human carcinogen (group 2B) by the International Agency for 
Research on Cancer6. OTA may reach the human food chain in contaminated, mostly cereal-based feed ingested 
by animals that are fated to become food for human consumption7,8. Brera and colleagues9, Endou and col-
leagues10, and Krogh11 found that OTA contamination in foods correlates with endemic nephropathy in humans 
and pigs. OTA is found predominantly in grain, animal feed, fruit12, and processed foods of varying origin, 
with a wide range and low concentrations. The European Union has set a maximum concentration for OTA in 
plant-derived products, including cereal, coffee, and grape-based foods, as between 0.5 to 10 µg kg−1 13, but for 
animal-derived food no recommendation concerning a maximum level has been made. To better understand 
the extent to which agricultural products are contaminated with OTA and allow for risk assessment, a highly 
sensitive and reliable analytical method is needed to determine OTA levels in agricultural products, especially 
animal-derived products.
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Extraction of target analyte from matrix and subsequent quantification are the two key steps for analysis of a 
contaminating compound. Most reports concerning OTA detection have focused mainly on contamination of cere-
als, coffee14, fruits15–18, and pork products19–21. These methods mainly have used a pretreatment step that relies on 
immunoaffinity column and analysis by HPLC-FLD. However, because the methods involves blending, quantitative 
transfers, wash the immunoaffinity column, elute the target compound, and evaporate and exchange the solvent, 
which are procedures that are complicated, time-consuming, and require large amounts of solvents. Also, each step 
is a potential source of systematic and random errors. In addition, since the average levels of OTA are lower in agri-
cultural products, the detectability and sensitivity of analytical methods used should be very high, in the reported 
method, the limit of quantitation (LOQ) for all sample type were between 0.2 to 1 µg kg−1 14,15,20,21, it may higher than 
the OTA levels in real samples. Hence, development of a simple and sensitive pretreatment would be very useful.

QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) methods usually use acetonitrile (MeCN) par-
titioning and a dispersive solid-phase extraction (d-SPE) clean-up22. Because of their simplicity, high efficiency, 
and cost-effectiveness, QuEChERS procedures have been applied to the analysis of mycotoxins in barley23, rice24, 
and animal feed25. Furthermore, QuEChERS methods are flexible, as the optimization of their pretreatment pro-
cesses allows for the extraction of target compounds from complex matrices including foods of animal origin26. In 
addition, an ultra-performance liquid chromatography (UPLC) system coupled to a Xevo TQ-S triple quadrupole 
mass spectrometer serves as a powerful tool for the determination of trace levels of pesticides27 and mycotox-
ins28 from various matrices. The Xevo TQ-S29 is equipped with patented StepWave ion-guide technology, which 
improves ion sampling in the source and ion-transfer efficiency, resulting in excellent sensitivity. Therefore, we 
posited that the combined use of a QuEChERS pretreatment with a UPLC-Xevo TQ-S system should allow for 
quantification of trace levels of OTA in foods of plant and animal origins.

The aim of this study was thus to establish a rapid and sensitive analytical method to determine the extent 
to which OTA residue contaminates grapes, grape-related matrices (grape wine, grape juice, and raisins), and 
foods of animal origin (pork, porcine kidney, liver, and fat; chicken and eggs; cow milk). To maximize puri-
fication and recovery of OTA in the matrices, the ability of MeCN containing varying amounts of acetic acid 
(HOAc) to quantitatively extract OTA was assessed. To our knowledge, this is the first time a QuEChERS method 
and UPLC-tandem mass spectroscopy have been employed to quantify OTA levels in foods of animal origin. 
Furthermore, we collected 717 food samples from local markets, fields, and wholesale supply warehouses and 
analyzed them for their OTA content to make risk assessments concerning OTA contamination in foods available 
for human consumption.

Results
Linearity and LOQ.  The optimized method was used to quantify OTA spiked into the various matrices. 
Calibration curves at concentration between 0.1 µg L−1 and 500 µg L−1, each using the results for six solutions 
spiked with the standard solution of OTA, were prepared for each matrix. The linear regression equations, and 
R2 values for the matrix-matched curves are given in Table 1. For each curve, an R2 value ≥ 0.9994 was obtained, 
and the LOQ was 0.1 µg kg−1.

Matrix effects.  Matrix effects are a major challenge when attempting to quantify a contaminant by LC-MS/
MS because co-eluting sample constituents may enhance or suppress the analyte response, which is also depend-
ent on the instrument, the properties of the analyte and its concentration, the matrix, and the sample pretreat-
ment procedure30. We assessed the effect of each matrix on MS/MS detection of OTA, the ratio of the slope of 
each of the curves for spiked OTA samples from each matrix to that of the standard solvent curve and the values 
of each matrix effect are shown in Table 1. Enhancement or suppression (from −6 to 83%) of the OTA signal 
was observed for the 11 matrices. An OTA signal enhancement effect (26% ≤matrix effect ≤83%) was observed 
for all matrices except for porcine liver, for which a signal suppression effect was evident (matrix effect = −6%). 
Therefore, matrix-matched calibration standards were necessary to accurately quantify OTA extracted from the 
different matrices.

Matrix Regression equation R2 Slop ratioa Matrix effectb (%) LOQ(µg kg−1)

Acetonitrile y = 3417.5x − 7266.9 R² = 0.9999 0.1

Grape y = 4558.9x + 800.35 R² = 1 1.33 33 0.1

Wine y = 5406.2x + 8354.5 R² = 0.9997 1.58 58 0.1

Juice y = 6261.2x + 10692 R² = 0.9997 1.83 83 0.1

Raisin y = 6011.2x − 2406.7 R² = 1 1.76 76 0.1

Pork y = 4309.4x + 1248.5 R² = 1 1.26 26 0.1

Porcine liver y = 3206.1x − 3857.9 R² = 0.9999 0.94 −6 0.1

Porcine Kidney y = 5251.4x + 4169.7 R² = 1 1.54 54 0.1

Porcine fat y = 5673.7x + 8237.3 R² = 0.9999 1.66 66 0.1

Chicken y = 4910.9x − 740.04 R² = 0.9999 1.44 44 0.1

Eggs y = 4723.7x + 13969 R² = 0.9994 1.38 38 0.1

Milk y = 5459.1x + 10234 R² = 0.9998 1.60 60 0.1

Table 1.  Calibration equations, R2 values, LOQ values, and matrix effects for Ochratoxin A detection by our 
optimized UPLC-MS/MS method.
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Precision and accuracy.  The precision and accuracy of the method were evaluated according to the recov-
eries obtained for blank samples analyzed in quintuplicate and spiked with OTA at 0.1, 1, 10, or and 500 µg kg−1. 
Mean recovery ranged from 70.3 to 114.7% with RSD values <19.2% for all samples (Table 2); the RSDr values 
ranged from 0.8 to 19.2%, and the RSDR values ranged from 2.0 to 16.9%. These results indicate that the method 
achieved satisfactory recovery, precision, and sensitivity values for the detection of OTA in all tested matrices.

Occurrence of OTA in real samples.  The ability of the method to measure trace levels of OTA was eval-
uated by analyzing 717 samples obtained from fields, wholesale warehouses, and stores. OTA was found at 

Matrix

Spiked 
level
(µg kg−1)

Intra-day (n = 5)

Inter-
day(n = 15)
RSD(%)

Day 1 Day 2 Day 3

Average 
recoveries(%) RSDr(%)

Average 
recoveries(%) RSDr(%)

Average 
recoveries(%) RSDr(%)

Grape

0.1 71.7 5.4 80.1 3.4 80.0 10.3 8.2

1 110.2 2.5 109.4 3.4 107.5 2.5 2.8

10 110.7 1.4 110.3 1.3 103.1 4.2 4.1

500 114.7 1.1 102.6 2.6 100.1 0.8 6.4

Wine

0.1 80.0 5.8 80.6 4.2 85.8 2.4 5.0

1 96.5 6.0 94.7 10.0 98.7 2.6 6.5

10 93.4 3.0 91.3 4.1 98.6 1.7 4.4

500 111.2 0.8 109.9 1.5 96.0 8.7 8.0

Juice

0.1 79.7 6.6 79.2 5.2 82.5 10.8 7.2

1 95.7 4.3 108.5 1.3 93.1 1.8 4.3

10 93.4 3.0 111.7 1.8 101.9 3.7 6.8

500 110.6 2.1 94.7 10.0 109.0 1.3 2.0

Raisin

0.1 80.7 3.9 85.9 8.1 74.3 6.6 8.4

1 106.9 3.0 100.2 5.1 82.9 7.2 11.8

10 87.0 7.4 99.5 4.4 94.6 4.6 7.6

500 109.0 2.0 102.6 6.4 96.5 4.2 6.6

Pork

0.1 90.2 3.0 79.9 8.6 83.0 9.5 8.4

1 97.5 7.1 102.5 3.2 89.4 2.6 7.3

10 74.9 2.3 80.4 10.8 94.6 3.6 12.0

500 75.1 9.8 78.4 11.6 99.3 2.3 15.2

Porcine liver

0.1 76.8 3.5 73.9 5.7 77.9 12.2 7.4

1 84.4 4.2 103.5 4.6 100.1 6.2 10.1

10 84.3 9.8 104.6 6.3 100.4 3.8 11.3

500 93.3 4.7 97.7 3.3 96.0 3.4 4.1

Porcine kidney

0.1 84.4 9.4 87.5 17.2 87.7 10.4 11.3

1 77.4 6.7 74.4 3.9 93.4 6.8 12.0

10 102.9 16.4 81.8 15.3 91.3 5.7 15.8

500 87.3 6.3 91.2 9.5 98.8 5.0 8.5

Porcine fat

0.1 79.9 8.3 71.6 4.1 77.8 10.4 8.6

1 73.0 1.7 90.5 15.1 71.4 5.4 15.0

10 75.7 3.6 70.7 8.4 74.2 4.1 6.0

500 70.3 3.6 103.3 7.1 92.1 5.2 16.9

Chicken

0.1 81.1 12.5 85.6 14.6 80.5 7.7 11.2

1 108.8 7.8 88.2 3.7 83.9 4.4 13.1

10 73.8 9.0 83.6 19.2 72.5 2.0 13.8

500 73.7 8.5 75.6 8.9 78.8 8.9 8.6

Eggs

0.1 75.5 12.4 80.5 4.6 81.0 5.1 7.9

1 97.1 4.8 101.1 7.6 99.4 4.5 5.6

10 83.2 11.5 93.8 11.9 95.8 16.7 14.2

500 87.0 3.0 80.4 3.5 86.9 3.3 4.8

Milk

0.1 84.0 5.8 90.9 4.3 96.9 3.9 7.4

1 94.8 13.9 90.4 12.0 84.1 7.5 12.0

10 86.1 6.4 100.6 2.0 104.1 12.6 9.0

500 89.9 14.8 89.9 6.6 93.8 8.0 4.2

Table 2.  Accuracy and precision of the optimized method for the 11 matrices, each of which was spiked with 
one of four concentrations of Ochratoxin A.



www.nature.com/scientificreports/

4ScIentIfIc REPOrtS |  (2018) 8:2051  | DOI:10.1038/s41598-018-20534-7

concentrations of 0.35, 0.61, 1.11 µg kg−1 in three grape samples acquired from a field in Xinjiang province. For 
three raisin samples from a market in Tianjin, the concentration of OTA was 10.14 µg kg−1, which exceeds the 
maximum allowed concentration for OTA in raisins as established by the EU (10 μg kg−1)13, whereas the other two 
concentrations were 0.18 and 0.43 μg kg−1. For 6 of the 41 grape juice samples, the detected OTA concentration 
was between 0.1 and 0.2 μg kg−1, in other 35 grape juice samples, OTA could be detected but the concentration 
was below the LOQ, whereas for the remaining samples, OTA could not be detected. Information concerning 
the occurrence of OTA in real samples is shown in Table 3. The high occurrence of OTA in the grape juice and 
unacceptably high contamination level of one raisin sample indicate that supervision of the farm-to-store chain 
for grape juice and raisins is necessary, as is quantification of OTA in those foods.

Discussion
To select the multiple reaction-monitoring parameters, the standard solution of OTA (100 µg L−1) was directly 
injected into the UPLC-ESI-MS mass spectrum at different cone voltage. Excellent sensitivity was achieved in 
the negative ionization mode, the deprotonated molecule at m/z = 402.11 was selected as precursor MS ion, the 
final cone voltage was 34 V. The precursor ion was fragmented at different collision energies, and the selected 
reaction-monitoring parameters were optimized to obtain the highest degree of sensitivity. The two most intense 
fragment ions were observed in the product-ion spectra—one at m/z = 167.01 and the second at m/z = 211.02; 
these two ions were used for quantitative and qualitative analysis of the OTA content in the samples when the 
collision energy was 36 V or 26 V, respectively.

To optimize the peak shapes and retention behavior, different mobile-phase compositions MeCN and water, 
MeCN and 0.2% (v/v) formic acid(aq), methanol and water, and methanol and 0.2% (v/v) formic acid(aq) were 
assessed. The methanol/0.2% formic acid(aq) produced the best combination of satisfactory retention time 
(2.57 min) and peak shape for OTA with no interfering peaks (Fig. 1).

The selection of an extraction solvent and sorbent is critical for the detection of a target compound in different 
matrices. We first considered MeCN as the extraction solvent because its use usually results in better recoveries with 
less co-extraction of matrix components31. D-SPE is a clean-up technique that involves mixing the sample extract 
with a mixture of anhydrous MgSO4 and sorbents to remove matrix components. Common sorbents include pri-
mary secondary amine (PSA), octadecylsilane (C18), graphitized carbon black (GCB), and Florisil, which remove 
different types of impurities based on chemical properties. PSA functions as a weak anion exchanger and has a 
strong sorption capacity for free fatty acids and other polar pigments, whereas C18 is a common reverse-phase 
sorbent and is suitable for extraction of nonpolar and partially polar compounds from polar samples. GCB is mainly 
used to remove pigments, and Florisil is used to separate and remove matrix secretions and grease. We assessed 
the ability of the following sorbents to remove contaminants from the grape and processed grape samples: 50 mg 
PSA; 50 mg PSA + 10 mg GCB; 50 mg C18; and 50 mg C18 + 10 mg GCB. We also assessed the following sorbents to 
remove contaminants from foods of animal origin: 50 mg PSA; 50 mg C18; and 50 mg Florisil. Pure MeCN resulted 
in satisfactory OTA recovery for the grape, grape wine, grape juice, and raisin samples when C18 was the sorbent 
(recoveries were between 84.56% and 112.05%; Fig. 2). However, extraction of OTA from foods of animal origin 
was not satisfactory when pure MeCN served as the extraction solvent (recoveries were <3.72%; Fig. 3). Then we 
assessed the ability of ethyl acetate to extract OTA from pork meat and porcine kidney, OTA recovery from porcine 
kidney was satisfactory when C18 was the sorbent (79.30%), but ethyl acetate could barely extract OTA from pork 
meat. Because organic solvents mixed with acidic solutions are often used to extract OTA from solid samples32, we 
assessed the ability of MeCN containing 4 or 5% (v/v) HOAc to extract OTA from pork meat and porcine kidney 
(Fig. 3). Recoveries increased as the concentration of HOAc increased when C18 was the sorbent. OTA recovery 
from pork was not satisfactory with use of MeCN containing 4% HOAc (recovery 55.03–69.04%); when HOAc 
was increased to 5%, however, mean recovery increased substantially (93.98% and 92.01% for the pork and kidney 
samples, respectively). The efficiency of this combination of extraction solution and sorbent was acceptable for all 
foods of animal origin. Given these results, we used MeCN as the extraction solvent for grapes and processed grape 
products, and MeCN containing 5% HOAc (v/v) was used for all foods of animal origin. As shown in Figs 2 and 3, 
Recovery and RSD values were always acceptable when 50 mg of C18 was used to purify OTA from a matrix (Figs 2 
and 3). Therefore, C18 was used as the sorbent for all additional experiments.

Sample type
No. of samples 
analyzed

No. of Positive 
samples

Incidence of 
positives (%)

Minimum  
(µg/kg)

Maximum 
(µg/kg)

Grape 320 3 0.93 0.35 1.11

Wine 21 0 0 ND ND

Juice 41 41 100 <LOQ 0.17

Raisin 195 3 1.54 0.18 10.14

Pork 20 0 0 ND ND

Porcine liver 20 0 0 ND ND

Porcine kidney 20 0 0 ND ND

Porcine fat 20 0 0 ND ND

Chicken 20 0 0 ND ND

Eggs 20 0 0 ND ND

Milk 20 0 0 ND ND

Table 3.  Occurrence of Ochratoxin A in samples obtained in the field.
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Conclusions
In the present study, we established and validated a simple and robust analytical method using UPLC-MS/MS 
in the negative ionization mode to detect OTA in grapes, processed grape products, and foods of animal origin. 

Figure 1.  Typical UPLC-MS/MS multiple reaction-monitoring chromatograms for Ochratoxin A (a) in a 
standard solution (1 μg L−1), (b) from a grape sample collected at a field in Xinjiang province, (c) from unspiked 
pork and grape samples, and (d) from pork and grape samples each spiked at 1 μg L−1.

Figure 2.  Effect of different types of sorbents on the detection of spiked Ochratoxin A (10 µg kg−1) in different 
processed grape products (n = 3 per matrix).

Figure 3.  Effect of different extraction solvents and sorbents on the detection of spiked Ochratoxin A (10 µg 
kg−1) in different foods of animal origin (n = 3 per matrix).
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OTA eluted within 5 min with satisfactory recovery, linearity, accuracy, precision and a low LOQ. The detection 
of OTA in real samples using the method confirmed its reliability and efficacy for the routine monitoring of OTA 
in grapes, processed grape products, and foods of animal origin. Identification of OTA in samples from the food 
chain revealed that OTA may be present at high levels in raisins, mostly, at low levels in grapes and grape juice, 
although in one raisin sample the amount of OTA was above the maximum allowable limit, suggesting that super-
vision during grape product processing will be needed.

Materials and Methods
Chemicals and reagents.  OTA (99.76%, analytical standard grade) was obtained from Fermentek Ltd. 
HPLC-grade methanol was purchased from Sigma-Aldrich (Steinheim, Germany). Anhydrous MgSO4 (analyti-
cal grade) NaCl, MeCN, and HOAc were purchased from Beihua Fine-Chemicals Co. (Beijing, China). Ultrapure 
water was prepared using a Milli-Q system (Bedford, MA, USA). PSA (40 µm), C18 (40 µm), Florisil, and GCB 
(40 µm) sorbents and 0.22-µm pore nylon syringe filters were provided by Agela Technologies Inc. (Tianjin, 
China).

A standard stock solution (100 mg L−1) of OTA was prepared in MeCN. Standard working OTA solutions at 
concentrations of 0.1, 1, 5, 10, 100 and 500 µg L−1 were prepared by diluting samples of the standard stock solu-
tion with MeCN. Accordingly, matrix-matched standard solutions of 0.1, 1, 5, 10, 100 and 500 µg L−1 OTA were 
obtained by adding an appropriate volume of a sample extract (grapes, grape wine, grape juice, raisins, pork, por-
cine kidney, liver, or fat, and chicken, eggs, or milk) to each serially diluted standard solution. All solutions were 
protected against light and stored in a refrigerator at −20 °C until used.

UPLC-MS/MS analysis.  A Waters ACQUITY UPLC system (Milford, MA, USA) consisting of a UPLC 
binary solvent manager, a UPLC manager, and a column heater equipped with a UPLC HSS T3 column 
(2.1 × 100 mm, 1.8-μm particle size) was used. The mobile phase consisted of methanol (solvent A) and 0.2% (v/v) 
formic acid(aq) (solvent B). Elution was performed in the gradient mode (0 min, 10% A; 1.5 min, 90% A; 3.0 min, 
90% A; 3.1 min, 10% A; 5.0 min, 10% A) for a total of 5 min. The flow rate was 300 µL/min, and the injection vol-
ume was 5 µL. Temperatures of the sample manager and column were 5 and 40 °C, respectively.

Qualitative and quantitative analyses of OTA were performed using a Waters XEVO TQ-S tandem quadrupole 
mass spectrometer equipped with an electrospray ionization source. Nitrogen (99.95%) and argon (99.999%) each 
at a pressure of 2 × 10–3 mbar served as the nebulizer and collision gas in the T-wave cell, respectively. Tandem 
mass spectral detection was performed by multiple reaction monitoring in the negative ionization mode. The 
monitoring conditions were optimized for OTA. All parameters for the multiple reaction-monitoring transitions, 
cone voltage, and collision energy were optimized to obtain the best sensitivity and resolution. Typical parameters 
were: capillary voltage, 3.1 kV; source temperature, 150 °C; desolvation temperature, 200 °C. Nitrogen was the 
cone and desolvation gas supplied at 150 and 800 L h−1, respectively. MassLynx software (version 4.1) was used to 
collect and analyze the data.

Field sample collection and preparation.  A total of 717 samples were collected from the main pro-
duction areas and/or the major provinces of China in 2016 (Table 4). The grape samples were collected from 
a field located in each county of the main production areas at harvest. Milk samples were collected from cows 
that had been pastured in the main production areas. Samples of processed grape products and foods of animal 
origin were collected from wholesaler supply warehouses or at large supermarkets in the major provinces and 
municipalities in China. For each collection, product was sampled throughout the location. Sample sizes were a 
minimum of 1 kg. Samples were sent to the laboratory immediately after acquisition where they were chopped, 
homogenized, and stored at −20 °C until used.

Each thoroughly homogenized 10-g matrix sample was added into a 50-mL Teflon centrifuge tube. Next, 
10 mL of MeCN was added into the tubes containing grape, grape wine, grape juice, or raisins, and 10 mL MeCN 
containing 5% (v/v) HOAc(aq) was added into the tubes containing pork, porcine kidney, liver, or fat, chicken, 
eggs, or milk. The tubes were shaken vigorously for 10 min. Next, 4 g of anhydrous MgSO4 and 1 g of NaCl were 
added, and the tubes were vortexed again for 5 min. Samples were then centrifuged at 2811 × g for 5 min. Next, 
the upper 1.5-mL volume of each sample was transferred into a 2.0-mL centrifuge tube containing 50 mg of C18 
sorbent and 150 mg of anhydrous MgSO4. Then, the tubes were vortexed for 1 min and centrifuged for 5 min at 
2400 × g. Each upper layer was filtered through a new 0.22-µm nylon syringe filter and then transferred into a 
brown sampler vial for UPLC-MS/MS.

Method validation.  The method was validated in terms of its sensitivity, accuracy, precision, specificity, 
and linearity. The limit of quantification (LOQ), a measure of a method’s sensitivity, was established based on the 
lowest spiked concentration in each matrix that had a recovery value between 70 and 120% and a relative standard 
deviation (RSD) ≤20%33.

The assays used to determine recovery in terms of precision and accuracy were performed using spiked OTA 
samples at a concentration of 0. 1, 1, 10, or 500 µg kg−1. Five replicates of each spiked sample at a given OTA 
concentration were prepared by adding the appropriate volume of the standard solution to a matrix sample, 
allowing the samples to settle for 30 min, and then extracting and purifying the OTA in the samples according 
to the associated sample-preparation procedure. Accuracy is expressed as the percent recovery of the spiked 
samples and repeatability (precision) as the RSD. The precision was assessed as the intra-day repeatability (RSDr) 
and inter-day reproducibility (RSDR). All experiments were carried out in quintuplicate on three different days. 
The intra-day precision was measured by comparing the standard deviation of the OTA recovery percentages of 
spiked samples acquired on the same day. The inter-day precision was determined by comparing the standard 
deviation of the OTA recovery percentages of the spiked samples on three separate days.
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Blank (unspiked) samples were extracted from the matrices and analyzed to determine the specificity of the 
method and to identify interfering peaks that co-eluted with OTA. Identification of co-extracted compounds was 
assessed by monitoring the typical ion-chromatograms at the retention time intervals expected for OTA.

The linearity of the method was determined by quantifying the MS/MS peak area results for the standard solu-
tions and the matrix-matched standard solutions in triplicate at six concentrations: 0.1, 1, 5, 10, 100, 500 µg kg−1. 
The linear regression equation for the standard solution was plotted, and its slope, intercept, and the correlation 
coefficient (R2) calculated.

The stability of OTA in the stock solvent solutions and in the matrices containing spiked samples (10 µg kg−1) 
was assessed monthly. All aforementioned tested samples were stored at −20 °C.

When using electrospray ionization, the presence of coextractives may have positive or negative effects on 
the chromatographic response of the analyte. And the matrix effect could be calculated as follows: matrix effect 
(ME%) = (slope of calibration curves in matrix − slope of calibration curves in solvent)/slope of calibration 
curves in solvent (×100%).
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