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Abstract: Targeting ferritin via autophagy (ferritinophagy) to induce ferroptosis, an iron- and re-
active oxygen species (ROS)-dependent cell death, provides novel strategies for cancer therapy.
Using a ferroptosis-specific inhibitor and iron chelator, the vulnerability of triple-negative breast
cancer (TNBC) MDA-MB-231 cells to ferroptosis was identified and compared to that of luminal
A MCF-7 cells. Saponin formosanin C (FC) was revealed as a potent ferroptosis inducer charac-
terized by superior induction in cytosolic and lipid ROS formation as well as GPX4 depletion in
MDA-MB-231 cells. The FC-induced ferroptosis was paralleled by downregulation of ferroportin
and xCT expressions. Immunoprecipitation and electron microscopy demonstrated the involvement
of ferritinophagy in FC-treated MDA-MB-231 cells. The association of FC with ferroptosis was
strengthened by the results that observed an enriched pathway with differentially expressed genes
from FC-treated cells. FC sensitized cisplatin-induced ferroptosis in MDA-MB-231 cells. Through
integrated analysis of differentially expressed genes and pathways using the METABRIC patients’
database, we confirmed that autophagy and ferroptosis were discrepant between TNBC and luminal
A and that TNBC was hypersensitive to ferroptosis. Our data suggest a therapeutic strategy by
ferroptosis against TNBC, an aggressive subtype with a poor prognosis.

Keywords: formosanin C; breast cancer; ferroptosis potential index; ferritinophagy; gene database

1. Introduction

According to the World Health Organization, breast cancer is the most prevalent cancer
and ranked 5th among cancer-related deaths in 2020. In light of its high heterogeneity, breast
cancer is clinically divided into three main subtypes based on the expression of hormone
receptors, namely estrogen receptor (ER) and progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2): luminal, HER2-positive, and triple-negative
breast cancer (TNBC). The luminal subtype expresses ER, PR, or both, and is further
subdivided into luminal A (HER2-negative) and B (HER2-positive) groups [1]. Luminal
A, luminal B, HER2-positive, and TNBC cases account for up to 70%, 10–20%, 5–15%, and
~15% of all breast cancer patients, respectively [2,3]. Compared to luminal A, luminal B
has a worse prognosis [4]. Drug targeting of HER2 is known to substantially improve the
prognosis of HER2-positive breast cancer [5]. TNBC is generally more aggressive, highly
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heterogeneous, difficult to treat, and frequently present at distant metastases, leading to a
poor prognosis and a high relapse rate, mainly due to the lack of targeted therapies and the
development of resistance mechanisms at the early stages of the carcinogenesis [3].

Proposed in 2012, ferroptosis is a new form of cell death that is dependent on intracel-
lular ferrous iron (Fe2+) and free radical lipid peroxidation [6]. Enhancement of ferroptosis
can be initiated via a form of cargo-specific autophagy (ferritinophagy), in which iron
storage protein ferritin is degraded [7]. Ferroptosis is morphologically, biochemically, and
genetically different from apoptosis, necrosis, and autophagy [6]. Induction of ferrop-
tosis is initially described by the small molecule erastin, which suppresses system Xc−,
a cystine-glutamate antiporter that provides adequate concentrations of cystine for the
synthesis of glutathione [8]. Acyl-CoA synthetase long-chain family member 4 preferably
catalyzes the esterification of CoA to long-chain polyunsaturated fatty acids and activates
the corresponding fatty acids for phospholipid biosynthesis or fatty acid oxidation, and
thus plays an essential and regulatory role in ferroptosis [9]. Recently, erastin and the anti-
cancer drug sorafenib have been shown to selectively eliminate various forms of cancer
cells through induction of ferroptosis [10–18]. Likewise, erastin and piperazine erastin are
known to suppress tumor growth in animals [13,17]. The efficacy of erastin chemotherapy
is improved in combination with certain chemotherapeutic drugs, such as temozolomide,
cisplatin, cytarabine/ara-C, and doxorubicin/Adriamycin [19,20]. Although the roles of
ferroptosis in tumor occurrence, progression, and treatment warrant further investigation,
current evidence suggests that ferroptosis inducers are candidates for the treatment of
ferroptosis-susceptible tumors [21,22]. Activation of such alternative cell death pathways
may overcome drug resistance from existing chemotherapeutics, and could therefore be
possible new drug targets.

Although agents that trigger ferroptosis may have unique clinical applications to target
cancer cells highly resistant to apoptosis, factors that influence ferroptosis are complex and
not fully understood. These factors include transporters and enzymes that regulate redox
homeostasis and metabolism of iron, amino acids, and lipids [23]. Currently, treatment of
patients with TNBC relies mainly on systemic chemotherapy [24]. In the present study,
formosanin C (FC), a diosgenin saponin, was found to trigger ferroptosis and increase
chemosensitivity to cisplatin in TNBC MDA-MB-231 cells. Gene analyses using a database
of patients with breast cancers revealed a disparity in sensitivity to ferroptosis between
luminal A and TNBC subtypes. We utilized the concept of precision medicine to character-
ize and counteract molecular aberrations of TNBC in the context of targeted drugs, rather
than the use of systemic chemotherapy alone, and identified ferroptosis as a targetable
metabolic niche in TNBC.

2. Materials and Methods
2.1. Reagents

All chemicals were obtained from Sigma (St. Louis, MO, USA) unless otherwise
indicated. The compounds were: a ferroptosis inducer, 1S,3R-Ras-selective lethal small
molecule 3 (RSL3, Selleck Chemicals, Houston, TX, USA); a breast cancer targeted thera-
peutic, lapatinib (Tykerb®; GlaxoSmithKline plc., Brentford, Middlesex, UK); a novel, pure
(>98.9% purity), and structurally defined FC (a gift from Dr. Shen-Jeu Won, College of
Medicine, National Cheng Kung University, Tainan, Taiwan) [25]; garcinielliptone FC [26]
and justicidin A [27], gifts from Dr. Chun-Nan Lin (School of Pharmacy, Kaohsiung Med-
ical University, Kaohsiung, Taiwan); dyes of 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA), C11-BODIPY, and Phen green™ SK diacetate (Thermo Fisher Scientific Inc.,
Waltham, MA, USA).

For Western blot analysis, rabbit polyclonal anti-microtubule-associated proteins
1A/1B light chain 3B (LC3B, ab48394), and anti-SLC40A1 (ferroportin, ab58695) antibodies
were obtained from Abcam (Cambridge Science Park, Cambridge, UK). Rabbit monoclonal
anti-ferritin heavy chain 1 (FTH1, 4393), anti-PARP (9532), and anti-xCT/SLC7A11 (12691)
antibodies and rabbit polyclonal anti-caspase 3 (9662) antibody were obtained from Cell
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Signaling Technology (Danvers, MA, USA). Other antibodies against various proteins were
purchased from the following vendors: mouse monoclonal anti-β-actin antibody (Sigma,
A3854); goat anti-rabbit (H + L, Millipore Corp., Billerica, MA, USA, AP307P), and goat
anti-mouse IgM + IgG + IgA (H + L, Millipore Corp., AP124P) horseradish peroxidase
conjugate antibodies.

2.2. Cell Culture

Human breast cancer MCF-7 and MDA-MB-231 cell lines from American Type Culture
Collection (Rockville, MD, USA) were maintained in Dulbecco’s modified Eagle medium
(GIBCO BRL, Gaithersburg, MD, USA) and supplemented with penicillin and streptomycin
as well as 10% fetal bovine serum (GIBCO BRL) in an incubator with humidified atmosphere
and 5% carbon dioxide at 37 ◦C.

2.3. Cell Population Growth Determination

The sulforhodamine B assay was performed to determine cell density based on the
cellular protein content [28]. Briefly, cells were stained with 0.1% (w/v) sulforhodamine B
dissolved in 1% acetic acid (Baker, J.T.; Center Valley, PA, USA), and the protein-bound
dye was extracted with a Tris buffer (20 mM; pH = 10; Bionovas Biotechnology Co., Ltd.,
Toronto, ON, Canada). The absorbance of each well was measured at 540 nm using a
microplate reader (Synergy HT, BioTek, Winooski, VT, USA).

2.4. Flow Cytometry

Cells were stained with H2DCFDA (100 µM), C11-BODIPY (10 µM), and Phen green SK
(10 µM) in the dark at room temperature for 30 min to determine levels of intracellular ROS
formation [29], lipid peroxidation [30], and ferrous iron [31], respectively, and 10,000 gated
cells of each condition were subsequently analyzed by a flow cytometer (LSRFortessa,
Becton Dickinson, Lexington, KY, USA).

2.5. Determination of Glutathione Peroxidase 4 (GPX4) Levels

Whole cell lysates (100 µg) were prepared for analyses of GPX4 levels using an ELISA
kit for GPX4 (Cloud-Clone Corp., Katy, TX, USA) according to the manufacturer’s protocol.
The absorbance was measured at 450 nm using a microplate reader (Synergy HT, BioTek,
Winooski, VT, USA).

2.6. Western Blot Analysis

Whole cell extracts were prepared with the use of the M-PER lysis buffer, as previously
described [32]. The proteins (30 µg) were then loaded onto 8–12% polyacrylamide gels and
separated by SDS-PAGE. After being transferred to polyvinylidene fluoride membranes
(Perkin Elmer, Santa Clara, CA, USA), the membranes were blocked with 5% skim milk
in Tris buffer saline with Tween 20 (20 mM Tris, 150 mM NaCl, 0.1% Tween, pH = 7.4),
incubated with primary and secondary antibodies (0.1 µg/mL), and then with chemilu-
minescent horseradish peroxidase substrate (Millipore Corp.). The protein signals were
detected using the Biospectrum Imaging System (Universal Hood II, Bio-Rad Laboratories,
Hercules, CA, USA) and analyzed by ImageJ 1.51j8 (National Institutes of Health, Bethesda,
MD, USA).

2.7. Transmission Electron Microscopy

Cells were incubated with propylene oxide and then exposed to propylene oxide/Epikote.
The blocks embedded with the Epon-Araldite mixture (Electron Microscopy Sciences,
Hatfield, PA, USA) were sectioned for imaging under a transmission electron microscope
(HITACHI-7000, Hitachi, Tokyo, Japan). For immunogold labeling, the ultrathin sections of
the cells on the nickel grids were blocked with the SuperBlockTM blocking buffer (Thermo
Fisher Scientific Inc.), followed by incubation with mouse monoclonal anti-FTH1 (1:100,
Santa Cruz Biotechnology, Inc., Dallas, TX, USA, sc-376594) and rabbit polyclonal anti-
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nuclear receptor co-activator 4 (NCOA4, 1:100, Abcam, ab222071) antibodies. The grids
incubated with gold-containing goat polyclonal anti-mouse (20 nm; 1:10, Abcam, ab27242)
and anti-rabbit (12 nm; 1:10, Abcam, ab105298) secondary antibodies were stained with
saturated uranyl acetate and lead citrate, respectively. The images were examined under a
transmission electron microscope (HITACHI-7000, Hitachi, Tokyo, Japan).

2.8. Immunoprecipitation

Immunoprecipitation was performed with the Protein A/G Magnetic Beads system
(Thermo Fisher Scientific Inc.) according to the manufacturer’s protocol. Briefly, anti-LC3
antibody (5 µg/mL, Medical & Biological Laboratories Co., Ltd., Nagoya, Japan, M152-3)
was coupled to protein A/G plus magnetic beads by incubation at 4 ◦C for 3–4 h. Cells were
lysed with a lysis buffer (Sigma, C3228), and protein (100–150 µg) from the lysates were
incubated with the anti-LC3 antibody in the presence of magnetic beads at 4 ◦C overnight.
The beads were then collected with a DynaMag™-2 Magnet (Thermo Fisher Scientific Inc.).
After removing the supernatant, the immunoprecipitates were washed three times with the
lysis buffer, and the proteins (20 µg) were subjected to SDS-PAGE for Western blot analysis.

2.9. RNA Sequencing

Total RNAs were isolated from MDA-MB-231 cells using the Quick-RNA™ Miniprep
Plus Kit (Zymo Research, Irvine, CA, USA). The RNAs were subjected to the SimpliNano™-
Biochrom Spectrophotometer (Biochrom, Holliston, MA, USA) for purity and quantity and
the Qsep 100 DNA/RNA Analyzer (BiOptic Inc., New Taipei City, Taiwan) for integrity,
respectively. RNA fragmentation and library preparation (KAPA Biosystems, Roche, Basel,
Switzerland) were carried out by the NovaSeq 6000 System (Illumina, San Diego, CA,
USA), through which the constructed libraries were analyzed by 150 bp paired-end high-
throughput sequencing at Biotools Co., Ltd. (New Taipei City, Taiwan). Briefly, read pairs
mapping from each sample were aligned to the reference genome (i.e., H. sapiens, GRCh38)
by the HISAT2 software (v2.1.0) and the results were reported following the “fragments
per kilobase of transcript per million mapped reads” method, known as FPKM, which
quantile normalized all samples. Moreover, for gene expression analysis, the “Trimmed
Mean of M-values” normalization was performed using DEGseq (v1.36.1) [33] without
biological duplicate, and the “Relative Log Expression” normalization was performed
using DESeq2 (v1.22.1) [34,35] with biological duplicate. DEGs analysis of these two
conditions was performed in R using DEGseq (without biological replicate) and DESeq2
(with biological replicate), which is based on negative binomial distribution and Poisson
distribution model, respectively [36–38]. The resulting p-values were adjusted using the
Benjamini and Hochberg’s approach for controlling the false discovery rate (FDR). DEGs
were defined as genes with p-value < 0.05.

2.10. METABRIC

Transcriptomic data from studies of the METABRIC [39,40] which is publicly accessible
and de-identified were analyzed via the cBioPortal (https://www.cbioportal.org/, accessed
on 28 April 2021) on 28 April 2021 [41,42]. Microarray transcriptomes (n = 1904) of breast
cancer patients were divided into luminal A (n = 1369), luminal B (n = 109), TNBC (n = 299),
and HER2-enriched (ER-negative, PR-negative, and HER2-positive, n = 127) according to
the ER, PR, and HER2 status. The Nottingham prognostic index, overall survival status,
normalized gene expression data, and the DEGs with a FDR at <0.05 between patients
with luminal A and TNBC were downloaded for further analysis. As for microarray
transcriptome, the RNA isolation and hybridization and data preprocessing were described
thoroughly in the original METABRIC paper [39]. Briefly, the RNA was isolated, amplified,
and hybridized onto Illumina Human HT-12 v3 Expression Beadchips, and then scanned
on the Illumina BeadArray Reader. The raw data were preprocessed by spatial artifact
correction, summarization, and normalization to obtain the log 2 intensity [39]. p-values
and FDR were analyzed by the Student’s t-test and the Benjamini-Hochberg procedure,
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respectively. Finally, the DEGs between luminal A and TNBC subtypes were defined as
genes with FDR < 0.05.

2.11. Over-Represented Pathway Analysis and Gene Set Enrichment Analysis (GSEA)

The DEGs were applied to the Consensus Path Database (CPDB) v34 (http://cpdb.
molgen.mpg.de/; accessed date: 28 April 2021) [43] for query of over-represented pathways
(minimum overlap with input list, 2; p-value cutoff, 0.01) collected in the Wikipathways [44].
GSEA [45], a computational method that evaluates whether an a priori defined set of
genes exhibits statistically concordant significance between two biological states, was
performed using GSEA v4.1.0 software with 1000 permutations. “Ferroptosis”, “Fatty Acid
Biosynthesis”, “Lipid Metabolism Pathways”, “Senescence and Autophagy in Cancer”,
and “Focal Adhesion-PI3K-Akt-mTOR-signaling pathway” gene sets deposited in the
Wikipathways [44] were downloaded from the Molecular Signature Database v7.4 (https:
//www.gsea-msigdb.org/gsea/msigdb/; accessed date: 28 April 2021). “Difference of
class means” was adopted for ranking of genes in the list. Genes whose expression did not
differ between groups (log2 fold change = 0) were eliminated from further analysis.

2.12. Prognostic Ferroptosis DEGs

The experimentally validated ferroptosis driver (promoting ferroptosis) and suppres-
sor genes (inhibiting ferroptosis) were downloaded from the FerrDb v1 [46] (http://www.
zhounan.org/ferrdb/; accessed date: 24 November 2021). FerrDb collected manually
annotated and experimentally validated ferroptosis modulators from papers in PubMed.
To obtain the DEGs involved in ferroptosis modulation (ferroptosis DEGs), the DEGs we
obtained from the METABRIC analysis were intersected with both the ferroptosis drivers
and suppressors using VENNY 2.0 [47] (https://bioinfogp.cnb.csic.es/tools/venny/; ac-
cessed date: 24 November 2021). Genes that overlapped between drivers and suppressors
were excluded to avoid ambiguity. In order to gain further insight into the roles of ferrop-
tosis genes in the prognosis of the breast cancer patients, the overall survival status and
expression of the ferroptosis DEGs from the METABRIC were applied to the Kaplan–Meier
plotter (https://kmplot.com/analysis/; accessed date: 24 November 2021) for univariate
Cox regression analysis and patients were split by the “Auto select best cutoff” option. Fer-
roptosis DEGs with a p-value and FDR of the Hazard ratio <0.0001 and ≤0.05, respectively,
were selected as the prognostic ferroptosis DEGs.

2.13. Ferroptosis Potential Index (FPI)

To quantify the propensity for ferroptosis in luminal A and TNBC patients, FPI [48] was
calculated. Briefly, the index was established based on the expression of the 20 prognostic
ferroptosis DEGs, including 10 driver genes (GOT1, G6PD, HILPDA, SLC1A5, LONP1, TF,
LINC00472, NCOA4, FLT3, and CDO1) and 10 suppressor genes (FANCD2, GCH1, HSF1,
ENPP2, NQO1, SCD, SQSTM1, ISCU, SLC40A1, and TP63). The sample-wise enrichment
scores of the driver and suppressor gene sets were calculated and normalized using gene
set variation analysis (GSVA), a method of GSEA for characterizing pathways or signature
summaries from a gene expression dataset (i.e., the expression of the patients with TNBC
and luminal A), in the “GSVA” R package [49]. The enrichment score of the driver gene set
minus that of the suppressor gene set was defined as FPI. The larger the FPI is, the higher
the potential for ferroptosis induction is.

2.14. Statistical Analysis

All data were analyzed with the use of at least three independent experiments, and
were presented as means ± standard errors of the means (SEMs). Student’s t-test and
one-way ANOVA were performed for statistical analysis (Statistical Package for the Social
Science 22.0 and 28.0 for Windows). The level of significance was set as α = 0.05.

http://cpdb.molgen.mpg.de/
http://cpdb.molgen.mpg.de/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
https://bioinfogp.cnb.csic.es/tools/venny/
https://kmplot.com/analysis/
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3. Results
3.1. The TNBC MDA-MB-231 Cells Are More Sensitive to Ferroptosis Than the Luminal A
MCF-7 Cells, and FC Is Identified as a Potent Ferroptosis Inducer

Although luminal A is highly prevalent [2], TNBC has a poor prognosis and a high
risk of relapse [3]. To determine the sensitivity of these two subtypes to ferroptosis, the
TNBC MDA-MB-231 and the luminal A MCF-7 cells were treated with the ferroptosis
inducer, erastin (a system Xc− inhibitor [6]) or RSL3 (a GPX4 inhibitor [13]). We found
that RSL3 and erastin were efficacious in the suppression of cell growth, and the trend
was more pronounced in MDA-MB-231 than in MCF-7 cells (Figure 1A). Likewise, FC
demonstrated more potent suppression of growth of MDA-MB-231 cells compared with
MCF-7 cells. The inhibitory effects of these three chemicals could be reversed when the
cells were incubated with ferrostatin-1 (Fer-1), a ferroptosis inhibitor that quenches Fe2+-
dependent lipid reactive oxygen species (ROS) [29]. By contrast, co-treatment with Fer-1
did not influence the effect of the US FDA-approved breast cancer drug (lapatinib) [50]
or six autophagy-inducing phytochemicals (curcumin, garcinielliptone FC, justicidin A,
lupeol, pterostilbene, and resveratrol) in MDA-MB-231 and MCF-7 cells. FC exhibited the
strongest cell growth inhibition among all tested phytochemicals and anti-cancer drugs,
including cisplatin, in MDA-MB-231.

It is noteworthy that, among the three phytochemicals that inhibited the growth of
MDA-MB-231 cells, FC (10 µM) was the only one whose cell growth inhibitory effect
could be significantly reversed in the presence of Fer-1. To corroborate this observation,
lower concentrations of FC (2 and 5 µM) were employed (Figure 1B). Treatment with FC
demonstrated a dose-dependent inhibition (2–10 µM), which was attenuated in the presence
of deferoxamine (an iron chelator [6]) in MDA-MB-231 cells. FC at 2 and 5 µM did not
significantly inhibit MCF-7 cells’ growth, and therefore the inhibitory effect of deferoxamine
was not possible to be observed in MCF-7 cells. These results collectively suggest that
the inhibitory effect of Fer-1 and deferoxamine against FC’s activity demonstrated that
FC-triggered iron and lipid ROS-dependent ferroptotic cell death are involved in FC’s
mechanism. To determine whether iron can promote FC-induced cell death, an iron source
(ferric ammonium citrate) was co-cultured with FC or RSL3. As shown in Figure 1C,
treatment with ferric ammonium citrate alone did not change the population growth of
either cell line; however, it sensitized the growth of MDA-MB-231 and MCF-7 cells to the
inhibitory effect of RSL3 or FC (Figure 1C), suggesting that iron enhanced either FC- or
RSL3-induced ferroptosis. It is noteworthy that the FC-reduced cell growth was more
effective (p < 0.05) in ferric ammonium citrate-treated MDA-MB-231 cells than in MCF-7
cells that had received the same treatment. Altogether, these data suggest that FC was an
effective ferroptosis activator, and the efficacy was greater in MDA-MB-231 cells than in
MCF-7 cells.

3.2. MDA-MB-231 Cells Are More Effective Than MCF-7 Cells to FC-Induced Cytosolic and Lipid
ROS Production and GPX4 Depletion

Because ferroptosis depends on both iron and lipid ROS [6], we sought to determine
whether such responses differ between TNBC MDA-MB-231 and luminal A MCF-7 cells. In
line with our recent observations on human hepatocellular carcinoma cells [51], FC was
identified as a potent ferroptosis inducer in breast cancer cells (Figure 1). Therefore, FC
was used to induce ferroptosis for further experiments. ROS can be generated by various
mechanisms. The attenuation in ROS formation by Fer-1 was considered ferroptosis-related,
as Fer-1 specifically quenches Fe2+-dependent formation of ROS [29]. Treatment with FC
elevated (p < 0.05) cytosolic ROS formation to a greater extent in MDA-MB-231 cells than
in MCF-7 cells, and the induction was completely reversed in the presence of Fer-1 in
the former but not in the latter cells (Figure 2A). The formation of lipid ROS [30] was
induced (p < 0.05) by FC and was returned more closely to the basal level in the presence
of Fer-1 in MDA-MB-231 cells than in MCF-7 cells (Figure 2B). It is noteworthy that the
concentration of FC at which the lipid ROS formation was significantly attenuated by
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Fer-1 was lower in MDA-MB-231 cells than in MCF-7 cells. Conversely, treatment with
FC reduced (p < 0.05) GPX4 protein level in MDA-MB-231 cells, but not in MCF-7 cells
(Figure 2C). The observation that FC-induced labile iron pool was decreased by the iron
chelator, deferoxamine (Figure 2D), provided further support that FC-induced cell growth
inhibition (Figure 1B) was coupled with the elevation of intracellular labile iron. Altogether,
the elevation of cytosolic and lipid ROS and labile iron levels contributed to FC-induced
cell death in association with the depletion of GPX4.
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Compared to without Fer-1, p < 0.05; Student’s t-test. # p < 0.05; Student’s t-test. n.s., not signifi-
cant. (B) Effect of iron chelator on the growth of the cells received FC. Cells received treatments of 
FC in the presence and absence of deferoxamine (100 µM) for 24 h. The ferroptosis inducer, RSL3 
(5 µM), was used as a positive control. * Compared to without deferoxamine, p < 0.05; Student’s 
t-test. DFO denotes deferoxamine. (C) Iron-enhanced cell growth inhibition of FC. Cells received 
treatments of RSL3 (1 µM) or FC (5 µM) in the presence and absence of ferric ammonium citrate 
for 24 h. * Compared to 0 µM of ferric ammonium citrate, p < 0.05; Student’s t-test. # Compared to 
MCF-7 cells under the same experimental conditions, p < 0.05; Student’s t-test. 
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ROS Production and GPX4 Depletion 

Because ferroptosis depends on both iron and lipid ROS [6], we sought to deter-
mine whether such responses differ between TNBC MDA-MB-231 and luminal A MCF-7 
cells. In line with our recent observations on human hepatocellular carcinoma cells [51], 
FC was identified as a potent ferroptosis inducer in breast cancer cells (Figure 1). There-
fore, FC was used to induce ferroptosis for further experiments. ROS can be generated 

Figure 1. FC-induced ferroptosis is more effective in MDA-MB-231 cells. (A) Effect of various types
of compounds on the growth of MCF-7 and MDA-MB-231 cells. Cells received treatments of erastin
(10 µM), RSL3 (5 µM), cisplatin (10 µM), lapatinib (0.5 µM), curcumin (20 µM), formosanin C (FC;
10 µM), garcinielliptone FC (20 µM), justicidin A (10 µM), lupeol (100 µM), pterostilbene (100 µM),
and resveratrol (100 µM) separately in the presence and absence of ferroptosis inhibitor ferrostatin-1
(Fer-1; 5 µM) for 24 h. Cell growth were analyzed by sulforhodamine B assay. * Compared to without
Fer-1, p < 0.05; Student’s t-test. # p < 0.05; Student’s t-test. n.s., not significant. (B) Effect of iron
chelator on the growth of the cells received FC. Cells received treatments of FC in the presence
and absence of deferoxamine (100 µM) for 24 h. The ferroptosis inducer, RSL3 (5 µM), was used as
a positive control. * Compared to without deferoxamine, p < 0.05; Student’s t-test. DFO denotes
deferoxamine. (C) Iron-enhanced cell growth inhibition of FC. Cells received treatments of RSL3
(1 µM) or FC (5 µM) in the presence and absence of ferric ammonium citrate for 24 h. * Compared to
0 µM of ferric ammonium citrate, p < 0.05; Student’s t-test. # Compared to MCF-7 cells under the
same experimental conditions, p < 0.05; Student’s t-test.
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Figure 2. FC increases ROS generation and iron accumulation. (A) FC elevated cytosolic ROS. (B) FC
elevated lipid ROS. Cells received treatments of FC in the presence and absence of ferroptosis inhibitor
ferrostatin-1 (Fer-1, 5 µM) for 24 h. Cytosolic and lipid ROS were detected using flow cytometry
after staining with H2DCFDA and C11-BODIPY, respectively. The higher the intensity (the peak
shifts to the right) of H2DCFDA or C11-BODIPY fluorescence is, the richer the cytosolic or lipid
ROS are, respectively. * Compared to without Fer-1, p < 0.05; Student‘s t-test. # Compared to the
corresponding vehicle, p < 0.05; Student’s t-test. (C) FC-reduced GPX4 protein level. The GPX4
protein levels were detected with enzyme-linked immunosorbent assay kit for GPX4. Cells received
treatments of FC for 24 h. # Compared to the corresponding vehicle, p < 0.05; Student’s t-test. (D) FC
increased intracellular iron accumulation. Cells received treatments of FC in the presence and absence
of iron chelator deferoxamine (100 µM) for 24 h. Ferroptosis inducer, RSL3 (5 µM), was used as a
positive control. Intracellular iron accumulation was detected using flow cytometry after Phen green
SK staining. * Compared to without deferoxamine, p < 0.05; Student‘s t-test. # Compared to the
corresponding vehicle, p < 0.05; Student’s t-test. DFO denotes deferoxamine.

3.3. FC-Induced Ferroptosis Parallels Downregulation of Ferroportin and xCT Expressions and
Upregulation of LC3 Expression in TNBC MDA-MB-231 Cells

Because FC-induced downregulation of GPX4 was more effective in the TNBC MDA-
MB-231 cells (Figure 2C), proteins associated with anti-oxidation and iron homeostasis were
studied. FC treatment of MDA-MB-231 cells resulted in increases (p < 0.05) in the protein
level of FTH1 at 24 h and LC3-II/LC3-1 at both 24 and 48 h, but resulted in decreases in
xCT (SLC7A11, the light chain subunit of system Xc−-cystine/glutamate antiporter [8,23])
at both 24 and 48 h and ferroportin at 24 h (Figure 3). In contrast, the FC treatment did
not increase FTH1 at 24 h or decrease xCT at 24 h or ferroportin at 24 and 48 h in MCF-7
cells (Figure S1). Altogether, these data suggest that FC-induced ferroptosis in TNBC is
associated with suppressed levels of the iron export protein, ferroportin, and the antioxidant
capacity protein, xCT.

3.4. Confirmation of FC-Induced Ferritinophagy and Ferroptosis in TNBC MDA-MB-231 Cells

Upregulation of LC3-II/LC3-I, an autophagy marker, (Figure 3) implies that fer-
ritinophagy occurred in FC-treated MDA-MB-231 cells. The analysis of immunoprecipita-
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tion demonstrated that FTH1 was co-immunoprecipitated with LC3 in a FC dose-dependent
manner (Figures 4A and S2). However, this phenomenon was not observed in the FC-
treated MCF-7 cells (Figure S2). Next, the FC-altered ultra-structure of the MDA-MB-231
cells was examined. Transmission electron microscopy analysis revealed that FC caused the
distinctive mitochondrial morphology with an increased membrane density (Figure 4B), a
reported cytological change in ferroptotic cells [6,14]. The number of autophagic vesicles
was significantly increased in the FC treatment (10 µM) compare to the control (p = 0.0006).
Although the statistical analysis of colocalization between the gold-stained FTH1 and
NCOA4 in the autophagic vesicles was not significantly changed in the FC treatment
compared to the control (p = 0.145), an increasing trend was observed (Figure 4C). These
observations confirm the involvement of ferritinophagy in FC-induced ferroptosis in MDA-
MB-231 cells. Taken together, our data suggest that induction of ferritinophagy alters cellu-
lar labile iron concentration (Figure 2D) and increases the accumulation of cellular lipid ROS
(Figure 2B), plausibly leading to ferroptotic cell death (Figure 1B) in MDA-MB-231 cells.
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Figure 3. FC changes expressions of proteins related to antioxidant system and iron metabolism.
Cells received treatments of FC for 24 and 48 h. Whole cell lysates were prepared and subjected to
Western blot analysis using anti-ferroportin, anti-xCT, anti-FTH1, and anti-LC3 antibodies. β-actin
antibody was used as an internal control. FPN denotes ferroportin. The intensity of each protein
expression band was quantified (n = 3). * and ** Compared to the corresponding control (0 µM of FC),
p < 0.05 and p < 0.01, respectively; Student‘s t-test.
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Figure 4. Ferritinophagy in FC-treated MDA-MB-231 cells. (A) The interaction of LC3 and FTH1.
Cells received treatments of FC for 24 h. The cell lysates were immunoprecipitated using anti-LC3
antibody, and the immune complexes were subjected to Western blot using anti-LC3 and anti-
FTH1 antibody, separately. The intensity of each protein expression band was quantified (n = 3).
* and ** compared to the corresponding control (0 µM of FC), p < 0.05 and p < 0.01, respectively; Stu-
dent‘s t-test. (B) Mitochondrial morphology. The arrow indicates the differences in the morphology
of mitochondria between control and FC-treated cells. (C) Co-localization of gold-stained ferritin and
NCOA4. Cells received treatments of FC (10 µM) for 24 h. Autophagosomes/autolysosomes and
gold particles were quantified. *** denote p < 0.001; Student’s t-test. The arrow and triangle indicate
NCOA4 (12 nm) and FTH1 (20 nm), respectively. The images were taken by electron microscopy.
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3.5. FC Increases Cisplatin Sensitivity of MDA-MB-231 Cells

High throughput RNA sequencing was performed to comprehensively analyze FC-altered
genes and pathways using all (n = 38, Table S1) of the DEGs (p-value < 0.05) between
FC treatment and vehicle (Figure 5A) in TNBC MDA-MB-231 cells. Interestingly, genes
involved in iron metabolism (e.g., FTH1), electron transport chain (e.g., MT-CO3), and the
structural constituent of ribosome (e.g., RPS2) were differentially expressed (Figure 5A).
The DEGs were further queried in the Wikipathways database [44] for over-represented
pathways via CPDB [43]. In agreement with the results obtained through biochemical and
cellular approaches (Figures 1–3), the network diagram (Figure 5B and Table S2) linked
“Ferroptosis” as well as its associated biological functions (e.g., “Oxidative phosphoryla-
tion” and “NRF2 pathway”) to the action of FC. Ferroptosis has been proven to increase
sensitivity to cisplatin in a broad spectrum of cancer cell lines (e.g., non-small cell lung
cancer [52], gastric cancer [53], and head and neck cancer [54]). Therefore, the researchers
were particularly interested in investigating the ferroptotic and cytotoxic effects of cisplatin
in combination with FC in TNBC MDA-MB-231 cells. Co-administration of FC inhibited
the growth of the cisplatin-treated MDA-MB-231 cells (Figure 6A). FC treatment at 2 µM
significantly enhanced the cell growth inhibition of cisplatin, which was reversed (p < 0.05)
in the presence of Fer-1 (Figure S3A), indicating that ferroptotic cell death was involved
in the FC-enhanced cell growth inhibition of cisplatin. A low concentration of cisplatin
was sufficient to exhibit the cytotoxic effects, suggesting that when used in combination
with FC it may be possible to reduce the dose-limiting side effect of cisplatin. Moreover,
cisplatin and FC treatment elevated lipid ROS formation in MDA-MB-231 cells (Figure 6B),
which was reduced (p < 0.05) in the presence of Fer-1 (Figure S3B). Altogether, these results
implicate ferroptosis induction in the sensitization of cisplatin-treated TNBC MDA-MB-231
cells to FC.

3.6. Analyses of Data Repositories Strengthen the Observed Discrepancy between TNBC and
Luminal A on Ferroptosis and Autophagy as well as Hypersensitivity to Ferroptosis in TNBC

Figure 7A illustrates the flow chart of the in silico data collection and analyses. The
Nottingham prognostic index is a surrogate marker of the aggressiveness of breast cancers
and is scored by the size of the tumor, number of lymph nodes involved, and tumor grade.
It is a valuable prognostication tool to provide gross projection of survival. Data analyses
of all subtypes stored in the METABRIC study [39,40] revealed that the patients with TNBC
had a significantly higher Nottingham prognostic index compared to patients with luminal
A but not other subtypes (Figure 7B), suggesting that TNBC is more aggressive than the
luminal A subtype. To characterize these observations, the DEGs (FDR < 0.05) between
patients with TNBC and luminal A from the METABRIC study were used to query the
Wikipathways database [44] for over-represented pathways via the CPDB [43]. Several
signaling pathways and cell death-related modalities were over-represented between
TNBC and luminal A subtypes (Table S3). In the network diagram, “Ferroptosis” and
its associated pathways (i.e., “Fatty Acid Biosynthesis”, “Lipid Metabolism Pathway”,
“Senescence and Autophagy in Cancer”, and “Focal Adhesion-PI3K-Akt-mTOR-signaling
pathway”, Figure S4) were shown to differ between the TNBC and the luminal A subtypes
of breast cancer (Figure 7C). Next, results of GSEA [45] revealed significant enrichment
(p < 0.05) and demonstrated that the TNBC and the luminal A signatures, respectively, were
positively and negatively correlated with the ferroptosis gene set, but not other pathways
(Figure 7C, Table S3) deposited in the Wikipathways database (Figure 7D). These results
corroborate the strong connectivity between ferroptosis and TNBC.
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The over-represented pathways analyzed using the DEGs between FC treatment and vehicle via 

Figure 5. Biological function of FC via bioinformatics analysis. (A) FC-altered mRNA expression.
Cells received treatments of FC (0.5 µM) for 6 h to avoid secondary responses under a higher
treatment concentration for a longer period time. RNA sequencing was carried out to investigate
the transcriptomic alteration of FC. Volcano plot displays the log2 fold change (FC/vehicle) and
-log10 (p-value) of the genes altered by FC. DEGs were defined as genes with p < 0.05. Red and blue
dots denote upregulated (log2 fold change > 0) DEGs and downregulated (log2 fold change < 0)
DEGs, respectively. Black dots denote non-DEGs. The names of the top 5 DEGs are shown. (B) The
over-represented pathways analyzed using the DEGs between FC treatment and vehicle via CPDB.
The size of each dot designates the entity number of genes in the pathway. The intensity of dot color
denotes the p-value. The darker the color is, the smaller the p-value is. The line between two dots
was analyzed by the function of these two pathways to show the number of genes overlapping said
pathways. The breadth of the line indicates the strength of the correlation between two dots.
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Figure 6. Effect of FC on cisplatin-treated cells. (A) Combination of FC and anti-cancer drug cisplatin
increased cell growth inhibition. (B) Combination of FC and cisplatin increased lipid ROS formation.
Cells received treatments of FC in the presence and absence of cisplatin for 24 h. Cell growth was
analyzed by sulforhodamine B assay. Lipid ROS were detected using flow cytometry after staining
with C11-BODIPY. *, **, and *** denote p < 0.05, p < 0.01, and p < 0.001; Student’s t-test.

To further characterize prognostic ferroptosis DEGs, univariate COX regression was
used to correlate overall survival of the patients with the DEGs (FDR < 0.05, 67 driver
and 39 suppressor genes; Figure 7E, the left panel) between TNBC and luminal A that
uniquely intersected with either the experimentally validated ferroptosis driver or suppres-
sor genes deposited in the FerrDb (Table S4) [46]. These ferroptosis-related prognostic DEGs
(Table S5) were then divided into four clusters (ferroptosis drivers or suppressors in TNBC
or luminal A based on expression levels; Figure 7E, right panel). Prognostic ferroptosis
driver DEGs (FDR < 0.05) and prognostic ferroptosis suppressor DEGs (FDR < 0.05) were
allocated to cluster 1 and 2, and 3 and 4, respectively. Cluster 1 and 3 comprise upregulated
genes (log2 (TNBC/luminal A) > 0), and cluster 2 and 4 comprise downregulated genes
(log2 (TNBC/luminal A) < 0). Furthermore, ferroptosis-related prognostic DEGs in the
clusters (Figure 7E) were adopted to acquire FPI (Table S6) [48] by using GSVA [49] for the
calculation of sample-wise gene set enrichment scores. FPI has been utilized to model the
propensity of a certain condition (e.g., drug treatment and cancer aggressiveness) to the
induction of ferroptosis in multiple cancer types from The Cancer Genome Atlas datasets
and cancer cell lines [48]. The observation of higher FPI (p < 0.0001) in patients with TNBC
compared with luminal A patients (Figure 7F) suggests that there is a higher potential for
inducing ferroptosis in TNBC than in luminal A. These results, based on the transcriptomic
data of human patient specimens, confirmed that TNBC was more sensitive to ferroptosis
than luminal A (Figures 1 and 2).
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multiple comparison test. Medians with different subscript letters are significantly different, at
p < 0.05. (C) The over-represented pathways analyzed using the DEGs between patients with TNBC
and luminal A via CPDB. The size of each dot designates the entity number of genes in the pathway.
The intensity of dot color denotes the p-value. The darker the color is, the smaller the p-value
is. The line between two dots was analyzed by the function of these two pathways to show the
number of genes overlapping said pathways. The breadth of the line indicates the strength of the
correlation between two dots. (D) Identification of ferroptosis as a potential regulator on TNBC using
GSEA. The enrichment score is normalized to account for the size of the gene set, demonstrating
significant enrichment (p < 0.05). NES denotes normalized enrichment score. (E) Genes associated
with ferroptosis and prognosis of patients with TNBC and luminal A. DEGs (FDR < 0.05) between
patients with TNBC and luminal A in the METABRIC cohort were intersected with experimentally
validated ferroptosis driver and suppressor genes. The common genes (red boxes) were selected
for survival analyses (left panel). Ferroptosis-related prognostic DEGs were shown and the values
represented mean of the log2 gene expression (right panel). (F) The FPI between patients with TNBC
and luminal A. Sample-wise enrichment scores of the prognostic ferroptosis driver DEG set and
suppressor DEG set were independently generated using GSVA algorithm. The enrichment score of
the prognostic ferroptosis driver DEG set minus that of the prognostic ferroptosis suppressor DEG
set was defined as FPI. The horizontal dashed line indicates FPI = 0, which means the potential of
ferroptosis is neutral. The lower and upper extents of the box represent the 25th and 75th percentiles,
respectively. The parallel line in the box represents the median. The lower and upper extreme of
the whisker represents minimum and maximum, respectively (B) and (F). NPI denotes Nottingham
prognostic index.

4. Discussion

By screening various natural compounds using ferroptosis inhibitor Fer-1, FC in-
duced ferroptosis more effectively in TNBC MDA-MB-231 cells compared to luminal A
MCF-7 cells (Figure 1A). FC, also termed Paris saponin II [55], is a structurally defined [56]
diosgenin saponin isolated from Paris formosana Hayata (Liliaceae), which has been used as
a folk remedy for snakebite inflammation and tumors. Immunological, anti-inflammatory,
anti-cancer, and anti-bacterial properties of FC have been reported [55–60]. We have previ-
ously demonstrated that FC induces apoptosis in human colorectal cancer HT-29 cells via
mitochondrion- and caspase 2-related pathways [25]. The apoptotic effect of FC has also
been demonstrated in human hepatocellular carcinoma HepG2 cells [60]. In animal studies,



Antioxidants 2022, 11, 298 20 of 26

the anti-tumor effects of FC on xenografts of human ovarian SKOV3 and colorectal HCT
116 cancer cells have been reported to proceed via the inhibition of NF-κB [55] as well as
the fission of mitochondria [61]. Besides apoptosis, FC treatment induces paraptosis and
sensitizes lung NCI-H460 and NCI-H520 cancer cells to cisplatin in a manner depending
on the JNK pathway, endoplasmic reticulum stress, and mitochondrial swelling [62]. FC
also enhances the polyphyllin I-induced cytotoxicity of HepG2 liver cancer cells via cell
cycle arrest at the G1 phase and a mitochondrion-dependent apoptotic pathway [59]. Syn-
thetic lethality of FC has also been observed in combination with polyphyllin VII, another
Rhizoma Paridis saponin, in human lung NCI-H460 cells via activation of caspases and
cleavage of Beclin 1 [63]. These results suggest that FC may have chemotherapeutic po-
tential against various types of human cancers via various death mechanisms. The results
of Figure 1 indicate that FC-suppressed cell growth was rescued only slightly, although
significantly, by Fer-1. This phenomenon is very different from the treatment with erastin
or RSL3, in which the rescue by Fer-1 is almost complete. These observations indicate
that cell death mechanisms other than ferroptosis may be associated with FC-reduced cell
growth. The FC-induced formation of autophagosomes/autolysosomes in MDA-MB-231
cells (Figure 4C) and FC-elevated protein expression of autophagy marker LC3-II/LC3-1 in
both MDA-MB-231 cells (Figure 3) and MCF-7 cells (Figure S1) suggest the involvement of
autophagy. Furthermore, the FC-reduced full length of caspase 3 and PARP in MDA-MB-
231 cells (Figure S5) and PARP in MCF-7 (Figure S1) imply the induction of apoptosis. In
FC-induced ferroptosis, FC treatment in MDA-MB-231 cells increased transferrin receptor 1
(data not shown) and decreased ferroportin (Figure 3) protein expressions at 24 h, resulting
in an increase in protein level of FTH1 at 24 h. The FC-induced ferritinophagy at 24 h
(Figure 4) and FC-induced autophagy at both 24 and 48 h (Figure 3) may accelerate protein
degradation of FTH1 and cause no significant elevation of FTH1 at 48 h (Figure 3). The
increase in labile iron pool (Figure 2D) possibly elevated ferroportin for iron-efflux and
counteracted the FC-reduced ferroportin, leading to no significant changes of ferroportin
protein expression at 48 h (Figure 3).

In the present study, we showed that FC and RSL3 triggered ferroptosis to a greater
degree in TNBC MDA-MB-231 cells as compared to luminal A MCF-7 cells (Figure 1). The
discrepancies between TNBC and luminal A with respect to ferroptosis were corroborated
by the gene analysis outcomes using a database of patients (Figure 7). Besides generating
ROS through the tricarboxylic acid cycle and electron transport chain, mitochondria are in-
dispensable for ferroptosis induction by either cystine-deprivation or erastin treatment, but
not by GPX4 inhibition [64]. Herein, the results of RNA sequencing suggest an association
with the electron transport chain in cells exposed to FC (Figure 5B). Furthermore, glu-
taminolysis, acting through an anaplerosis reaction, is required for both cystine deprivation-
and erastin-induced ferroptosis [64]. Glutamic-oxaloacetic transaminase 1, an enzyme con-
verting glutamate to α-ketoglutarate for acetyl-CoA production and subsequent lipid and
ROS synthesis [65], and solute carrier family 1 member 5, a protein mediating the uptake
of L-glutamine for deprivation of cystine and prevention of glutathione formation [65], are
involved in glutamine metabolism and their expressions are greater in TNBC as compared
to the luminal A subtype (Figure 7E). Collectively, it is plausible that FC triggers ferroptosis
in TNBC MDA-MB-231 cells partially through the activation of the electron transport chain.

The molecular heterogeneity of breast cancer is well recognized. The calculated Not-
tingham prognostic index from the METABRIC cohort (Figure 7B) indicates that TNBC
is more aggressive and has a poor prognosis as compared to luminal A. To effectively
facilitate therapeutic strategies and to overcome the variation in the clinical outcomes
of patients, the molecular diversity of breast cancer patients’ specimens collected by the
METABRIC cohort was applied to test the differences between TNBC and luminal A. Fer-
roptosis and autophagy were identified to explain the complex genomic landscape that
underlies the disease (Figure 7C,D). In light of ferroptosis being an autophagy-related cell
death mechanism, the driver and suppressor genes of ferroptosis from FerrDb, the first and
comprehensive database of ferroptosis developed in 2020, were integrated with the patients’
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overall survival status from the METABRIC cohort to characterize the molecular diversity
with prognostic value. Based on the gene expression profiles in TNBC and luminal A, the
prognostic ferroptosis DEGs were further stratified into four clusters (Figure 7E). Functional
analysis of these prognostic ferroptosis DEGs was conducted and the results demonstrating
the high FPI in TNBC provided further evidence that the molecular profile of TNBC is
sensitive to ferroptosis (Figure 7F) which is in accordance with the results from The Cancer
Genome Atlas breast cancer cohort [48]. Transcriptome-guided therapeutic strategies iden-
tify the induction of ferroptosis, probably in an autophagy-related fashion (ferritinophagy),
as a promising approach to treat TNBC patients. The 12 ferroptosis driver (cluster 1) and
suppressor (cluster 4) genes with increased and decreased expression in TNBC speci-
mens, respectively, may contribute to the sensitivity of TNBC to ferroptosis. Targeting
the ferroptosis suppressor genes that are upregulated in TNBC (four genes in cluster 3)
and/or raising the ferroptosis driver genes that are downregulated in TNBC (four genes
in cluster 2) may enhance ferroptosis in TNBC (Figure 7E, right panel). According to
the biological functions of these 20 genes, decreased antioxidant capacity, dysregulated
cellular iron homeostasis, and increased synthesis of polyunsaturated fatty acids contain-
ing phosphatidylethanolamine, may favor ferroptosis induction in TNBC patients. This
notion is in line with the three hallmarks of ferroptosis: the oxidation of polyunsaturated
fatty acid-containing phospholipids, redox-active iron, and inhibition of lipid peroxide
repair [66].

Most of the 25 selenoproteins in humans have been demonstrated or predicted to
perform oxidoreductase activities [67]. Among the five selenium-dependent glutathione
peroxidases in humans, cytosolic glutathione peroxidase 1 catalyzes the decomposition of
H2O2 [68], but GPX4 has a distinctive substrate preference toward phospholipid hydroper-
oxide for the protection of biological membranes [69,70]. It has been recently reported that
inhibition of GPX4 activity promotes H2O2-induced ferroptotic cell death in mice [69]. The
observation of prioritized GPX4 expression at the expense of low-hierarchy selenoproteins,
such as glutathione peroxidase 1 under selenium deficiency [71,72], suggests that GPX4
plays essential roles in the prevention of membrane oxidation. Likewise, the GPX4 activity
inhibitor RSL3 [13] was identified through the approach of synthetic lethal screening from
a total of 47,725 compounds [73]. RSL3 binds directly with and inhibits the activity of
GPX4 [13,69], resulting in a rapid accumulation of lipid ROS, phospholipid oxidation, and
ferroptosis [6]. In the present study, we suggest FC as a novel GPX4 regulator by repressing
the expression of GPX4 (Figure 2C).

The platinum complex cisplatin has been used to treat a number of cancers for decades.
Although cisplatin has a couple of side effects, such as nephrotoxicity [74], it is still a
mainstay in the therapy of solid tumors, including breast cancers [75]. Recent studies
have found that cisplatin acts as an inducer of ferroptosis in human non-small cell lung
cancer A549 and colorectal carcinoma HCT116 cells through glutathione depletion and
inactivation of glutathione peroxidase activities [76], despite demonstrating weaker efficacy
in comparison to another ferroptosis inducer, erastin. Our data indicate that FC-induced cell
growth inhibition was greater than that induced by cisplatin in TNBC MDA-MB-231 cells,
but not in luminal A MCF-7 cells (Figure 1A). In fact, cisplatin-induced lipid ROS formation
(Figure 6B) slightly but significantly causes cell growth inhibition in MDA-MB-231 cells
(Figure 6A), and the cell growth inhibition was significantly reversed by co-administration
of Fer-1 (Figure 1A), suggesting that cisplatin alone significantly contributes to ferroptosis.
Enhancement of cisplatin-induced cell growth inhibition and ferroptosis by FC was also
evidenced in MDA-MB-231 cells (Figure S3A), which is in line with the gene analysis
results, in which the enriched pathways were analyzed via CPDB (Figure 5B). Importantly,
the 50% inhibitory concentrations for FC in normal human peripheral blood mononuclear
cells and umbilical vein endothelial cells are at least 10 and 20 times, respectively, and
higher than those in human colorectal cancer HT-29 and human hepatocellular carcinoma
Hep3B cells [25]. Thus, FC is relatively safe in human normal cells as compared to human
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cancer cell lines, suggesting that dietary phytochemicals recovered from herbs and spices
are promising for drug discovery.

In terms of its biological behavior, TNBC is usually more aggressive, more prone
to early recurrences, and more likely to be detected in distant metastases as compared
with other breast cancer subtypes. Our results provided novel insights and demonstrated
that, in comparison to the luminal A MCF-7 cells, RSL3-induced ferroptosis was more
prominent in TNBC MDA-MB-231 cells. Saponin FC was more effective at activating
ferroptosis in MDA-MB-231 cells, as evidenced by enhanced iron metabolism, oxidative
stress, and ferritinophagy. The enhanced cell growth inhibition by FC in cisplatin-treated
MDA-MB-231 cells suggests the therapeutic potential of FC in TNBC by induction of
ferroptosis. Using transcriptomic data from primary specimens of breast cancer patients
in the METABRIC cohort, we confirmed that TNBC was more sensitive than luminal A
breast cancer to ferroptotic cell death. We acknowledge that selecting DEGs based on both
significance (e.g., p-value) and fold change is more robust than either alone. However, the
objective of the present study is evaluating the involvement of ferroptosis in the action of FC
(Figure 5) and discrepancy between patients with TNBC and luminal A subtypes (Figure 7),
but not identifying specific genes modulating ferroptosis. Therefore, to include more genes
for further analysis (i.e., overrepresentation analysis), we defined DEGs here as genes with
p-value < 0.05 (Figure 5) or FDR < 0.05 (Figure 7) without fold change thresholding. Our
data demonstrate that induction of ferroptosis could be an important therapeutic tool in
the management of TNBC.

5. Conclusions

This study identified ferroptosis as a targetable metabolic niche in TNBC via integrated
bioinformatics analysis, and these results open up a new avenue of research aimed at treat-
ing this aggressive cancer. Our findings shed new light on the mechanisms by which FC, a
natural saponin, induces ferroptosis and ferritinophagy, and increases the chemosensitivity
of TNBC MDA-MB-231 cells to cisplatin.
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