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Chemokines are a group of chemotaxis proteins that regulate
cell trafficking and play important roles in immune responses
and inflammation. Ticks are blood-sucking parasites that
secrete numerous immune-modulatory agents in their saliva to
evade host immune responses. Evasin-3 is a small salivary pro-
tein that belongs to a class of chemokine-binding proteins iso-
lated from the brown dog tick, Rhipicephalus sanguineus. Eva-
sin-3 has been shown to have a high affinity for chemokines
CXCL1 and CXCL8 and to diminish inflammation in mice. In
the present study, solution NMR spectroscopy was used to
investigate the structure of Evasin-3 and its CXCL8 –Evasin-3
complex. Evasin-3 is found to disrupt the glycosaminoglycan-
binding site of CXCL8 and inhibit the interaction of CXCL8
with CXCR2. Structural data were used to design two novel
CXCL8-binding peptides. The linear tEv3 17–56 and cyclic
tcEv3 16 –56 dPG Evasin-3 variants were chemically synthesized
by solid-phase peptide synthesis. The affinity of these newly syn-
thesized variants to CXCL8 was measured by surface plasmon
resonance biosensor analysis. The Kd values of tEv3 17–56 and
tcEv3 16 –56 dPG were 27 and 13 nM, respectively. Both com-
pounds effectively inhibited CXCL8-induced migration of poly-
morphonuclear neutrophils. The present results suggest utility
of synthetic Evasin-3 variants as scaffolds for designing and fine-
tuning new chemokine-binding agents that suppress immune
responses and inflammation.

Chemokines are a diverse group of chemotaxis proteins that
guide cell trafficking and play an important role in diverse phys-
iological processes such as immune response, inflammation,
angiogenesis, and cell differentiation (1). Although chemokines

structurally fall into two major (CC and CXC) and two minor
(XC and CX3C) groups depending on their cysteine motif, all
chemokines share the similar spatial topology. Common struc-
tural features include a flexible N terminus, N-loop, and single-
turn 310-helix followed by three �-strands and a C-terminal
�-helix (1). Three �-strands are connected to each other by 30s
and 40s loops, whereas the 50s loop links the C-terminal �-helix
to the �3-strand. Chemokines control cell trafficking by
interactions with chemokine G protein– coupled receptors
(GPCRs)2 and endothelial cells glycosaminoglycans (GAGs).
Chemokines activate GPCRs through binding of the receptor N
terminus (chemokine recognition site 1) and the transmem-
brane pocket (chemokine recognition site 2) via its globular
core (the N-loop and 40s loop) and flexible N terminus, respec-
tively (2–4). Chemokine–receptor interactions are redundant,
and usually several chemokines can activate one GPCR (5). At
the same time, low-affinity interactions of chemokines with
GAGs create haptotactic gradients that direct cell migration
(6). Combined with chemokine oligomerization (7) and het-
erodimerization (8, 9), these interactions form a complex sig-
naling network that regulates immune and inflammatory
responses.

Pathogens such as viruses, worms, and ticks target different
parts of the chemokine network to avoid the host immune
response (10 –12). Ticks gain particular interest because their
saliva contains numerous bioactive compounds, including pro-
teins, and could be a rich source of candidates for drug devel-
opment (13). Among those bioactive compounds are Evasins, a
class of chemokine-binding proteins first isolated from saliva of
the brown dog tick Rhipicephalus sanguineus (14, 15). Until
now, the class consisted of three family members: Evasin-1,
Evasin-3, and Evasin-4. However, several hundreds of proteins
distantly related to Evasins have been identified in eight differ-
ent tick species (16). In general, Evasins can be divided up in two
subclasses: C8 fold (Evasin-1 and Evasin-4) and C6 fold (Eva-
sin-3) containing 8 and 6 cysteines, respectively. Evasin-1 and
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Evasin-4 show efficient binding to human CC-chemokines,
such as CCL5 (RANTES) and CCL3, whereas Evasin-3 shows
high affinity to CXC-type chemokines, in particular CXCL8
(interleukin-8) and CXCL1 (Gro-�).

CXCL8 is an inflammatory chemokine associated with the
development of numerous diseases such as neurodegenerative
and pulmonary disorders, several types of cancer, psoriasism,
and rheumatism (17–19). It has been shown that direct target-
ing of CXCL8 by antibodies has beneficial effects during acute
lung injury (20), meconium aspiration syndrome (21), chronic
obstructive pulmonary disease (22), and psoriasis (23). Several
low-affinity CXCL8-binding peptides and peptidomimetics
have been derived from CXCR1/2 chemokine-binding sites and
showed activity in both in vitro and in vivo studies (24, 25).
Administration of Evasin-3 has a beneficial effect during myo-
cardial ischemia, which is attributed to its chemokine-binding
activity (26). Thus, Evasin-3 could be considered as a promising
alternative to antibodies and chemokine-binding peptides,
combining high-affinity and easy accessibility by chemical syn-
thesis because of its relatively small size.

In contrast to Evasin-1 (27) and Evasin-4 (28), Evasin-3 has
not been in the focus of structural research, and no structures of
Evasin-3 or its complexes with chemokines are available so far.
In the present study, we investigated structures of Evasin-3 and
the CXCL8 –Evasin-3 complex using solution NMR spectros-
copy. Furthermore, we developed two new high-affinity
CXCL8-binding peptides based on the experimentally deter-
mined structure of the CXCL8 –Evasin-3 complex. Both pep-
tides showed potent anti-inflammatory activity in vitro.

Results

Expression of Evasin-3

Expression of recombinant Evasin-3 in Escherichia coli
yielded two major products with molecular masses of 7,000 and
7,130 Da that corresponded to native Evasin-3 and a variant
with a N-terminal methionine (designated as met-Evasin-3),
respectively (Fig. S1). Oxidative folding in the presence of the
cysteine/cystine redox couple resulted in a 6 Da decrease of the
molecular mass for both variants, indicating the loss of six pro-
tons with formation of three disulfide bonds. The expression
level of met-Evasin-3 was substantially higher, and for that rea-
son this variant was used for further NMR spectroscopy studies.

NMR analysis of [15N,13C] met-Evasin-3

Sequential assignment of met-Evasin-3 was carried out by a
combination of 2D and triple resonance 3D spectra. Analysis of
15N-1H HSQC spectra at various temperatures and concentra-
tions showed the presence of extensive line broadening of pro-
ton signals, which could only be resolved by recording spectra
at elevated temperature (44 °C). Under these conditions all
expected amide peaks in met-Evasin-3 were observed with the
exception of Val19 (Fig. S2A). In addition, conformational het-
erogeneity of certain amide peaks was observed for the Ser3–
Arg8 and Ser58–Arg66 regions that relates to intermolecular
aggregation at higher protein concentrations. The met-Eva-
sin-3 secondary structure was first predicted by the CSI 3.0
webserver using available experimental chemical shifts for
backbone atoms. According to these chemical shifts, met-Eva-

sin-3 consists of three short �-strands in Val19–Ser21, Cys37–
Gly40, and His49–Lys52 regions, whereas the rest of the protein
is predicted to be in the random coil state (Fig. 1D). Heteronu-
clear 15N NOE relaxation values were measured to determine
flexibility disorder of met-Evasin-3 (Fig. 2). Negative values for
residues in the N-terminal Leu1–Asp15 and C-terminal Leu57–
Arg66 regions indicated high backbone flexibility, whereas the
cysteine-rich core Ser21–Tyr51 showed positive relaxation val-
ues �0.5 corresponding to a relatively rigid structure.

NMR analysis of CXCL8 –met-Evasin-3 complex

The complex of [15N,13C]CXCL8 with unlabeled met-Eva-
sin-3 and the reverse isotope-labeled system was used to study
the structure of the CXCL8 –met-Evasin-3 complex by NMR
spectroscopy. Titration of [15N,13C]CXCL8 by unlabeled met-
Evasin-3 caused changes of chemical shifts of CXCL8 amide
atoms, although complex formation proceeded relatively
slowly at pH 4.5, and final equilibrium was only achieved after
incubation up to 1 h at 37 °C (Fig. S3). After reaching equilib-
rium at a molar ratio of 1:1, further addition of met-Evasin-3 did
not lead to changes in the 15N-1H HSQC spectrum, indicating
1:1 stoichiometry of the CXCL8 –met-Evasin-3 complex. The
pattern of met-Evasin-3–induced chemical shift changes of
amide atoms in CXCL8 demonstrated that most affected resi-
dues were located in the �1- and �2-strands and the �-helix of
CXCL8 (Fig. 1, A and B). Significant changes in chemical shifts
were also observed for the N-loop (Tyr13–Lys15) and the 50s
loop (Asp52–Lys54).

At NMR concentrations (1–500 �M), CXCL8 is present as a
dimer. The absence of CXCL8 dimer-specific intermole-
cular NOE signals, e.g. Glu29–Ala69, Glu29–Leu25, in the
[15N,13C]CXCL8 –met-Evasin-3 complex indicates that bind-
ing of met-Evasin-3 caused CXCL8 dimer disruption (Fig. S4).
NOE restraints extracted from 13C- and 15N-edited NOESY
spectra and TALOS-predicted dihedral angles were used to cal-
culate the set of CXCL8 structures in the complex with met-
Evasin-3 (Fig. S5, A and B). In contrast to the CXCL8 structure
in the dimer, the CXCL8 �-helix in the CXCL8 –met-Evasin-3
complex is repositioned and oriented almost orthogonally to
the �-sheet (Fig. 3A). The region Phe17–Glu24 is twisted and
pushed away forming the cavity between the CXCL8 N-loop
and the �-helix.

Similarly, NMR spectra were recorded for the reverse-la-
beled CXCL8 –[15N,13C]met-Evasin-3 complex. Binding of
CXCL8 to met-Evasin-3 drastically decreased line broadening
of the most core met-Evasin-3 NMR resonances. The CXCL8-
induced chemical shift perturbation pattern of amide peaks is
displayed in Fig. 1, C and D. Spectral changes were especially
high for the Thr27–Gln30 and Cys38–Leu41 regions. Heteronu-
clear NOE relaxation data indicated that binding of CXCL8
increased rigidity of the met-Evasin-3 C-terminal Asn56–Val63

and Leu42–Lys47 residues, whereas the N-terminal part Leu1–
Asp12 showed even higher flexibility (Fig. 2). Met-Evasin-3 in
the complex possessed more defined secondary structure com-
pared with that of the free form (Fig. 1B). All three �-strands
were extended upon binding of CXCL8, and two I type turns
were also predicted in regions Gln30–Cys33 and Gln44–Lys47.
The structure of [15N,13C]met-Evasin-3 in the CXCL8 –
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[15N,13C]met-Evasin-3 complex was calculated using inte-
grated NOE peaks and TALOS-predicted dihedral angles
(Fig. S5, C and D). Average root-mean-square-deviation values
for backbone atoms in the Phe17–Asn56 region were calculated

to be 2.0 Å, and we used these structures mainly as an auxiliary
tool for further manual NOESY spectra assignment.

Residues involved in complex formation were mapped
using 15N- and 13C-filtered NOESY experiments on the

Figure 1. NMR analysis of binding CXCL8 to met-Evasin-3. A, the chemical shift perturbation plot of 200 �M [15N,13C]CXCL8 amide peaks upon binding of 200
�M met-Evasin-3 at 37 °C, pH 4.5. B, schematic representation of CXCL8 secondary structure according to the dimer crystal structure (PDB code 1IL8). C, the
chemical shift perturbation plot of 200 �M [15N,13C] met-Evasin-3 amide peaks upon binding of 200 �M CXCL8 at 44 °C, pH 4.5. Predicted O-glycosylation sites
are marked by circles, and N-glycosylation is shown by triangles. D, schematic representation of met-Evasin-3 secondary structure predicted by CSI 3.0 in the
unbound form (top) and in the complex with CXCL8 (bottom). Edge �-strands are shown by dark blue arrows, interior �-strands are shown by light blue arrows,
and turns are shown by square brackets. �ppm values are expressed as the sum of square roots (�15Nfree– complex)2/6.51 � (�1Hfree– complex)2.

Figure 2. 15N heteronuclear NOE relaxation values of [15N,13C]met-Evasin-3 in free form (light blue) and in the CXCL8 –[15N,13C]met-Evasin-3 complex
(dark blue).
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[15N,13C]CXCL8 –met-Evasin-3 complex. Multiple inter-
molecular NOE signals were observed between the Phe38–
Leu42 region of met-Evasin-3 and the Leu25–Ile28 region of
CXCL8 in both 15N and 13C NOESY spectra (Fig. S6). Strong
NOE signals were found between Val61 in the CXCL8 �-helix
and residues Val19, Ile53, and Phe38 of met-Evasin-3.

GAGs and met-Evasin-3 competition for [15N,13C]CXCL8
binding

To study competition between Evasin-3 and GAGs for
CXCL8 binding, [15N,13C]CXCL8 was first titrated with
increasing concentrations of dalteparin (Fragmin�, Pfizer) and
low-molecular-mass heparin with the average molecular mass
of 5 kDa. Unfortunately, the addition of Fragmin caused inten-
sity losses and significant deterioration of NMR spectra, most
likely caused by aggregation. Fondaparinux (Arixtra�, GSK),
which comprises the five central sulfated sugar units in heparin,
has the well-defined composition and the lower molecular mass
(1.7 kDa) comparing with Fragmin. For that reason, fondapa-
rinux facilitates collection of NMR spectra of higher quality and
was chosen for further NMR titration experiments. The highest
perturbations by fondaparinux were observed for residues of
the CXCL8 �-helix (Trp57, Arg60, Arg68, and Glu70) and the
N-loop (Lys15, His18, and Lys23) (Fig. S7). Observed changes
were consistent with results of previous studies describing the
interaction of CXCL8 with several heparin oligosaccharides
(29). The addition of met-Evasin-3 to the CXCL8 –GAG (at a
1:1 ratio) complex completely abolished GAG binding, and
peak positions of CXCL8 slowly reverted back, corresponding
to the CXCL8 –met-Evasin-3 complex, even in the case of
10-fold excess of fondaparinux (Fig. S8).

Size-exclusion chromatography of CXCL8 –met-Evasin-3
complex

To support findings from previous NMR experiments,
CXCL8 –met-Evasin-3 complex formation was assessed by

size-exclusion chromatography. CXCL8 at a concentration
of 0.1 mg/ml eluted into a single unsymmetrical peak that
corresponded to the molecular mass of dimeric CXCL8 (Fig.
S9A). The addition of met-Evasin-3 at a concentration of 0.1
mg/ml caused no immediate changes; however, after a 1-h
incubation at 37 °C, the peak shifted to a higher molecular
mass of 17 kDa. When obligatory monomeric V27P/E29P
CXCL8 (30) was used in the similar experiment, the peak
moved immediately from 8 to 17 kDa, indicating signifi-
cantly faster kinetics of the complex formation (Fig. S9B).
Observed higher molecular masses of met-Evasin-3 and
CXCL8 –met-Evasin-3 complex were probably caused by
met-Evasin-3 unstructured termini, which would increase
the hydrodynamic radius of both free Evasin-3 and the
CXCL8 –met-Evasin-3 complex.

The mixture of 1 mg/ml low-molecular-mass heparin (Frag-
min�) and 0.1 mg/ml of CXCL8 eluted as a single broad peak,
indicating formation of the CXCL8 –GAG complex with a
molecular mass of 35 kDa (Fig. 4). When met-Evasin-3 was
added to this CXCL8 –GAG complex, the mixture eluted as two
separate peaks with molecular masses of 35 and 10 kDa,
whereas only the peak corresponding to 17 kDa was observed
after a 1-h incubation at 37 °C.

Truncated Evasin-3 (tEv3 17–56)

To study the relative importance of the flexible unstructured
N and C termini of met-Evasin-3 on binding CXCL8, the Leu1–
Asn16 and Leu57–Arg66 regions were removed, leading to a
truncated Evasin-3 variant, designated as tEv3 17–56 (31).

Figure 3. A, overlay of CXCL8 structures in the CXCL8 dimer (dark blue; PDB
code1IL8) and in the [15N,13C]CXCL8 –met-Evasin-3 complex (gray). B, ribbon
representation of the ensemble of 10 lowest energy structures of tEv3 17–56
(PDB code 6QJB); disulfides are shown by yellow sticks. C, cartoon representa-
tion of the HADDOCK structure of the CXCL8 –tEv3 17–56 complex. tEv3
17–56 is shown in light blue, and CXCL8 is in gray.

Figure 4. Chromatographic elution profiles of 0.1 mg/ml CXCL8 in
absence (light blue) and presence (dark blue) of 1 mg/ml of low-molecu-
lar-mass heparin (Fragmin). SEC chromatograms taken immediately after
the addition and after a 1-h incubation at 37 °C with 0.1 mg/ml met-Evasin-3
are depicted in gray and black, respectively.
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Truncation resulted in largely diminished broadening 1H NMR
resonances, gaining a higher number of NOE peaks necessary
for calculation of a better resolved structure. In addition,
TALOS-predicted dihedral angles and experimentally assigned
disulfide bonds (31) were used to obtain the final high resolu-
tion structure of tEv3 17–56 (Fig. 3B and Table 1). tEv3 17–56
adopts an L-shaped structure. The short arm of the L is formed
by two loops, Thr27–Glu32 and Gly40–Asp49, connected
together by the Pro34–Phe38 loop. In contrast to the rigid
Thr27–Glu32 loop, the tip of the Gly40–Asp49 loop, formed by
residues Leu42–Asn45, is more flexible. Loops are arranged by
six cysteines linked into the disulfide pattern where the Cys26–
Cys39 disulfide bond protrudes through the ring formed by the
Cys22–Cys37 and Cys33–Cys50 disulfides. The flanking Asp18–
Ser21 and His49–Ile54 regions constitute two short �-strands
and form the long arm of the L-shaped structure.

tEv3 17–56 tightly binds CXCL8 at a 1:1 stoichiometry and
results in a similar pattern of CXCL8 chemical shifts backbone
perturbations as was observed for full-length met-Evasin-3
(Fig. S10). Only Lys20 and Lys64 residues of CXCL8 do not fol-
low the same tendency and showed substantial difference com-
pared with the met-Evasin-3-induced pattern. Taking into
account that tEv3 17–56 binds CXCL8 in the same way as full-
length met-Evasin-3, the model of CXCL8 –tEv3 17–56 com-
plex was calculated using HADDOCK. Calculated structures of
CXCL8 in the CXCL8 –met-Evasin-3 complex and tEv3 17–56
were used as a starting point for calculation and combined with
experimentally observed NOE contacts in the CXCL8 –met-
Evasin-3 complex. tEv3 17–56 N and C termini fitted into the
cavity between the �-helix and the Phe17–Glu24 loop, whereas
the Gly40–Asp49 loop binds to the �1-strand of CXCL8 (Fig. 3C
and Table S1). According to the low-energy models, both the
tEv3 17–56 N and C termini were located in proximity of Lys20

and Lys64 of CXCL8 that could explain the difference in the
chemical shift of these CXCL8 residues.

Truncated cyclic Evasin-3

The formation of a �-sheet by the spatially close N and C
termini of tEv3 17–56 provides an opportunity to cyclize the
peptide via the backbone. In previous studies it has been shown
that �-hairpins capped with a �-turn D-Pro-Gly motif stabilizes
short loops (32). To introduce this �-turn into tEv3 17–56, an
additional N-terminal residue from the Evasin-3 sequence was
added to the sequence to match the length of the N- and C-ter-
minal regions. The resulting sequence containing the Evasin-3
region Asn16–Asn56 and the D-Pro-Gly sequence was synthe-
sized by tert-butyloxycarbonyl solid-phase peptide synthesis
and cyclized using intermolecular native chemical ligation.
Subsequent oxidative folding resulted in truncated cyclic Eva-
sin-3 16 –56 with a D-Pro-Gly turn (designated as tcEv3 16 –56
dPG) (Fig. 5A).

Affinity of Evasin-3 variants

The affinity of Evasin-3 and its variants to CXCL8 was stud-
ied by SPR biosensor analysis using C-terminally biotinylated
CXCL8 immobilized on a streptavidin-modified chip surface.
Evasin-3 variants bound CXCL8 in a dose-dependent manner.
Native Evasin-3 showed slower association and dissociation
kinetics compared with truncated variants (Fig. 5B and Fig.
S11). At higher Evasin-3 concentrations, no increase in
response units signal and curvature were observed in the SPR
sensorgrams, restricting further affinity analysis. Saturated
binding analysis for truncated variants resulted in Kd values of
27 and 13 nM for tEv3 17–56 and tcEv3 16 –56 dPG,
respectively.

Plasma stability

The proteolytic stability of full-length Evasin-3 and its vari-
ants was tested in pooled human plasma from healthy volun-
teers (Fig. S12A). After 2 h of incubation at 37 °C in human
plasma full-length Evasin-3 degraded nearly quantitatively, los-
ing C-terminal Arg66 and Arg65 (�C1 and �C2, respectively).
Moreover, after 18 h of incubation only �C2 could be detected
in solution. In contrast to the full-length protein, the truncated
Evasin-3 variants showed no detectable signs of degradation
after 18 h of incubation in human plasma (Fig. 5C and Fig.
S12B).

PMN migration assay

To assess the anti-CXCL8 activity of Evasin-3 variants, poly-
morphonuclear neutrophil (PMN) migration assays were per-
formed. The addition of 1 nM CXCL8 induced significant
migration of PMNs (624 � 458 PMN/mm2) compared with
controls (98 � 83 PMN/mm2) in the absence of chemoattrac-
tant (Fig. 6). Migration was inhibited by addition of 10 nM of
Evasin-3 (206 � 203 PMN/mm2). Significant effects were
observed in the presence of tEv3 17–56 (223 � 189 PMN/mm2)
and tcEv3 16 –56 dPG (160 � 65 PMN/mm2).

Identification of Evasin-3 homologues

A search against UniProtKB using the BLASTp server
yielded 35 protein sequences with 69 –39% sequence identity.
Of these, fifteen were identified to come from Ixodes genus,

Table 1
Overview of NMR restraints and XPLOR refinement statistics deter-
mined for tEv3 17–56

Experimental constraints

Long 222
Medium [1 � (i � j) � 5] 75
Sequential [(i � j) � 1] 197
Intraresidue [i � j] 342
Total 836
Dihedral angle constraints 50
Number of restraints per residue 22.2
Number of long-range restraints per
residue

5.6

Average atomic root-mean-square deviation
to the mean structure (Å)

Backbone 0.6
Heavy atoms 1.1

Global quality scores (mean/Z score)
Verify3D 0.47/0.16
Prosall 0.48/�0.70
PROCHECK (�–�) �0.33/�0.98
PROCHECK (all) �0.36/�2.13
MolProbity clash score 1.75/1.23

Ramachandran statistics (% of all residues)
Most favored 88.2
Additionally allowed 9.5
Generously allowed 2.3
Disallowed regions 0.0
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twelve were from Rhipicephalus, seven were from Amblyo-
mma, and one was from Hyalomma. In all cases, six cysteine
positions were conserved, whereas hydrophobic residues in
regions preceding C1 and following C5 and C6 residues (Fig.
S13) appeared invariant.

Discussion

Evasins are a family of tick salivary chemokine-binding pro-
teins comprised of two subfamilies. Whereas Evasin-1 and Eva-
sin-4 comprise eight cysteines, Evasin-3 contains six cysteines
located in the compact core region. The 3D structure of the
Evasin-3 core is largely determined by its three disulfide bonds.
The Cys26–Cys39 bond protrudes through the ring comprised
by the Cys22–Cys37 and Cys33–Cys50 forming an inhibitory cys-
tine-knot (ICK) motif. Although the core sequence of Evasin-3

fits the consensus sequence for the ICK motif having five loops
that are separated by conserved cysteines (33), no structural
homology to known proteins could be found in DALI or in the
Knottin3D database. The scaffold of Evasin-3 is predominantly
composed by Thr27–Glu32 and Gly40–His49 loops. The Thr27–
Glu32 loop is rigid, whereas the Gly40–His49 loop is relatively
flexible. Because Evasin-3 binds closely related CXCL1 and
CXCL8 chemokines and Gly40–His49 loop composes the great
part of CXCL8 –Evasin-3 complex interface, flexibility of this
region could be necessary to fine-tune the spatial structure of
the binding region during complex formation with different
targets. The ICK motif is common for conotoxins (34), spider
venoms, and cyclotides (35), but examples among tick proteins
are rare and to our knowledge are limited to holocyclotoxins
(36, 37). A database search identified 35 putative Evasin-3 ho-
mologues that share the inhibitory cystine knot motif. Identi-
fied sequences embody conservative regions of hydrophobic
residues that compose the complex interface in the case of the
CXCL8 –Evasin-3 complex. That most likely indicates a similar
chemokine-binding mode for these putative Evasins.

In contrast to Evasin-1, where both the N and C termini play
a crucial role in chemokine binding (27, 38), neither the N nor C
terminus of Evasin-3 participate in CXCL8 binding. Moreover,
the N and C termini are predicted to be highly glycosylated (Fig.
1C), which is consistent with earlier observation that glycosyl-
ation of Evasin-3 does not play an essential role in chemokine
binding (14). To study the effect of termini on binding, we syn-
thesized two novel CXCL8-binding peptides: linear tEv3 17–56
and cyclic tcEv3 16 –56 dPG, both retaining the ICK bundled
core of the native protein. The ICK motif is known to contrib-
ute drastically to increase of protein and peptide stability under
harsh extracellular conditions (39). The equally high proteo-

Figure 5. A, overview of tcEv3 16 –56 dPG folding and purification. The chromatograms of crude peptide mixture after HF cleavage and after folding are shown
in black and dark blue, respectively. The results of the LC-MS analysis of purified tcEv3 16 –56 dPG is shown in light blue; the calculated mass of [MH]� is 4552.02
Da, and the observed mass is 4552.06 Da. B, SPR biosensor analysis of tcEv3 16 –56 dPG upon binding to immobilized human CXCL8. The binding curve is plotted
using maximal response signal for each injection. The apparent Kd value is calculated by fitting the data to a steady-state affinity model using a linear
component. The fitted Kd is 13 nM, and Rmax � 16.4, �2 � 0.202. C, HPLC analysis of stability of tcEv3 16 –56 dPG in human plasma at 37 °C.

Figure 6. Effect of Evasin-3 variants on CXCL8-induced PMN migration.
Shown is PMN migration as a result of the addition of 1 nM CXCL8 (n � 10)
compared with the control without chemoattractant (n � 10) and compared
with the effect of 10 nM Evasin-3 (n � 10), tEv3 17–56 (n � 9), or tcEv3 16 –56
dPG (n � 5) on CXCL8-induced PMN migration.

Evasin-3-based peptides modulate chemotaxis by CXCL8 binding

J. Biol. Chem. (2019) 294(33) 12370 –12379 12375

http://www.jbc.org/cgi/content/full/RA119.008902/DC1
http://www.jbc.org/cgi/content/full/RA119.008902/DC1


lytic stability of the linear tEv3 17–56 and cyclic tcEv3 16 –56
dPG in human plasma is in accordance with previous studies
indicating that presence of a cystine knot is more vital for pep-
tide stability than a cyclized backbone (40, 41). Although both
tEv3 17–56 and cyclic tcEv3 16 –56 dPG keep nanomolar affin-
ity to CXCL8 (Kd values of 27 and 13 nM, respectively), these Kd
values fall significantly above the 0.43 nM Kd value previously
measured for native Evasin-3 (14). Apparently, the presence of
the long N and C termini has a direct effect on internal dynam-
ics of Evasin-3 structure that causes slower association and dis-
sociation rates of binding CXCL8 and thus lower Kd values.

Final energy-minimized models of the complex between
CXCL8 and tEv3 17–56 were calculated by HADDOCK using
experimentally observed CXCL8 –met-Evasin-3 contacts. It
has been shown that Evasin-1 and Evasin-4 binding to chemo-
kine N-terminal regions prevents their interactions with
chemokine-receptor recognition site 2 (27, 28). Evasin-3 leaves
both receptor-binding sites of CXCL8 unoccupied and avail-
able for possible alternative interactions (42–45). To test this
hypothesis, PMN migration assays were performed. CXCL8
acted as a potent chemoattractant through interaction with its
cognate CXCR1/2 receptors. However, the present data
showed that CXCL8 bound to Evasin-3 or one of the truncated
variants was unable to induce PMN migration and thus activate
the CXCR2 receptor presented on the cell surface. This obser-
vation could be explained by structural changes in the N-loop of
CXCL8, which residues are crucial for binding of the CXCR1/2
N-domain (46). Although Evasin-3 does not directly interact
with the receptor-binding region of CXCL8 N-loop, significant
perturbations were observed for Tyr13–Phe17 residues upon
binding of Evasin-3 and the truncated variant tEv3 17–56.
These perturbations were most likely caused by internal
changes in CXCL8 packing upon formation of the complex.
Indeed, Evasin-3 binding caused substantial repositioning of
the �-helix and the N-loop compared with CXCL8 dimer and
physiologically active obligatory CXCL8 monomers (42, 47).

According to the obtained model, the Cys39–Gln44 core
region of Evasin-3 binds the CXCL8 �1-strand and the C-ter-
minal helix, thereby partially blocking the CXCL8 dimer inter-
face. Although Evasin-3 quickly binds to monomeric V27P/
E29P CXCL8, SEC and NMR experiments showed that binding
to native CXCL8 dimer is kinetically slow. That could indicate
that the rate-limiting step in the CXCL8 –Evasin-3 complex
formation is the CXCL8 dimer dissociation, and the primary
target of Evasin-3 is the CXCL8 monomer present in the blood-
stream. This also means that influence of the chemokine oligo-
meric state should be taken into account during the assay
design for research on chemokine-binding proteins that
enables a more comprehensive view on chemokine/chemo-
kine-binding protein relationships.

GAGs are believed to be storage for CXCL8 and orchestrate
levels of free dimeric and monomeric CXCL8 (48). CXCL8
binding to GAGs is mediated through interactions with posi-
tively charged residues in the N-loop and the C-terminal �-he-
lix of CXCL8 (29, 49). Flanking �-strands of Evasin-3 interca-
late between the CXCL8 �-helix and the N-loop, preventing
binding of CXCL8 to GAGs by disrupting the continuous
stretch of positively charged residues of the CXCL8 GAG-bind-

ing site. Both NMR and SEC experiments showed that Evasin-3
can compete with GAG binding and slowly substitute GAGs
from the CXCL8 –GAGs complex. The rate-limiting step in
this substitution apparently is release of monomeric CXCL8. As
a result, Evasin-3 not only neutralizes active monomeric
CXCL8 in the bloodstream but also depletes the storage of
CXCL8 in the GAG-bound form.

In summary, 3D structures of Evasin-3 and its complex with
chemokine CXCL8 have been studied by solution NMR spec-
troscopy. Evasin-3 represents a rare example of a tick protein
with an inhibitory cysteine knot motif. Tight binding of Eva-
sin-3 to the CXCL8 monomer blocks interactions with CXCR2
and disrupts the GAG-binding interface, leading to elimination
of both chemotactic and haptotactic gradients. Two novel
CXCL8-binding peptides were derived from the Evasin-3
sequence: linear tEv3 17–56 and cyclic tcEv3 16 –56 dPG. These
short variants are easily accessible by chemical synthesis com-
bining high affinity to CXCL8 with great proteolytic stability.
Importantly, synthetic Evasin-3 variants can be used as a scaf-
fold for design and fine-tuning of new selective chemokine-
binding agents.

Experimental procedures

Expression of recombinant proteins

The pET23a vector containing human CXCL8 (UniProt:
p10145, 6 –77) and monomeric variant V27P/E29P CXCL8 and
pET30a containing Evasin-3 (UniProt: p0c8e8, 1– 66) genes
were purchased from GenScript. Both proteins were expressed
in BL21 (DE3) Star (Novagen). The cells were grown in 1 liter of
standard LB medium at 37 °C in the presence of the required
antibiotic. Once the A600 value reached 0.6 – 0.8, expression of
protein was induced with 0.1 or 1 mM of isopropyl �-D-1-thio-
galactopyranoside (Sigma–Aldrich) in the case of pET23a and
pET30a vector, respectively. The cells were harvested 3 h after
induction by centrifugation at 4,000 rpm for 20 min at 4 °C.

To obtain [15N,13C]-labeled proteins, the cells were grown in
LB medium as described above. After A600 reached 0.6 – 0.8, the
cells were harvested by centrifugation at 4,000 rpm at 4 °C and
transferred to M9 medium. Prior to induction with isopropyl
�-D-1-thiogalactopyranoside, the cells were incubated in
medium for 1 h to deplete internal carbon and nitrogen sources.
At induction, the medium was supplemented with 1 g/liter of
[13C]glucose and 15NH4Cl, incubated for 3 h, and harvested by
centrifugation.

The cells were resuspended in 50 mM Tris, pH 8, and lysed
with 1	 Bugbuster (Novagen) and 0.1 unit/ml Benzonaze�
nuclease (Sigma–Aldrich). For CXCL8, the cells were lysed, and
the supernatant was discarded by centrifugation at 10,000 rpm
for 20 min at 4 °C. Insoluble fraction was washed twice with 50
mM Tris, pH 8, and once with 50 mM Tris, pH 8, 0.5% Tween 20.
Insoluble pellets were dissolved in 0.1 mM Tris, pH 8, 200 mM

DTT, 6 M guanidine HCl, and dialyzed overnight against 0.5%
acetic acid using a 3.5-kDa spectra/Por RC membrane (Repli-
gen). In the case of Evasin-3, cell debris was removed by cen-
trifugation at 10,000 rpm for 20 min at 4 °C, and the soluble
fraction was dialyzed as described above. The soluble fractions
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after dialysis were centrifuged at 10,000 rpm for 20 min at 4 °C
and then lyophilized.

Lyophilized material was dissolved in 6 M guanidine HCl, 0.1
mM Tris, pH 8, at 20 mg/ml and then added dropwise to 1 M

guanidine HCl, 0.1 mM Tris, pH 8, 10 mM cysteine, 1 mM cys-
tine, at 4 °C to a final concentration of 1 mg/ml. Folded proteins
were purified by HPLC using 22-mm 	 250-mm Vydac C18
columns, analyzed by LC-MS, and lyophilized.

Peptide synthesis

tEv3 17–56 and tcEv3 16 –56 dPG were synthesized by tert-
butyloxycarbonyl solid-phase peptide synthesis and folded as
described previously (31). For one-pot intramolecular cycliza-
tion and folding, crude tcEv3 16 –56 dPG was dissolved at a
concentration of 0.2 mg/ml in 50 mM ammonium bicarbonate
buffer, pH 8. After completion of the reaction, the folded cyclic
peptide was purified by HPLC and lyophilized.

Surface plasmon resonance

Affinity assays of Evasin-3 variants were performed using
BIAcore T200 surface plasmon resonance system (GE Health-
care). All assays were carried out in PBS buffer, pH 7.4, supple-
mented with 0.05% Tween 20 as running buffer. 70 response
units of chemically synthetized CXCL8-Biotin was immobi-
lized on a SAHC 200M sensorchip (Xantec) according to the
manufacturer’s protocol. Concentration series of Evasin-3 vari-
ants, ranging from 1 �M to 2 nM, were prepared by 2-fold dilu-
tion of 50 �M stock solutions. Association and dissociation
kinetics were monitored at flow rate 30 �l/min for 250 and
300 s, respectively. The data were analyzed using BIAcore T200
software and BIAEvaluation software (GE Healthcare) using a
steady-state affinity equation with a linear component.

NMR

NMR samples were prepared from freeze-dried proteins as
0.2 mM solutions in 25 mM deuterated NaAc-d3 buffer, pH 4.5,
containing 0.1 mM EDTA, 0.2 mM sodium azide, and 5% (v/v)
D2O for deuterium lock. To remove TFA salts presented in
freeze-dried samples of proteins, initial buffer exchange was
carried out by ultracentrifugation (in four or five steps) using
prewashed Amicon Ultra-3000 3-kDa (Millipore) ultracentrif-
ugation filters. Final NMR solutions were prepared in Wildman
3-mm NMR tubes (160 �l volume), containing traces of 4,4-
dimethyl-4-silapentane-1-sulfonic acid for internal chemical
shift calibration (0 ppm 1H).

All NMR spectra were recorded using Bruker Avance III HD
700 MHz spectrometer, equipped with a cryogenically cooled
TCI probe. Sample temperature was set to 25, 37, or 44 °C, with
the accurate probe temperature calibrated using a thermocou-
ple inside an NMR tube that was inserted into the probe. Back-
bone resonance assignment of met-Evasin-3, tEv3 17–56, and
CXCL8 was derived from a combination of 15N-1H HSQC,
HNCO, HNCACO, HNCACB, and CBCA(CO)NH spectra.
Aliphatic side chain resonances were assigned using 13C-1H
HSQC and hCCH DIPSI spectra. Distance constraints were
extracted from 15N and 13C NOESY spectra.

To study the Evasin-3–CXCL8 1:1 complex, two different
samples were prepared with either [15N,13C]met-Evasin-3 or

[15N,13C]CXCL8 as labeled component at the final concentra-
tion of 200 �M. Titrated complexes contain a slight excess of
unlabeled CXCL8 or met-Evasin-3, respectively. After comple-
tion of complex formation, a set of triple resonance spectra, as
described above, were recorded for both met-Evasin-3 and
CXCL8 in the bound form. Intramolecular contacts of CXCL8
and met-Evasin-3 were obtained from filtered 15N and 13C
NOESY experiments.

For GAG-binding experiments low-molecular-mass hep-
arin dalteparin (commercial name Fragmin�, Pfizer) and
fondaparinux (commercial name Arixtra�, GSK) were pur-
chased from a pharmacy as solutions for injections. 25 �M of
[15N,13C]CXCL8 was titrated by increasing concentration of
aliquots from a stock solution of 5 mg/ml fondaparinux or
Fragmin to the final GAG concentration of 0.2 mM at 25 °C,
pH 7.1. In the next step, 30 �M of met-Evasin-3 was added to
the solution to monitor the displacement of bound fondapa-
rinux and follow Evasin-3–CXCL8 complex formation by a
series of 1D proton and 15N-1H HSQC spectra.

Spectra processing was performed by Bruker Topspin 3.2
and Sparky 3.114 software. The secondary structure was pre-
dicted by CSI 3.0 webserver (50). Structure calculations were
performed by dynamics simulated annealing method using
Xplor-NIH software (51, 52) and refined via the NMRe web
server (53). Structure refinement of the complex was per-
formed using HADDOCK 2.2 server (54).

Size-exclusion chromatography

SEC experiments were carried out on a Varian ProStar 215
solvent delivery system, coupled to a Varian ProStar 320
UV/VIS detector set at a wavelength of 280 nm. Separation was
performed using a BioSep 5-�m SEC-s2000 145 Å, 300 	
4.6-mm LC column (Phenomenex, Torrance, CA). 50 mM

sodium phosphate buffer, pH 6.65, containing 150 mM NaCl
was used as eluent buffer. Flow rate was set at 0.5 ml/min. Pro-
teins were injected at 0.1 mg/ml concentration in the presence
or absence of 1 mg/ml low-molecular-mass heparin (commer-
cial name Fragmin�, Pfizer). Molecular masses of proteins were
calculated using the calibration curve provided by the
manufacturer.

Plasma stability

100 �g of Evasin-3 variants were dissolved in 100 �l of nor-
mal plasma taken from a healthy volunteer and incubated at
37 °C. At a required time point reaction was stopped by addi-
tion of 15 �l of 20% TCA to a 15-�l aliquot of a sample and
analyzed by LC-MS.

Bioinformatics

Glycosylation sites were predicted using NetNGlyc 1.0 and
NetOGlyc 4.0 servers. The threshold for both positive N- and
O-glycosylation sites was set at 0.5. For homology search, Eva-
sin-3 sequence (UniProt ID p0c8e8) was used as a query for
BLASTp algorithm against UniProtKB database (55). Multiple
sequence alignment was performed using Clustal Omega algo-
rithm (56) with default settings, and the results were visualized
by JalView 2.10 software.
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PMN isolation and migration

Human neutrophils were isolated from the blood of healthy
donors as described previously (57). Isolated neutrophils were
resuspended at (106 cells/ml) in RPMI 1640 medium supple-
mented with 1% fetal calf serum. A 12-well chemotaxis cham-
ber with a 5-�m polycarbonate membrane (Neuroprobe,
Gaithersburg, MD) was used to assess the migration of neutro-
phils toward the chemoattractant CXCL8 (1 nM) in presence or
absence of Evasin-3 variants (10 nM). The chemoattractant was
added in the lower wells, and the neutrophils (1 	 105 cells)
were seeded in the upper wells. After incubation of 90 min at
37 °C, the nonmigrated cells were carefully removed, and the
membrane was stained with Diff-Quick stain (Eberhard Leh-
mann GmbH, Berlin, Germany). Migrated cells were visualized
by light microscopy, counted manually in three fields of view,
and expressed as cells/mm2. The data were analyzed by
GraphPad Prism 8.0 software using one-way analysis of vari-
ance statistical test.

Author contributions—S. S. D. and I. D. conceptualization; S. S. D.
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