
Journal of 

Functional

Biomaterials

Article

MOF-Mediated Synthesis of CuO/CeO2 Composite
Nanoparticles: Characterization and Estimation of the Cellular
Toxicity against Breast Cancer Cell Line (MCF-7)

Mohammad Javad Farhangi 1, Ali Es-haghi 1 , Mohammad Ehsan Taghavizadeh Yazdi 2,* , Abbas Rahdar 3,*
and Francesco Baino 4,*

����������
�������

Citation: Javad Farhangi, M.;

Es-haghi, A.; Taghavizadeh Yazdi,

M.E.; Rahdar, A.; Baino, F. MOF-

Mediated Synthesis of CuO/CeO2

Composite Nanoparticles:

Characterization and Estimation of

the Cellular Toxicity against Breast

Cancer Cell Line (MCF-7). J. Funct.

Biomater. 2021, 12, 53. https://

doi.org/10.3390/jfb12040053

Academic Editor: Elisa Boanini

Received: 2 August 2021

Accepted: 24 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran;
Farhangi.mohamadjavad123@gmail.com (M.J.F.); ashaghi@gmail.com (A.E.-h.)

2 Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
3 Department of Physics, University of Zabol, Zabol 98613-35856, Iran
4 Institute of Materials Physics and Engineering, Applied Science and Technology Department,

Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
* Correspondence: taghavizadehme971@mums.ac.ir (M.E.T.Y.); a.rahdar@uoz.ac.ir (A.R.);

francesco.baino@polito.it (F.B.)

Abstract: A copper oxide/cerium oxide nanocomposite (CuO/CeO2, NC) was synthesized via a
novel method using a metal–organic framework as a precursor. This nanomaterial was characterized
by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), field emission
scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light
scattering size analysis (DLS), and zeta potential. The PXRD showed the successful synthesis of
the CuO/CeO2 NC, in which the 2theta values of 35.55◦ (d = 2.52 Å, 100%) and 38.73◦ (d = 2.32 Å,
96%) revealed the existence of copper (II) oxide. FTIR analysis showed the CeO2, hydroxyl groups,
absorbed water, and some residual peaks. The solid phase analysis by FESEM and TEM images
showed mean particle sizes of 49.18 ± 24.50 nm and 30.58 ± 26.40 nm, respectively, which were
comparable with crystallite size (38.4 nm) obtained from PXRD, but it appears the CuO/CeO2 NC was
not evenly distributed and in some areas, showed it was highly agglomerated. The hydrodynamic
size (750.5 nm) also showed the agglomeration of the CuO/CeO2 NCs in the solution, which had a
negatively charged surface. The CuO/CeO2 NCs showed anti-proliferative activity against human
breast cancer cell line (MCF-7) in a dose- and time-dependence way, while affecting normal cells
less significantly.

Keywords: nanomaterials; copper oxide; cerium oxide; metal–organic frameworks; anticancer;
MCF-7

1. Introduction

The increased resistance of cancers to conventional treatments has become problem-
atic [1–4]. The resistance of cancer cells to chemical drugs leads to a decrease in the response
level of these cells to the drug and consequently the failure of the treatment. Therefore,
the development of more effective drugs with few side effects and limitations is very
important [5–8]. Nanotechnology can provide physicians with new strategies for directly
targeting cancer cells and increasing drug efficacy [9,10]. Biomaterials are used in various
cases such as drug delivery as well as imaging applications and have good potential for
cancer diagnosis and treatment [11–14]. Pharmaceuticals can bind to nanoparticles (NPs)
and the assemblies are specifically absorbed by the cancer cells by passive targeting. With
this method, healthy cells are not exposed to pharmaceuticals and the side effects of the
drug are reduced [15–17].

In this context, cerium oxide (ceria) nanoparticles are among the most promising.
Recent studies have shown that this nanomaterial is cytotoxicity against cancer cells, so
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further studies are important for determining side effects and its use in the treatment
of cancers [18–21]. The popularity of cerium oxide (CeO2) is increasing in biomedical
applications, which comes from the intrinsic properties of the ceria such as its oxidation–
reduction behavior due to the surface oxygen vacancies and reversible valence state changes
from Ce (III) to Ce (IV) [22,23]. The reduction of the particle size to nano-scale dimensions
has a tremendous effect on its catalytic behavior. The expansion of synthesis methods
that provide control over final morphology and size gives a new ability to this material,
especially for medical-related applications [24–26]. Cerium oxide nanoparticles are widely
used in various fields such as catalysis, gas sensors, fuel cells, hydrogen storage materials,
optical devices, ultraviolet absorbents, polishing material, and many fields of biomedical
science [27–36]. It has been proved that ceria nanoparticles are effective against oxidative
stress and have an antioxidant role. Cerium oxide nanoparticles (nanoceria) are able
to mimic the activity of superoxide dismutase and catalase due to changes in oxidation
state [37,38]; therefore, these nanoparticles can be used as scavengers for reactive oxygen
species (ROS) and inhibitors of the invasion and sensitization of cells to radiotherapy and
chemotherapy [39–41]. Cerium oxide nanoparticles have cytotoxic effects against cancer
cells and can induce apoptosis in them. One mechanism is cytochrome C release and
caspase-3 and -9 activations. In fact, nanoceria increases apoptosis in cancer cells by the
onset of mitochondrial cell death without chemical changes by targeting mitochondria [42].
In general, induction of programmed cell death or apoptosis is one of the most attractive
approaches in cancer treatment. The cell death pathway can involve activation of pro-
apoptotic events in the cell, which begin with the permeability of the mitochondrial
membrane by Bax and Bak proteins, releasing cytochrome C from it and finally activating
caspase-9 and then caspase-3 [43].

It was shown that the use of copper oxide nanoparticles, too, reduces the secretion of
superoxide dismutase and catalase enzymes [44]. As oxidative stress was increased, the
toxicity of nanoparticles was increased through ROS production. Therefore, copper oxide
can be used as a dopant to adjust the antioxidant attributes, ROS production and catalytic
activity of cerium oxide and make it more toxic against cancerous cells or bacteria. Mixed
metal oxide nanocomposites (NCs) show characteristics of two metal oxides concurrently
and may give an outstanding catalytic performance to the composite against cancer. Due
to the importance of size, shape and morphology on the medical applications, the NCs pro-
duced in this study were analyzed comprehensively by investigating their physicochemical
properties; cell toxicity tests with cancer cells were reported as well.

2. Materials and Methods
2.1. Reagents

All the chemicals and materials including terephthalic acid, dimethylformamide
(DMF), ammonium cerium (IV) nitrate, and copper (II) nitrate trihydrate were procured
from Sigma and Merck chemical groups unless otherwise stated.

2.2. Synthesis of the CuO/CeO2 NCs Nanocomposites (NCs)

The precursor was prepared according to previous reports and used without any
further purification [41]; the final CuO/CeO2 NCs were synthesized thermally for the first
time. In brief, 1000 mg of terephthalic acid was sonicated in 34 mL of DMF until it was
dissolved. Then, 3302 mg of ammonium cerium (IV) nitrate and 70 mg of copper (II) nitrate
trihydrate were dissolved in DMF and added to the above mixture, which was stirred at
100 ◦C for 15 min. The formed precipitate was centrifuged, washed with DMF several
times and dried in an oven at 80 ◦C. Then, 2 g of the prepared precursor was heated at
500 ◦C for 4 h. The obtained nanopowder underwent characterization and was used for
anticancer experiments.
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2.3. Characterization of Nanoparticles

The used techniques were transmission electron microscopy (TEM, ZEISS LEO 912
AB, Oberkochen, Germany) and field emission scanning electron microscopy (FESEM,
TESCAN, MIRA 3, Brno, Czech Republic), which were used for the analyses of size and
morphology (using an ultrasonic probe 20 kHz and 400 W power for 30 min to prepare
the sample for analyses), Fourier transform infrared spectroscopy (FTIR, Shimadzu 8400,
Kyoto, Japan) for determination of functional groups by using KBr pellet in the range of
wave number (4000–400 cm−1), powder X-ray diffraction (PXRD, D8 ADVANCE-BRUKER)
to determine the structure by using a Cu Kα radiation (λ = 1.5406 Å) within 10–70◦

(2θ) range, dynamic light scattering size analysis (DLS, Particle Size Analyzer, Vasco3,
Cordouan Technologies, Pessac, France) for the measurement of hydrodynamic sizes using
a 100 mg/L concentration of the nanoparticles, and Zeta-potential (Zeta Compact, CAD)
for the assessment of surface charges.

2.4. In Vitro Cellular Tests

Human breast carcinoma cell line (MCF-7) was selected as a suitable in vitro model
of solid tumors. MCF-7 cells were achieved from Pasteur Institute, Iran and was grown
in Dulbecco’s Modified Eagle Medium (DMEM) including 10 percentages of fetal bovine
serum (FPS), 1 percentage of antibiotic (Pen/Str), and it was kept at 37 ◦C, 5% CO2, and
95% humidity. The cells were treated with different concentrations (0.031, 0.062, 0.125,
0.250, 0.500, and 1.000 µg/mL) of synthesized CuO/CeO2 NCs at three time points (24, 48,
and 72 h). After incubation, the cell state was observed using a microscope, and later, 20 µL
MTT substance was added and incubated. A 96-cell plate reader was used to estimate
the absorbance at 570 nanometer and the cell vitality percentage amount was calculated.
Mouse embryonic fibroblasts (NIH-3T3) cell lines were used as normal cells and cultured
under the same conditions described above.

2.5. Statistical Analysis

Data were analyzed using GraphPad Prism 6.0 (GraphPad software, Inc., San Diego,
CA, USA). Data were presented as mean ± standard deviation of at least three independent
experiments. Student’s t-test was performed for comparison between groups. p < 0.05 was
considered statistically significant.

3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)

The FTIR spectrum of the CuO/CeO2 NCs was recorded from 400 to 4000 cm−1 to ana-
lyze the functional groups (Figure 1). The observed band at 3437 cm−1 was associated with
absorbed water or hydroxyl groups on the surface. The appeared bands at 2800–3000 cm−1

is related to the presence of methylene groups from the residual organic groups after
calcination [45]. The absorption band at 1621 cm−1 corresponded to the bending vibration
of the hydroxyl groups or the absorbed H2O [46,47]. The peaks area under 800 cm−1 was
related to Ce-O or Cu-O bond vibrations [48]. The bands at 1319 cm−1 and 1059 cm−1

could show the vibrational modes of Ce-O-Ce [49].
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and 00-005-0661, respectively. It appears that the crystal system of CeO2 NPs was cubic 
and associated with 2theta values of 28.55° (d = 3.12 Å, 100%), 33.08° (d = 2.71 Å, 29%), 
47.49° (d = 1.91 Å, 51%), 56.33° (d = 1.63 Å, 44%), 59.10° (d = 1.56 Å, 5%) and 69.41° (d = 
1.35 Å, 5%) and hkl values of (111), (200), (220), (311), (222), and (400) respectively. The 
experimental values of CeO2 NPs were 28.63° (d = 3.12 Å, 99.5%), 33.15° (d = 2.70 Å, 34%), 
47.51° (d = 1.91 Å, 100%), 56.44° (d = 1.63 Å, 95%), 59.04° (d = 1.56 Å, 18%), and 69.53° (d = 
1.35 Å, 16%), and the values of CuO/CeO2 NCs were 28.58° (d = 3.12 Å, 86%), 33.26° (d = 
2.69 Å, 28%), 35.61° (d = 2.52 Å, 6%), 38.85° (d = 2.32 Å, 5.5%), 47.60° (d = 1.91 Å, 100%), 
56.42° (d = 1.63 Å, 91%), 59.17° (d = 1.56 Å, 17%), and 69.55° (d = 1.35 Å, 7%). The results 
showed the phase purity of CeO2 NPs. The 2theta values of 35.61° and 38.85° in 
CuO/CeO2 NCs were ascribed to the copper oxide with a monocilinic structure and 
reference code of 00-005-0661, which were associated to the 2theta values of 35.55° (d = 
2.52 Å, 100%) and 38.73° (d = 2.32 Å, 96%), and hkl values of (−111) and (111), 
respectively. Hence, it can be concluded that CuO/CeO2 NCs were successfully 
synthesized after calcination. No additional peaks were observed other than those of 
CuO and CeO2, which indicated the phase purity of the prepared NCs. The crystallite 
sizes obtained by the Scherer’s equation using the most intense peaks were 32.9 nm and 
38.4 nm for CeO2 NPs and CuO/CeO2 NCs, respectively. It appears that the crystallite size 
was increased after copper doping into the CeO2 nanostructures.  

Figure 1. The FTIR spectrum of the CuO/CeO2 NCs (1, absorbed H2O or O–H stretching; 2, C–H stretching; 3, O–H
stretching; 4, Ce–O–Ce vibration; 5, Ce–O/Cu–O vibration).

3.2. Powder X-ray Diffraction (PXRD)

The PXRD analysis was performed to investigate the structural changes after copper
doping (Figure 2). CeO2 and CuO were compatible with reference codes of 00-004-0593
and 00-005-0661, respectively. It appears that the crystal system of CeO2 NPs was cubic
and associated with 2theta values of 28.55◦ (d = 3.12 Å, 100%), 33.08◦ (d = 2.71 Å, 29%),
47.49◦ (d = 1.91 Å, 51%), 56.33◦ (d = 1.63 Å, 44%), 59.10◦ (d = 1.56 Å, 5%) and 69.41◦

(d = 1.35 Å, 5%) and hkl values of (111), (200), (220), (311), (222), and (400) respectively. The
experimental values of CeO2 NPs were 28.63◦ (d = 3.12 Å, 99.5%), 33.15◦ (d = 2.70 Å, 34%),
47.51◦ (d = 1.91 Å, 100%), 56.44◦ (d = 1.63 Å, 95%), 59.04◦ (d = 1.56 Å, 18%), and 69.53◦

(d = 1.35 Å, 16%), and the values of CuO/CeO2 NCs were 28.58◦ (d = 3.12 Å, 86%), 33.26◦

(d = 2.69 Å, 28%), 35.61◦ (d = 2.52 Å, 6%), 38.85◦ (d = 2.32 Å, 5.5%), 47.60◦ (d = 1.91 Å, 100%),
56.42◦ (d = 1.63 Å, 91%), 59.17◦ (d = 1.56 Å, 17%), and 69.55◦ (d = 1.35 Å, 7%). The results
showed the phase purity of CeO2 NPs. The 2theta values of 35.61◦ and 38.85◦ in CuO/CeO2
NCs were ascribed to the copper oxide with a monocilinic structure and reference code of
00-005-0661, which were associated to the 2theta values of 35.55◦ (d = 2.52 Å, 100%) and
38.73◦ (d = 2.32 Å, 96%), and hkl values of (−111) and (111), respectively. Hence, it can
be concluded that CuO/CeO2 NCs were successfully synthesized after calcination. No
additional peaks were observed other than those of CuO and CeO2, which indicated the
phase purity of the prepared NCs. The crystallite sizes obtained by the Scherer’s equation
using the most intense peaks were 32.9 nm and 38.4 nm for CeO2 NPs and CuO/CeO2
NCs, respectively. It appears that the crystallite size was increased after copper doping into
the CeO2 nanostructures.
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Figure 2. PXRD analyses of the CeO2 NPs and CuO/CeO2 NCs. * highlight the peaks interpreted according to the bottom
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3.3. Field Emission Scanning Electron Microscopy (FESEM)

The FESEM images were used to analyze the morphology of the NCs (Figure 3). It
appears that the particles have a spherical morphology and the mean particle size of the
CuO/CeO2 NCs was 49.18 ± 24.50 nm. The particle sizes were determined by ImageJ
software (bundled with Java 1.8.0_172) and particle size analyses were performed using
IBM SPSS statistics 22. The maximum, minimum, and overall ranges were 189.73 nm,
12.55 nm and 177.18 nm, respectively. The median (44.15 nm) was less than the mean size
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of the NCs and greater than the mode (27.46 nm), which indicated a positively skewed
frequency distribution and the skewness was 1.78. The difference between crystallite size
(38.4 nm) and the mean particle size obtained from FESEM images (49.18 nm) indicated
very low aggregation. The EDX analysis also showed the elemental composition of the
copper and cerium in NC. The O Kα, Ce Lα, and Cu Kα were the most intense peaks related
to oxygen, cerium and copper, respectively, which appeared at 0.53, 4.82, and 8.01 keV.
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3.4. Transmission Electron Microscopy (TEM)

The TEM images (Figure 4) showed that CuO/CeO2 NCs were spherical and the
particle diameter was 30.58 ± 26.40 nm. It appears that the mode, median, and mean
showed the following order: mode < median < mean (13 < 22.98 < 30.58 nm), which
indicated a positively skewed frequency distribution and skewness was 2.76. The minimum
and maximum were calculated to be 8.22 nm and 170.73 nm, respectively. Although
the difference between crystallite size (38.4 nm) and the grain sizes obtained from TEM
images (30.6 nm) suggests low agglomeration, the presence of large particle (~178 nm)
indicated that the CuO/CeO2 NCs were not evenly distributed and the sample was highly
agglomerated at some points. Therefore, the CuO/CeO2 NCs were well-sonicated before
undergoing biological in vitro tests.
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3.5. Dynamic Light Scattering (DLS) and Zeta Potential

The DLS analysis (Figure 5) showed that CuO/CeO2 NCs were highly agglomerated.
Compared to the solid-state size, the hydrodynamic size (750.5 nm) was more than 15- and
24-times greater than the mean sizes obtained from FESEM and TEM images, respectively.
The measurement of the hydrodynamic particle sizes presented the sizes of the largest
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particles in the solution. The weak interactions of the solvent such as hydrogen bonds with
the surface of the CuO/CeO2 NCs led to the formation of layers of waters, aggregation
of smaller particles or maybe other ionic components around the NCs. Therefore, the
increased hydrodynamic size is reasonable. The Zeta potential was also assessed to be
−20.0 mV, which was due to the presence of the hydroxyl or maybe the carboxyl groups
on the surface of the CuO/CeO2 NCs. Previous reports also suggest that zeta potentials
lower than 25 mV would yield a high degree of colloidal stability [50]. Interestingly,
the hydrodynamic sizes were much higher than what is expected due to zeta potential.
The only rational reason could be the limitations of the DLS analyzer, which can only be
sensitive to larger particles. As the TEM result showed, the particles with sizes of nearly
180 nm were observed in the solid phases. Therefore, due to the limitations of the DLS
device and the presence of larger particles, it can be concluded that the obtained particle
size was plausible.
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3.6. Anti-Proliferative Activity of CuO/CeO2 NCs against Breast Cancer Cell Lines

Cancer is a leading cause of death and a worldwide health problem [51]. Cancer
is a disease characterized by uncontrolled cell proliferation that spreads from an initial
focal point to other parts of the body to cause death [52,53]. In the past few decades, the
application of nanocomposites in cell toxicity and anticancer properties has attracted a lot
of attention with several nanoparticle types being used [54]. In this study, the cell toxicity
effect of synthesized CeO2-CuO-NPs was measured through MTT assay against a breast
cancer cell line (MCF-7) and normal fibroblastic cells. The result of the cytotoxic effect
of synthesized nanoparticles (0.031–1.000 µg/mL) is shown in Figure 6 after 24, 48, and
72 h incubation. The results showed that there was a gradual decrease in cell vitality with
increasing NC concentration, and this effect was more pronounced for longer incubation
times using higher NC concentrations. This trend is clearly visible in cancer cells, where
there is a marked decrease of cell viability over time if the NC concentration exceeds
0.250 µg/mL). Overall, the destruction of cancer cells occurs in a state dependent on both
concentrations of CuO/CeO2 NC and time of exposure. On the contrary, normal fibroblastic
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cells seem to be less sensitive to the presence of NC. These results are in accordance with
the findings reported in some previous studies that are briefly described below.
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Es-haghi et al. studied the cell toxicity of CeO NPs and expression of antioxidant
genes against liver cancerous cell lines [55]. They found that the biosynthesized cerium
nanoparticles had little effect on normal cells (HUVEC) while being able to significantly kill
cancer cells. The expression of catalase and superoxide desmutase genes was also increased
in this regard. In another research the cytotoxicity of biosynthesized CeO2 NPs against
MCF-7 breast cancer cell line was investigated. The results of this study revealed the
significant inhibitory effects of CeO2 NPs on the growth of MCF-7 cells which depended on
the concentration and time of treatment [56]. Ahmed et al. studied the effect of CuFe2O4



J. Funct. Biomater. 2021, 12, 53 10 of 12

NPs against MCF-7 cells. The results showed that the generation of ROS by NPs is generally
considered to a major contributor to NPs toxicity [57].

The metabolic features of cancerous cells are not the same as normal cells and, con-
sequently, this can lead to different results in cellular toxicity between normal and cancer
cells [3]. Today it is realized that the higher permeation retaining, reduced lymphatic
drainage and vasculature leaking of cancerous cells enable the accumulation injected NPs
in the tumor tissue [58]. In vitro studies confirmed that CuO NPs cause apoptosis in tumor
cells [59]. One of the mechanisms by which CuO NPs destroy cancer cells is the production
of reactive hydroxyl ions, which damage the DNA of cancer cells [60]. Another mechanism
performed by CuO involves inhibition of Nuclear Factor (NF)-kB (NF-kB). NF-kB has
been displayed to have a role in cancer, and so inhibition of this factor plays a significant
function in the inhibition of cancer [61].

4. Conclusions

CuO/CeO2 NCs were successfully synthesized and analyzed from physical and bio-
logical viewpoints. It appears the metal–organic framework-based materials as precursors
for the synthesis of the metal oxide is a useful and facile method, especially in the synthesis
of the mixed metal oxides. The nature of composition and crystalline phases were con-
firmed by EDX and PXRD analyses. The mean size of composite nanoparticles was 49.18
and 30.58 nm as assessed by FESEM and TEM, respectively. The synthesized CuO/CeO2
NC showed cell toxicity properties towards breast cancerous cell lines (MCF-7) in a dose-
and time-dependence manner, while the toxicity of CuO/CeO2 NC was significantly lower
on normal fibroblastic cells.
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