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Abstract

Objective: To use bioinformatics tools to screen for gene biomarkers from monocytes, which

play an important role in the pathogenesis of atherosclerosis.

Methods: Two expression profiling datasets (GSE27034 and GSE10195) were obtained from the

Gene Expression Omnibus dataset and the differentially expressed genes (DEGs) between ath-

erosclerotic human peripheral blood mononuclear cells (PBMC) samples and control subjects

were screened using GEO2R. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes

pathway enrichment analyses were conducted for the DEGs. STRING and MCODE plug-in of

Cytoscape were used for constructing a protein–protein interaction network and analysing hub

genes.

Results: The two datasets had 237 DEGs in common between non-atherosclerotic- and ath-

erosclerotic PBMC samples. Functional annotation demonstrated that these DEGs were mainly

enriched in protein binding, positive regulation of transcription from RNA polymerase II pro-

moter, nucleus and viral carcinogenesis. Five hub genes, FBXL4, UBOX5, KBTBD6, FZR1 and

FBXO2, were identified.

Conclusion: This present bioinformatics analysis identified that the FBXL4, UBOX5, KBTBD6 and

FBXO21 genes might play vital roles in the pathogenesis of atherosclerosis. These four genes

might represent new biomarkers for the diagnosis and treatment of atherosclerosis.
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Introduction

Atherosclerosis (AS), as a chronic inflam-
matory disease involving the blood vessels,
is the underlying pathology of various dis-
eases, such as coronary artery disease,
peripheral arterial disease and cerebrovas-
cular disease.1–3 AS remains a major cause
of death and accounts for 31% of global
mortality.4 Therefore, considerable research
is undertaken in AS and studies have dem-
onstrated that monocytes play a vital role in
the initiation and progression of AS.5–7

Research suggests that monocytes are iden-
tified as the cellular hallmark in AS.8 In the
early phases of AS, monocytes are recruited
to the dysfunctional endothelium and then
enter into the arterial intima.9 In the intima,
monocytes proliferate, mature and differen-
tiate into macrophages, then these macro-
phages engulf low-density lipoprotein
(LDL) particles and eventually progress
into macrophage foam cells.9

Research has shown that the pathophys-
iological processes involving monocytes are
closely related to the mutation and abnor-
mal expression of genes. For example, the
expression of RadioProtective 105 (RP105),
a Toll-like receptor (TLR) homolog capable
of regulating TLR4 signalling, was upregu-
lated in the early phases of AS.10 The study
also found that RP105 deficiency decreased
monocyte influx and reduced early athero-
sclerotic lesion formation.10 Moreover,
research has demonstrated that the expres-
sion levels of the ST6 beta-galactoside
alpha-2,6-sialyltransferase 1 (ST6GAL1)
gene decreased significantly during the pro-
gression of AS; and overexpression of

ST6GAL1 strongly inhibited monocyte
transendothelial migration and prevented
the process of AS development.11 Another
study suggested that deletion of Bmal1 in
monocytes and macrophages can promote
AS.12 The authors also found that deleting
Bmal1 can enhance monocyte recruitment
into the AS lesion, which leads to an
increased macrophage content and enlarged
lesion size.12 Therefore, research needs to
focus on the mutation and abnormal
expression of genes in AS, which should
identity novel biomarkers for this disease.

In recent years, bioinformatics tools and
high-throughput sequencing technology,

such as microarrays, have been used to
identify the potential genetic targets of dis-
eases. This has dramatically improved the
efficiency and speed of gene discovery.13–15

These methods could help researchers
determine the biological relevancy of any
identified genes, particularly within the
complex networks of genes that are likely
to be involved in the development of AS.

The peripheral blood transcriptome can
reflect the changes occurring in the macro-
and microenvironment in the body during
the procession of diseases, because it has
interactive and dynamic properties.16 The
current study aimed to identify potentially
critical genes associated with AS in order to
further understand the pathogenesis of AS.
This was achieved by downloading and
re-analysing two microarray-based tran-
scriptional profiling datasets of human
peripheral blood mononuclear cells
(PBMC) from the Gene Expression
Omnibus (GEO) dataset, which can reduce
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false-positive rates in an independent
microarray analysis. Using this dataset,

the study aimed to identify differentially
expressed genes (DEGs) between non-
atherosclerotic and atherosclerotic PBMC

samples so that Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment
analysis of the DEGs could be undertaken.
Protein–protein interaction (PPI) network

analysis was constructed and dissected for
the identified DEGs.

Materials and methods

Data sources

Two gene expression profiling datasets,
GSE27034 and GSE10195, were down-

loaded from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). GSE27034

consisted of 37 PBMC samples from 19
patients with atherosclerosis and 18 control
subjects, which was sequenced on the plat-

form of GPL570, [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0

Array. GSE10195 consisted of 41 PBMC
samples from 27 patients with atherosclero-
sis and 14 control subjects, which was

sequenced on the platform of GPL1708,
Agilent-012391 Whole Human Genome

Oligo Microarray G4112A (Feature
Number version). No experiments on
humans or animals were conducted for

this investigation. Thus, local ethical com-
mittee approval or patient consent to par-
ticipate were not needed.

Identification of DEGs

The DEGs between atherosclerotic PBMC

samples and controls were screened using
GEO2R (http://www.ncbi.nlm.nih.gov/
geo/geo2r). GEO2R is an interactive web

tool that allows users to compare two or
more datasets in a GEO series in order to
identify DEGs across experimental

conditions. Thresholds of P-value< 0.05
and |log2FC| (fold change)> 1 were set.
A Venn diagram was delineated by an inter-
active web tool (http://bioinformatics.psb.
ugent.be/webtools/Venn/).

Functional annotation and pathway
enrichment analyses of DEGs

To get a better understanding of the DEGs,
GO and KEGG pathway enrichment anal-
yses were conducted using the Database for
Annotation, Visualization and Integrated
Discovery (DAVID) tool (https://david.
ncifcrf.gov/home.jsp; version 6.8). DAVID
is a gene functional classification tool that
integrates a set of functional annotation
tools for investigators to analyse biological
functions behind massive genes. GO classi-
fications consist of molecular function
(MF), biological process (BP) and cellular
component (CC) terms.17 KEGG is a data-
base that is used to allocate gene sets to
their relevant pathways. A P-value< 0.05
was set as the threshold for the identifica-
tion of significant enrichment.

Construction and analysis of the PPI
network

The PPI network was predicted using the
Search Tool for the Retrieval of
Interacting Genes (STRING) online data-
base (http://string-db.org; version 11.0).18

The analysis of interactions between vari-
ous proteins might put forward some
novel ideas into the pathophysiological
mechanisms involved in the development
of AS. PPIs of DEGs were selected with a
score (median confidence)> 0.4, as
described previously;19–21 and the PPI net-
work was then visualized using Cytoscape
(version 3.7.1), a free visualization software.

Mining and analysis of hub genes

The plug-in Molecular Complex Detection
(MCODE) of Cytoscape is an application
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used for clustering a given network based
on topology to find densely connected
regions. The most significantly clustered
modules in the network were screened
using MCODE. The criteria for the
MCODE analysis were as described previ-
ously: MCODE scores �4, degree cut-
off¼ 2, max depth¼ 100, k-score¼ 2 and
node score cut-off¼ 0.2.22–24 Then the
names, abbreviations and functions of
these hub genes were identified from the
GeneCards (https://www.genecards.org/)
database, which is an online interactive
database of human genes.

Results

This study analysed two public datasets
using GEO2R to identify the DEGs. The
results showed that 1351 DEGs were iden-
tified from the GSE10195 dataset and 3278
DEGs were identified from the GSE27034
dataset. The Venn diagram result showed
that 237 DEGs were contained in the two
databases simultaneously (Figure 1).

The GO and KEGG pathway enrich-
ment analyses were conducted to gain the
cellular function, process and signal path-
ways of DEGs in AS. The biological pro-
cess GO enrichment analysis showed that
the DEGs were mainly enriched in the pos-
itive regulation of transcription from RNA
polymerase II promoter, negative regula-
tion of transcription, DNA-templated, reg-
ulation of transcription from RNA
polymerase II promoter and positive regu-
lation of the apoptotic process (Figure 2a).
The cellular component GO enrichment
analysis showed that the DEGs primarily
took part in the nucleus, cytoplasm, nucle-
oplasm and mitochondrion (Figure 2b).
The molecular function GO enrichment
analysis showed the DEGs were mainly
involved in protein binding, sequence-
specific DNA binding, actin binding and
transcription factor binding (Figure 2c).
KEGG pathway analysis showed that all

of the DEGs were enriched in viral carcino-

genesis and the p53 signalling pathway.
The PPI network of DEGs was con-

structed (Figure 3) and the most significant

module was identified using Cytoscape

(Figure 4). The analysis identified five hub

genes from the most significant module.

They were F-box and leucine rich repeat

protein 4 (FBXL4), U-box domain contain-

ing 5 (UBOX5), kelch repeat and BTB

domain containing 6 (KBTBD6), fizzy and

cell division cycle 20 related 1 (FZR1) and

F-box protein 21 (FBXO21). Their names,

abbreviations and functions are summa-

rized in Table 1.

Discussion

Atherosclerosis is one of the major causes

of mortality in ageing populations world-

wide and it is a serious life-threatening dis-

ease.25 However, a complete understanding

the molecular mechanisms involved and the

identification of accurate biomarkers for

the diagnosis and treatment of AS remained

to be elucidated. Recent developments in

Figure 1. A Venn diagram showing the overlap of
237 genes between the two microarray-based
transcriptional profiling datasets of human periph-
eral blood mononuclear cells (GSE27034 and
GSE10195) from the Gene Expression Omnibus
(GEO). GEO2R was used to compare these GEO
datasets to identify differentially expressed genes
between patients with atherosclerosis and control
subjects.
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bioinformatic technology have allowed it to

be widely used to predict potential thera-

peutic targets for AS.26,27 In this present

study, a bioinformatics approach was used

to identify the DEGs in atherosclerotic

PBMCs. Analysis of the GSE27034 and

GSE10195 datasets using GEO2R identi-

fied DEGs between non-atherosclerotic

and atherosclerotic PBMC samples. The

two datasets had 237 DEGs in common.

Functional annotation demonstrated that

these DEGs were mainly enriched in pro-

tein binding, positive regulation of tran-

scription from RNA polymerase II

promoter, nucleus and viral carcinogenesis.

Furthermore, in the most significant

module of the PPI network, five hub genes

with a high degree of connectivity, FBXL4,

UBOX5, KBTBD6, FZR1 and FBXO21,

were identified. Their potential diagnostic

and therapeutic values for AS are worthy

of further investigation.
The FBXL4 gene is a protein coding

gene, which can encode a member of the

F-box protein family.28 F-box and leucine

rich repeat protein 4 has a highly conserved

50-amino acid protein motif and it can spe-

cifically bind substrates to regulate the deg-

radation of cellular regulatory proteins via

ubiquitin-mediated proteolysis.29 Research

has demonstrated that FBXL4 plays an

important role in the maintenance of

Figure 2. Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) identified
from two microarray-based transcriptional profiling datasets of human peripheral blood mononuclear cells
(GSE27034 and GSE10195) that was used to identify DEGs between patients with atherosclerosis and
control subjects. (a) The biological process GO enrichment analysis of DEGs; (b) The cell component GO
enrichment analysis of DEGs; (c) The molecular function GO enrichment analysis of DEGs.
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mitochondrial DNA integrity, which was
associated with diseases including mito-
chondrial DNA depletion syndrome 13
and mitochondrial DNA depletion syn-
drome.28 Recently, it was shown that
FBXL4 could interact with endoplasmic
reticulum lectin 1 (ERLEC1), which is a
molecular chaperone playing a role in the
endoplasmic reticulum (ER) stress
response.30 The ER stress response is relat-
ed to various systemic and arterial-wall

factors that promote atherosclerosis.31

A previous study demonstrated that ER
stress could induce apoptosis, which may
directly participate in the initiation and
development of AS.32 In addition, as
shown in Table 1, FBXL4-related pathways
are class I major histocompatibility com-
plex (MHC)-mediated antigen processing
and presentation and the innate immune
system. Research has demonstrated that
the innate and adaptive immune responses

Figure 3. The protein–protein interaction network of the differentially expressed genes between patients
with atherosclerosis and control subjects.
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play a significant role in atherogenesis.33,34

According to this current analysis, FBXL4

expression in atherosclerotic PBMC sam-

ples was significantly different compared

with that of control PBMCs. Therefore,

these findings suggest that FBXL4 expres-

sion is involved in the development of AS

and FBXL4 could serve as a diagnostic

marker of AS.
The UBOX5 gene can encode a U-box

domain containing protein, which interacts

with ubiquitin-conjugating enzyme (E2)

and may play a role in the ubiquitination

pathway.35 As the results show in Table 1,

GO annotations related to this gene include

ligase activity and ubiquitin protein ligase

(E3) binding. E2 and E3 both belong to

the ubiquitin proteasome system (UPS),

which plays a crucial role in the pathophys-

iology of AS.36 The UPS is composed of

ubiquitin-activating enzyme (E1), E2 and

E3, forming a cascade of regulated enzymes

to target proteins for degradation.36 A pre-

vious study found that ITCH, a type E3

ubiquitin ligase, could influence the patho-

genesis of AS.37 The authors also demon-

strated that the loss of ITCH could

upregulate the reuptake of LDL into the

liver mediated by the LDL receptor, which

inhibited the progression of AS.37

Furthermore, the lysosomal- and

ubiquitin-dependent proteasome can

degrade the receptor of platelet activating

factor (PAF), thereby exacerbating the

effects of PAF on vascular cells, which is

proatherogenic.36 In this current study,

UBOX5 expression in atherosclerotic

PBMC samples was significantly different

with that of control PBMCs. UBOX5 may

influence the UPS via E2 and E3; and

sequentially take part in the initiation and

development of AS. Therefore, these findings

suggest that UBOX5 might be a potential

biomarker and therapeutic target for AS.
The KBTBD6 and FBXO21 genes are

both protein coding genes and their related

pathways are both class I MHC-mediated

antigen processing and presentation and the

innate immune system. As discussed above,

the innate and adaptive immune responses

play a significant role in atherogenesis.33,34

The innate immune system consists of

various cellular components including

granulocytes, mast cells, monocytes/macro-

phages, dendritic cells and natural killer

cells; and it forms the first line of host

defence against pathogens.38 All of these

immune cell types participate in the

initiation and progression of AS.38

Research has demonstrated that the

number of monocytes is increased in

patients with atherosclerosis and the

number is correlated with the size and

stage of the atherosclerotic plaque.39 In

addition, GO annotations related to

FBXO21 include ubiquitin-protein

transferase activity, which suggests that

FBXO21 might also be involved in the

progression of AS via UPS. Therefore,

these findings suggest that the expression

Figure 4. The most significant module identified in
the protein–protein interaction network identified
five hub genes. FBXL4, F-box and leucine rich repeat
protein 4; UBOX5, U-box domain containing 5;
KBTBD6, kelch repeat and BTB domain containing
6; FZR1, fizzy and cell division cycle 20 related 1;
FBXO21, F-box protein 21.
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of KBTBD6 and FBXO21 plays a vital role

in the development of AS.
The FZR1 gene is a protein coding gene

and its related pathways are cell cycle role

of Skp1, Cullin, and F-box complex in cell

cycle regulation and PLK1 gene signalling

events. A previous study reported that

FZR1 can specifically activate the

anaphase-promoting complex or cyclo-

some, a ubiquitin ligase that can regulate

the cell cycle.40 Furthermore, reduced

expression, deletions and mutations of the

FZR1 gene, as a tumour suppressor, have

been found in various human tumour tis-

sues.41 However, the relationship between

FZR1 and AS is not clear and needs to be

explored further.

This study had one limitation, which was

that all of the results were based on bioin-

formatics technologies and lacked experi-

mental validation. Therefore, further

experiments in vitro and in vivo are required

to verify these findings.
In conclusion, this present bioinformat-

ics analysis study found that the FBXL4,

UBOX5, KBTBD6 and FBXO21 genes

might play vital roles in the pathogenesis

of AS. These genes might be useful diagnos-

tic markers of AS or form targets for the

treatment of AS in the future.
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