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Research on the acquisition of spatial knowledge not only enriches our understanding
of the theory of spatial knowledge representation but also creates practical value for the
application of spatial knowledge. The aim of this study is to understand the impact
of different learning methods on the acquisition of spatial knowledge, including the
role of 2D maps, the difference between physical interaction and virtual interaction,
and whether passive learning can replace active learning in virtual environments.
One experiment was conducted, in which landmark knowledge and configurational
knowledge were measured. Results indicate that 2D maps play a supporting role in
acquiring both landmark knowledge and configurational knowledge. In addition, physical
learning was associated with better spatial knowledge representation compared with
virtual learning. An analysis of observational data in the third comparison found
no significant difference between passive learning and active learning using virtual
street view maps. However, with high-quality learning materials, passive learning can
contribute to the acquisition of spatial knowledge more efficiently than active learning.

Keywords: spatial knowledge, learning methods, field navigation learning, 2D map-assisted field navigation
learning, virtual street view map learning, active learning, passive learning

INTRODUCTION

The importance of wayfinding is obvious in everyday life. Wayfinding involves multiple cognitive
processes, such as encoding environmental characteristics, building and maintaining spatial
representations in memory, and using them (Piccardi et al., 2019). During wayfinding, one acquires
knowledge of the environmental space and stores it in his way, forms a “cognitive map” of the
environment, and finds ways based on it (Downs and Stea, 1974; Golledge, 1999). Construction of
cognitive map involves the acquisition of spatial knowledge.

Spatial knowledge includes the knowledge of the spatial relationships between objects of
an environment in the individual’s wayfinding process (declarative spatial knowledge) and the
knowledge about how to move in this environment (procedural spatial knowledge) (Sorrentino
et al., 2019). The key to solving spatial problems lies in whether the individual can efficiently acquire
spatial knowledge, that is, forming a complete spatial environmental representation as well as saving
time and cognitive sources.

Spatial learning cannot be separated from learning methods. In this study, we focus on how
individuals build spatial knowledge and what impacts different learning methods have on the
acquisition of spatial knowledge.
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Spatial Knowledge
As a representation of one’s environment, spatial knowledge
contains environmental characteristics, the relative position
between objects, and properties of spatial relationships (Lynch,
1960; Kuipers, 1982; Papadopoulos et al., 2017a). With respect to
the development of spatial knowledge, Siegel and White (1975)
constructed the landmark–route–survey (LRS) model, which
includes three steps in the process of knowledge acquisition:
landmark knowledge, route knowledge, and survey knowledge.
On the basis of this model, many researchers (Thorndyke and
Hayes-Roth, 1982; Gale et al., 1990; Tversky et al., 1994; Darken
and Sibert, 1996; Elvins, 1997; Ishikawa and Montello, 2006;
Spiers and Maguire, 2008) posit that cognitive maps, as a
representation of spatial knowledge, must comprise landmark
knowledge, route knowledge, and survey knowledge.

Per the LRS model, spatial knowledge is specifically believed
to consist of landmark knowledge and configurational knowledge
(Satalich, 1995). To measure the former, researchers employed
scene recognition and wayfinding performance metrics; to
quantify the latter, they utilized measures of distance and
direction between locations, relative positions, and other
aspects of the overall environmental representation. De Goede
and Postma (2015) designed scene recognition tasks for
landmark knowledge; the participants needed to determine
whether the scene presented to them was from the city in
which they lived and then complete a five-point familiarity
rating task. For configurational knowledge, De Goede and
Postma (2015) facilitated distance comparison and relative
position tasks. In the distance comparison tasks, two pairs
of locations appeared, and the participants had to indicate
which pair was most representative of real-world locations.
In the relative position tasks, participants were shown triads
of places that were either in their correct relative spatial
positions or that were incorrect mirror images of their correct
spatial positions. They had to judge whether each triad
accurately depicted the relative physical position of actual
places in the physical environment. In short, De Goede and
Postma’s paradigm can measure landmark knowledge and
configurational knowledge simultaneously, which is meaningful
to the comprehensive measurement of spatial knowledge.
Through exhaustive assessment, researchers may achieve greater
insight into the differences between the components of
spatial representation.

Learning Methods
Different learning methods have different effects on the
acquisition and representation of spatial knowledge. The most
commonly used methods are navigation learning, map learning,
virtual field navigation learning, and description learning. Map
learning can be further classed into traditional paper map
learning, electronic 2D map learning, and 3D street view map
learning according to the different learning materials. Some
interactive street view maps are also considered a form of
virtual learning.

The acquisition of spatial knowledge via field navigation
learning occurs by walking in a new environment, as people gain
procedural knowledge of routes connecting diverse locations.

Its greatest advantage is the gaining of environmental details
through physical interaction, particularly non-visual channels
(hearing, touch, smell, proprioception, etc.) (Riecke et al.,
2010; Ruddle et al., 2011). According to Siegel’s spatial
knowledge model, with the richer experience of living in
the environment, spatial representation gradually develops
from inaccurate landmark knowledge to route knowledge and
eventually forms survey knowledge (Siegel and White, 1975).
However, some researchers also believe that a configurational
representation of the environment cannot be formed through
field navigation learning alone. Thorndyke and Hayes-Roth
(1982) compared the impact of field navigation learning and
map learning on task completion. They found that with
extensive exposure (months of learning), learners still had great
difficulty completing non-self-centered perspective tasks (e.g.,
locating the relative location of a room on the basis of spatial
references of two places). Moeser (1988) studied student nurses’
representations of a hospital’s layout and found no difference
in spatial representation between nurses who worked in the
hospital for one year and nurses who worked there for three
years. Both groups of nurses ultimately provided landmark or
route representations that were somewhat inaccurate. Ishikawa
and Montello (2006) found that some participants, regardless
of how many times they repeated the route they were learning,
performed badly on tasks such as direction and distance
estimation, and their performance did not improve with
practice. These results illustrate that field navigation learning
does not necessarily promote an accurate representation of
survey knowledge.

Maps provide comprehensive information about a reader’s
environment, thereby facilitating simultaneous working memory
processing (Coluccia et al., 2007; Blalock and Clegg, 2010) and
acquisition of survey knowledge. This feature enables learners
to gain a more complete representation of the environment’s
global layout (Meilinger et al., 2013). However, this type of
learning is easily affected by a map’s medium; studies show that
traditional paper maps are more conducive to the acquisition of
spatial knowledge than electronic 2D maps (Ishikawa et al., 2008;
Dickmann, 2012).

Virtual environments (VEs) depict visuospatial information
from a 3D first-person perspective (Richardson et al., 1999;
Jansen-Osmann, 2002). Successful learning in VEs can be applied
to physical environments (Ruddle et al., 1997; Jacobs et al.,
1998) and predict wayfinding performance within them (Coutrot
et al., 2019). Abundant research demonstrates that virtual
field navigation learning is not only beneficial to wayfinding
performance but also enhances spatial representation and further
helps create a better-quality cognitive map (Ruddle et al., 1997;
Ohuchi et al., 2006; Lahav and Mioduser, 2008).

However, some studies have shown that virtual field
navigation learning is not effective in assisting learners to develop
spatial layout representation (Münzer et al., 2006; Ishikawa
et al., 2008). Spatial representation obtained by single virtual
field navigation learning has some limitations. Ruddle et al.
(1997) found that increased practice time did not trigger an
improvement in task performance with a non-self-centered
perspective. Münzer et al. (2006) also found that additional
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training in VEs had no significant effect on the acquisition of
spatial knowledge.

3D street view maps provide 360-degree spatial
representation, including more information about the
surroundings of a particular location than do 2D maps
(Gu, 2018). Street view map learning can also be regarded as a
manner of engaging in virtual field navigation learning; it takes
less time than field navigation learning. Compared to street view
maps, VEs place the learner in an immersive environment that
is more similar to the physical environment, which provides
more realistic spatial information and is thus more intuitive than
street view maps (Gu, 2018). Unlike 2D maps, street view maps
and VEs change learners’ perspective from a bird’s-eye view to
a pedestrian view, mimicking an embodied perspective, and
provide a more realistic image with which to interact (König
et al., 2019). Therefore, with appropriate cautions, research on
street view map learning can be conducted with reference to VE
studies. Moreover, 2D maps can be added to street view maps to
assist learners in forming configurational representations. The
biggest disadvantage to street view map learning is the delay
in learning that most users experience, which is a challenge
to cognitive load.

In VEs, human–computer interaction is virtual. This kind of
learning can be either passive or active. Active learning usually
means that participants can control their will and movement to
learn, while passive learning provides limited exposure to the
material via videos, slides, and other visual modes with limited
or no cognitive control on the part of the learner (Chrastil and
Warren, 2013). Active learning consists of cognitive and physical
components; cognitive components include mental manipulation
of spatial information, attention distribution, and route decision-
making, while physical components comprise motion control,
proprioception information, and vestibular information (Chrastil
and Warren, 2012). These components work synergistically in
spatial task performance (Picucci et al., 2013; Larrue et al., 2014;
Gardony et al., 2015; Rand et al., 2015). Appleyard (1970) was one
of the first researchers to propose that bus drivers and passengers
have distinct differences in acquiring spatial knowledge, thereby
leading to a series of studies on the impact of active learning and
passive learning on spatial knowledge acquisition. The difference
between active learning and passive learning not only affects
the cognitive structure of the environment but also influences
learners’ visual memory of the environment (Afrooz et al., 2018).
Active exploration of a new environment will likely lead to
better spatial learning than passive exposure will (Chrastil and
Warren, 2015). The memory advantage of active learning is
called the subject-performed task (SPT) effect (Brooks, 1999;
Sauzéon et al., 2012). It describes superior memory performance
patterns, especially when coding involves the learner directly
performing learning actions rather than observing the actions
of others that may be related to remembered words (Zimmer
and Engelkamp, 1999). Chrastil and Warren (2013) found that
participants who had the opportunity to decide the route they
would follow in spatial learning outperformed those who watched
a wayfinding video depicting that route. Meade et al. (2019)
found that active learning can improve the accuracy of spatial
memory in VEs more so than passive learning. Many researchers

have found that the mental impact of active learning on spatial
information that the working memory retains contributes to the
acquisition of route knowledge and survey knowledge (Münzer
et al., 2006; Labate et al., 2014; Weisberg and Newcombe, 2016;
Blacker et al., 2017).

Still, some studies show that active learning and passive
learning have less impact on the acquisition of spatial knowledge
than other kinds of learning. Allison and Redhead (2017)
found that participants with navigation experience, whether they
actively explored their environment or passively watched videos,
could maintain their orientation and spatial updating in VEs,
but that non-experienced participants were unable to maintain
their orientation, even if they actively explored VEs. Cao et al.
(2019) found that compared with those who explored a virtual
museum passively, participants who explored the same museum
actively traveled longer in completing the egress task. Christou
and Bülthoff (1999) conducted a similar study but found no
difference in the scene recognition performance of active learning
groups and passive learning groups. While active exploration of a
new environment may seem more effective than passive learning
(Chrastil and Warren, 2015), current literature does not provide
a definitive answer. The difference in effectiveness between active
learning and passive learning of street view maps still needs to be
determined by empirical research.

Research Goal
At present, research relative to map learning methods is mostly
concentrated around the use of traditional paper maps. Although
many studies in the area of virtual field navigation learning
are emerging, research on some learning methods, such as
3D street maps, is still lacking. Unfortunately, the literature
that is emerging around learning methods is inconsistent. In
terms of map learning and field navigation learning, many
studies assert that map learning is an important way to form
survey knowledge, while field navigation learning can help form
route knowledge. Conclusions as to whether long-term field
navigation learning can assist in forming survey knowledge are
inconsistent. The ability of virtual field navigation learning to
replace field navigation learning is currently in dispute. One
possible reason lies in the inconsistency between the way in which
the composition and paradigm of spatial knowledge are measured
in many studies. Previous research that investigated subjects’
performance in wayfinding tasks mainly focused on route
knowledge, that is to say, different spatial knowledge components
have seldom been measured comprehensively. At this point, the
impact of active learning and passive learning, especially for
3D street view maps, on the acquisition of spatial knowledge is
arguably of a high priority for researchers to examine.

Previous studies (Haq and Girotto, 2003; Montello et al.,
2004; Isaacson and Shoval, 2006) were concerned with (1) visual
learning methods (field-based, map-based, and virtual-based),
(2) non-visual learning methods (e.g., audio, tactile, and haptic),
and (3) an arbitrary combination of these two kinds. Non-visual
learning methods such as audio learning are mainly used as
the most common alternative approaches to meet the particular
needs of learners (e.g., vision-impaired persons) (Szymczak et al.,
2012; Yu and Habel, 2012; Papadopoulos et al., 2017b). Our main
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research purpose is to explore the impact of different learning
methods on spatial learning in a large-scale environment. Thus,
we consider that the non-visual learning methods are not suitable.
Although audio non-visual learning methods can reduce the
load on visual attention when combined with visual learning
methods, no conclusions for a single learning kind can be drawn
when combining more than one method from other kinds.
Moreover, controlling when the non-visual information presents
and how long it lasts is difficult because it is very different
from visual information. Therefore, comparing spatial knowledge
acquisition among the common learning methods such as field
navigation, map learning, and virtual field navigation learning is
still considered an open issue.

Thus, this study aims to explore the influences of four learning
methods (i.e., navigation learning, 2D map-assisted navigation
learning, 2D map-assisted street view map active learning, and
2D map-assisted street view map passive learning) on landmark
knowledge and configurational knowledge. Moreover, the main
differences among these four learning methods were attributed
to the following three independent variables: the assistance of
2D maps, interaction mode, and learning mode. Therefore, three
interested pairwise comparisons were further conducted.

(1) The role of 2D maps in the process of acquiring
spatial knowledge was investigated by comparing spatial
knowledge learning with field navigation and 2D map-
assisted field navigation.

(2) Differences between virtual interaction and physical
interaction were investigated to understand whether and to
what extent can physical interaction be replaced by virtual
interaction. Thus, differences in spatial knowledge learning
between 2D map-assisted field navigation (i.e., physical
interaction) and active learning using street view map (i.e.,
virtual interaction) were compared.

(3) The influence of interaction modes (active learning or
passive learning) in street view map learning on the
acquisition of spatial knowledge was investigated.

MATERIALS AND METHODS

Participants
Participants included a total of 120 college students (60 males and
60 females) who had no experience relative to the experimental
area in the month immediately prior to the study and were
generally unfamiliar with the area. Participants ranged in age
from 17 to 24 years old (M = 20.8; SD = 1.5). All participants were
assigned randomly to one of the four learning method conditions.

This study was approved by Institutional Review Board of the
Zhejiang Sci-Tech University. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Design
This study employed a between-subjects design. The learning
method served as the independent variable. The four learning
method conditions were the field navigation learning group,
the 2D map-assisted field navigation learning group, the 2D

map-assisted street view map active learning group, and the 2D
map-assisted street view map passive learning group. Dependent
variables included accuracy, reaction time (RT) and confidence
ratings of the scene recognition task, orientation judgment task,
and configurational representation task. Distance perception
representation task was an estimation task without absolute right
or wrong answers. Thus, we used the absolute difference of
distance (compared with the correct distance) to substitute for
the accuracy in this task. RT and confidence ratings were also
measured in the distance perception representation task.

Environment and Materials
Environment
The experimental area (highlighted area, Figure 1) included No.
4 Ave., No. 9 Ave., No. 6 Ave., and No. 5 Ave., Xiasha, Hangzhou,
which does not include the inner area.

The experimental area is approximately 500 m × 500 m with
a mass of shops, businesses, bars, and restaurants. It contained
16 large landmarks (used as task materials), 12 buildings in
diverse styles, and fixed features such as road crossings, car
traffic, and pedestrian zones (see Figures 2, 3). This experimental
area can be well explored within half an hour. Compared with
many physical environments used for spatial navigation research
(Krüger et al., 2004; Ishikawa et al., 2008; Willis et al., 2009), the
experimental area selected in the present study is relatively larger
and more complex. Participants needed to begin at the starting
point and proceed clockwise in a square road around the area
to the ending point (identical to the starting point), with four
turns within 25 min.

Materials
For the assisting map, which was shown to the 2D map-assisted
field navigation learning group, the printed map (Figure 4)
was A4-sized (1:50) and had a resolution of 2570 × 1817
pixels. The street view map (Figure 5)1 was drawn from Baidu
Map, a desktop and mobile web mapping service application.
A video exploring the environment actively from a first-person
perspective was provided for 2D map-assisted street view map
learning (passive). The production method of the video is as
follows: One researcher completed a simulated navigation task in
strict accordance with instructions for the task. At the same time,
every action was captured by a screen recorder software and then
edited into a 25 min video.

Spatial knowledge is composed of landmark knowledge and
configurational knowledge. Landmark knowledge is measured
by scene recognition tasks (Figure 6), and configurational
knowledge is measured by orientation judgment tasks (Figure 7),
configurational representation tasks (Figure 8), and distance
perception representation tasks (Figure 9).

The scene recognition task (Figure 6) primarily measured
the quality of the participants’ landmark knowledge. The task
consisted of 17 trials. The participants were shown a picture of a
building in the learning area on the left, with options for building
names on the right. They had to recall the name of the building
and press the corresponding number key to identify its name

1https://dwz.cn/4T7ExxYL
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FIGURE 1 | The experimental area.

FIGURE 2 | The path through the environment is identified by the superimposed black arrows, and the 16 red ovals shows each landmark’s position (they are not
present during viewing).

as quickly as they could. The participants were then asked how
confident they were in their judgment, indicated on a scale from
1 (not confident) to 5 (very confident) (Figure 10).

Scene recognition and orientation judgment tasks (Figure 7)
were conducted with the aim to test configurational knowledge.
Sixteen trials were carried out in this task. First, a picture
of a building in the learning area was presented on the
left, with a direction comparison picture presented on
the right. The participants were instructed to identify the
scene, identify from what direction they were facing the

scene, and press the corresponding number key to identify
that direction as quickly as they could. The confidence
rating display (consistent with the rating display given in
the scene recognition task, Figure 10) was provided and
remained on the screen until the subject responded. This
task and the scene recognition task both measured scene
recognition knowledge; thus, they were presented to participants
in random order.

The configurational representation task (Figure 8) was
preceded by an instructional session and 20 trials, containing
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FIGURE 3 | The participants start from the starting point (see Figure 2), walk by 16 landmarks and back to the starting point (the ending point).

FIGURE 4 | The assisted 2D map.
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FIGURE 5 | One screenshot of displays of street view map learning.

FIGURE 6 | Scene recognition task: Task display.

two pictures of the layout of buildings in the learning area (one
being correct, the other being incorrect). The participants were
asked to judge which picture accurately depicted the relative
physical position of the places in the physical environment. The
confidence rating display was presented again, as it was in the
scene recognition task.

In the last test, the distance perception task (Figure 9), the
participants completed 20 trials. First, a picture was shown on
the screen, containing two segments. The upper segment (red)
represented the distance between two reference points on a graph,
and the lower line contained a slider that could be dragged left
or right by the participant. In correspondence to the upper line,
the participant controlled the slider by using the mouse to match
the actual distance of the two test locations in the graph. After
they pressed the “confirm” button, the same confidence rating
display was shown.

The study used a laptop (Asus A43S, 1366 × 768 pixels),
with a keyboard (Logitech K260) and a mouse. The experimental
program was developed by E-prime 2.0 and JavaScript to present
stimuli and collect data.

Procedure
The participants were given the instructions relevant to their
experimental condition and asked to read them carefully. The 2D
map-assisted street view map active learning group also needed
to familiarize themselves with the street view navigation system
before the start of the experiment tasks. Once the experimenter
verified that participants understood the tasks and interacted
properly with the navigation system, the learning tasks began.

The field navigation learning group followed the experimenter
to learn the experimental environment. The 2D map-assisted
field navigation learning group was provided with a paper map
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FIGURE 7 | Orientation judgment task: Task display.

FIGURE 8 | Configurational representation task: Task display.

(Figure 4) relative to the learning area within the environment
and followed the experimenter. Walking in the street view
environment, the street view map active learning group freely
explored it until they reached the next intersection, when the
experimenter told the participants to which direction they should
turn to avoid different wondering or learning time. The 2D street
view map passive learning group watched the video in a quiet,
non-experimental area.

During the learning process, the experimenter did not
communicate with the participants and trained only one
participant each time. The participants completed the learning
session within 25 ± 1.5 min, and then rested 10 ± 2 min
before returning to the lab for the test. Finally, after completing
the scene recognition and orientation judgment tasks, each
participant performed the configurational representation and
distance perception representation tasks.

RESULTS

Although different dependent variables might be correlated with
each other, the pre-data analysis showed that MANOVA was
not suitable for this study because of the following reasons: (1)
The dependent variables were not uniform for the four spatial
knowledge tasks. For the distance perception representation task,
the absolute difference of distance was used to substitute for the
accuracy. (2) The RT of the distance perception representation
task was markedly larger than those of the other three tasks,
which resulted in an extremely skewed distribution of the RT.
This condition may have violated the premise of a normal
distribution and led to a positive result of the Box’s M test
when we used MANOVA to analyze the two uniform dependent
variables (i.e., RT and confidence rating) among four spatial
knowledge tasks [F(45, 322,162) = 23.18, p < 0.001].
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FIGURE 9 | Distance perception representation task: Task display.

FIGURE 10 | Rating display.

Thus, we first performed single-factor ANOVA to explore the
impact of the learning methods on performance in each spatial
knowledge task. After that, three interested pairwise comparisons
were conducted to investigate the potential influence of
the 2D map, the physical/virtual interaction mode, and the
active/passive learning mode on the performance in spatial
knowledge measures.

IBM SPSS Statistics 21 was used to analyze the
experimental data.

Integrated Analysis of Each Dependent
Measure
The results of descriptive statistics and ANOVAs are shown in
Table 1. All the results of post hoc tests were Bonferroni corrected.

Scene Recognition Task
A significant main effect of learning methods was observed for
accuracy [F(3, 116) = 7.877, p < 0.001, η2

p = 0.169]. The post hoc
tests revealed that the average accuracy of the 2D map-assisted
field navigation learning group was significantly higher than
that of the field navigation learning group (p < 0.001). The
average accuracy of the street view map passive learning group
was significantly higher than that of the field navigation learning
group (p < 0.01). The average accuracy of the 2D map-assisted

field navigation learning group was significantly higher than that
of the street view map active learning group (p < 0.01). No other
significant effects were observed (Figure 11A). The following
equation roughly shows the relationship: 2D map-assisted field
navigation learning ' street view map passive learning > street
view map active learning' field navigation learning.

Learning methods had a significant main effect on confidence
ratings [F(3, 116) = 6.227, p < 0.01, η2

p = 0.139]. The post hoc tests
demonstrated that the confidence ratings of the 2D map-assisted
field navigation learning group were significantly higher than
those of the field navigation learning group (p < 0.001). The street
view map passive learning group had significantly higher scores
in judgment confidence compared with the field navigation
learning group (p < 0.05). Compared with the street view
map active learning group, the 2D map-assisted field navigation
learning group showed higher confidence scores (p < 0.01).
No other significant effects were observed (Figure 11B). The
following equation roughly shows a similar relationship: 2D
map-assisted field navigation learning ' street view map
passive learning > street view map active learning ' field
navigation learning.

No significant differences in RT were observed among
different learning methods (Figure 11C).

Orientation Judgment Task
The main effect of the learning methods was significant [F(3,

116) = 10.401, p < 0.001, η2
p = 0.212]. The post hoc tests

showed that the average accuracy of the 2D map-assisted field
navigation learning group was significantly higher than that of
the field navigation learning group (p < 0.001), the street view
map active learning group (p < 0.001), and the street view map
passive learning group (p < 0.001). No significant differences
were observed among the field navigation learning group, the
street view map active learning group, and the street view map
passive learning group (Figure 12A). The following equation
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TABLE 1 | Differences among learning methods in terms of performance on different spatial knowledge tasks (Mean ± SE).

Field navigation
learning (n = 30)

2D map-assisted
field navigation
learning (n = 30)

Street view map
active learning

(n = 30)

Street view map
passive learning

(n = 30)

F

Scene recognition task

Accuracy 0.67 ± 0.02 0.81 ± 0.02 0.71 ± 0.02 0.78 ± 0.02 7.877***

Reaction time (s) 9.47 ± 0.43 8.96 ± 0.47 10.43 ± 0.63 8.74 ± 0.43 2.280

Confidence ratings 3.87 ± 0.07 4.41 ± 0.08 3.96 ± 0.11 4.19 ± 0.12 6.227**

Orientation judgment task

Accuracy 0.44 ± 0.04 0.65 ± 0.03 0.41 ± 0.03 0.46 ± 0.04 10.401***

Reaction time (s) 14.50 ± 1.00 15.08 ± 0.84 15.43 ± 1.01 17.51 ± 1.13 1.734

Confidence ratings 3.39 ± 0.16 3.79 ± 0.12 3.33 ± 0.17 3.25 ± 0.16 2.454

Configurational representation task

Accuracy 0.80 ± 0.03 0.88 ± 0.02 0.74 ± 0.03 0.78 ± 0.03 4.575**

Reaction time (s) 8.95 ± 0.70 8.00 ± 0.51 9.71 ± 0.89 9.15 ± 0.69 1.024

Confidence ratings 4.27 ± 0.14 4.60 ± 0.09 3.92 ± 0.15 4.37 ± 0.12 4.744**

Distance perception representation task

Absolute difference of distance (cm) 8.31 ± 0.29 7.79 ± 0.25 8.49 ± 0.19 8.34 ± 0.28 1.406

Reaction time (s) 151.48 ± 6.50 159.17 ± 7.85 150.09 ± 7.52 150.38 ± 6.82 0.358

Confidence ratings 2.85 ± 0.10 3.24 ± 0.10 2.80 ± 0.16 3.00 ± 0.15 2.247

**p < 0.01, ***p < 0.001. F indicates the F-value of the main effect of learning methods.

FIGURE 11 | Indexes in scene recognition task under four learning methods. (A) Accuracy, (B) confidence ratings, (C) reaction time (s). *p < 0.05; **p < 0.01;
***p < 0.001.

roughly shows the relationship: 2D map-assisted field navigation
learning > street view map passive learning ' field navigation
learning' street view map active learning.

No significant differences were observed in the confidence
ratings and RT among all groups (Figures 12B,C).

Configurational Representation Task
The main effect of the learning methods was significant [F(3,
116) = 4.575, p < 0.01, η2

p = 0.106]. The post hoc test results
showed that the average accuracy of the 2D map-assisted field
navigation learning group was significantly higher than that
of the field navigation learning group (p < 0.05), the street
view map active learning group (p < 0.01), and the street
view map passive learning group (p < 0.01). No significant
difference in accuracy was observed among the field navigation
learning group, the street view map active learning group, and

the street view map passive learning group (Figure 13A). The
following equation roughly shows the relationship: 2D map-
assisted field navigation learning > field navigation learning
' street view map passive learning ' street view map
active learning.

In terms of confidence ratings, ANOVA revealed that the main
effect of the learning methods was significant [F(3, 116) = 4.744,
p < 0.01, η2

p = 0.109]. The post hoc test showed that the
confidence ratings of the 2D map-assisted field navigation
learning group and the street view map passive learning group
were significantly higher than that of the street view map active
learning group (p < 0.001; p < 0.05). No other significant effects
were observed (Figure 13B). The following equation roughly
shows the relationship: 2D map-assisted field navigation learning
' street view map passive learning > field navigation learning'
street view map active learning.
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FIGURE 12 | Indexes in orientation judgment task under four learning methods. (A) Accuracy, (B) confidence ratings, (C) reaction time (s). ***p < 0.001.

FIGURE 13 | Indexes in configurational representation task under four learning methods. (A) Accuracy, (B) confidence ratings, (C) reaction time (s). *p < 0.05;
**p < 0.01; ***p < 0.001.

No significant differences in RT were observed among the
different learning methods (Figure 13C).

Distance Perception Representation Task
No main effect of different learning methods was observed on the
absolute difference of distance, confidence ratings, and RT in the
distance perception representation task (Figure 14).

Interested Pairwise Comparisons
2D Map-Assisted Learning Versus Unassisted
Learning
The main purpose of the comparison of the performance of the
field navigation learning group and the 2D map-assisted field
navigation learning group is to investigate the role of 2D maps
in the process of acquiring spatial knowledge.

In terms of accuracy, the 2D map-assisted field navigation
learning group showed significantly higher scores than the field
navigation learning group [t(58) = 4.829, p < 0.001, d = 1.25;
t(58) = 4.829, p < 0.001, d = 1.25; t(58) = 2.413, p < 0.05,
d = 0.62]. No significant differences were observed in terms of
RT between the two groups [t(58) = 0.447, p > 0.05, d = 0.11;

t(58) = 0.447, p > 0.05, d = 0.11; t(58) = 1.114, p > 0.05, d = 0.29;
t(58) = −0.755, p > 0.05, d = 0.19]. Regarding the subjective
evaluation of the participants in the tasks, the 2D map-assisted
field navigation learning group showed significantly higher scores
in judgment confidence compared with the field navigation
learning group [t(58) =−2.002, p = 0.050, d = 0.52; t(58) =−2.002,
p = 0.050, d = 0.52; t(58) = −1.941, p = 0.057 > 0.050,
d = 0.50; t(58) = −2.763, p < 0.01, d = 0.7]. However,
absolute difference of distance showed no significant differences
in the distance perception representation task [t(58) = 1.356,
p > 0.05, d = 0.35].

Virtual Learning Versus Field Navigation Learning
Differences in spatial knowledge acquisition between the 2D
map-assisted field navigation group (i.e., physical interaction)
and the 2D map-assisted street view map learning group (active)
(i.e., virtual interaction) were compared to examine whether
and to what extent physical interaction can be replaced by
virtual interaction.

Significant differences were observed in terms of accuracy
between the 2D map-assisted field navigation learning group
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FIGURE 14 | Indexes in distance perception representation task under four learning methods. (A) Accuracy, (B) confidence ratings, (C) reaction time (s).

and the street view map learning, and the former performed
better than the latter [t(58) = 3.240, p < 0.001, d = 0.84;
t(58) = 5.555, p < 0.001, d = 1.43; t(58) = 4.018, p < 0.05,
d = 0.62]. In terms of RT, no significant differences were
found between the two groups [t(58) = −1.755, p > 0.05,
d = 0.46; t(58) = 0.118, p > 0.03, d = 0.11; t(58) = −1.680,
p > 0.05, d = 0.43; t(58) = 0.835, p > 0.05, d = 0.22]. With
respect to confidence ratings, the 2D map-assisted field
navigation learning group had significantly higher scores
in judgment confidence compared with the street view
map learning group [t(58) = 3.346, p < 0.01, d = 0.86;
t(58) = 2.203, p < 0.05, d = 0.57; t(58) = 3.763, p < 0.001,
d = 0.97; t(58) = 2.299, p < 0.05, d = 0.59]. A significant
effect was also found in the absolute difference for the
distance task [t(58) = −2.227, p < 0.05, d = 0.57], with
a lower error in the 2D map-assisted field navigation
learning group.

Passive Learning Versus Active Learning
The influence of learning modes (active learning or
passive learning) in street view map learning on spatial
knowledge acquisition was investigated by comparing
the 2D map-assisted street view map learning group
(active) and the 2D map-assisted street view map learning
group (passive).

No significant differences were observed in terms of accuracy
between the active learning group and the passive learning group
[t(58) = −1.914, p > 0.05, d = 0.49; t(58) = −0.955, p > 0.05,
d = 0.25; t(58) = −0.848, p > 0.05, d = 0.22]. RT had a significant
effect in the scene recognition task [t(58) = 2.209, p < 0.05,
d = 0.57], with the active learning group spending more time
on the task, but differences in the other three tasks did not
reach statistical significance [t(58) = −1.643, p > 0.05, d = 0.42;
t(58) = 0.505, p > 0.05, d = 0.13; t(58) = −0.028, p > 0.05,
d = 0.01]. A significant effect was also observed in terms of
accuracy, with the active learning group receiving lower scores
[t(58) =−2.320, p < 0.05, d = 0.60] and no significant differences
emerging in the remaining three tasks [t(58) = −1.421, p > 0.05,
d = 0.37; t(58) = 0.348, p > 0.05, d = 0.09; t(58) = −0.866,
p > 0.05, d = 0.22]. Regarding the absolute difference of
distance task, no significant effect was observed [t(58) = −0.451,
p > 0.05, d = 0.12].

DISCUSSION

In summary, our results showed the observable impact
of learning methods on spatial knowledge acquisition. The
integrated analysis revealed that the 2D map-assisted field
navigation learning is the relatively optimal learning method
for spatial knowledge acquisition, followed by 2D map-assisted
street view map passive learning. However, the effect of 2D map-
assisted street view map active learning and field navigation
learning is relatively inconspicuous.

Moreover, another issue is that the internal relationship
among these four learning methods may not be simply parallel.
For example, the accuracy and confidence ratings for the scene
recognition task showed that the learning performance with
street view map passive learning was close to that with 2D
map-assisted field navigation learning, especially in landmark
knowledge, and the two learning groups both performed better
than the field navigation learning group. These results indicate
that virtual learning is as suitable as physical learning is for
acquiring analogous landmark knowledge. However, because
two potential variables (i.e., virtual learning/physical learning,
active learning/passive learning) exist between street view map
passive learning and 2D map-assisted field navigation learning,
concluding which factor is in effect is difficult. Therefore, on
the basis of the results of pairwise comparisons, we specifically
analyze the roles of different potential variables in acquiring
spatial knowledge.

Role of 2D Maps
Previous studies showed that maps play an important role in
improving wayfinding performance. However, experiments of
field navigation learning often examine whether individuals can
find a route to their destination while failing to investigate
the role of maps in the acquisition of spatial knowledge. Our
findings imply that 2D map assistance in field navigation learning
helps individuals acquire both configurational knowledge and
landmark knowledge.

Rossano et al. (1999) separately analyzed the advantages of
field navigation learning and map learning. They found that the
field navigation learning group performed significantly better
than the map learning group in route distance estimation,
wayfinding, and other tasks, while the map learning group
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performed better than the field navigation learning group in
line distance estimation and spatial orientation. In our study,
results showed that the accuracy of the 2D map-assisted field
navigation learning group was significantly higher than that of
the field navigation learning group in scene recognition tasks,
orientation judgment tasks, and configurational representation
tasks. In terms of confidence ratings for each test, the effect was
significant or marginally significant, with higher scores in the 2D
map-assisted field navigation learning group. Similar results were
found in their confidence ratings of correct answers, which means
that the global map was able to effectively enhance participants’
self-confidence in spatial learning.

The results of this comparison are also consistent with
the findings of existing studies (Thorndyke and Hayes-Roth,
1982; Richardson et al., 1999). In the field learning group,
with a limited scope of observation, participants could develop
memory from a local perspective only; the development of
configurational knowledge requires mental integration of
numerous continuous scenes from different perspectives,
promoting high-level cognitive processing. Traditional 2D maps
help learners understand the overall layout of an environment
and gain spatial knowledge (e.g., spatial orientation and distance
between landmarks). Arguably, a 2D map is an irreplaceable tool
in terms of learning new environments.

The 2D map-assisted field navigation learning combines
the advantages of field navigation learning and 2D map
learning to compensate for their respective disadvantages. This
feature enables individuals to develop not only configurational
knowledge, but also knowledge of the representation of
landmarks, routes, and other details. One’s environment can be a
rich source of information, which means that the memory burden
of learners can be heavy. A major challenge is that, through
field navigation learning, learners can only code small pieces
of spatial knowledge and cannot understand spatial layout as a
whole; that is, configurational knowledge is poor. By comparison,
2D map learning lacks a specific sense of real environment,
and representation of environmental details may be incomplete.
Furthermore, materials, presentation ways, and other factors may
influence the learning process with 2D maps.

While the two groups learned the environment within
an identical time range (25 min), the 2D map-assisted field
navigation learning group outperformed the field navigation
learning group in terms of accuracy. Therefore, we conclude
that 2D map-assisted field navigation learning is superior to
field navigation learning in helping learners acquire spatial
knowledge. In addition, our results prove the importance of
maps’ role in the learning process, as they are particularly useful
to learners for obtaining configurational knowledge and forming
configurational representation more completely.

Influence of Interaction Modes (Virtual
Interaction or Physical Interaction)
Past studies surrounding these tasks focused on the difference in
the performance of groups under different virtual environmental
conditions and/or the comparison between transitioning from
virtual environmental learning to field navigation learning and

single field navigation learning. Clearly, a comparative study
of the learning in VEs and physical environments is needed.
One purpose of our experiment was to determine the difference
between the two modes of interaction (virtual interaction or
physical interaction) or learning and to verify whether virtual
interaction can replace physical interaction. Our results confirm
that 2D map-assisted field navigation learning showed an obvious
advantage in accuracy and confidence ratings of all tasks.

The effect of virtual field navigation learning is largely
determined by experimental equipment and the complexity
of a new environment. Higher-immersion environments are
conducive to learning, and lower-immersion environments limit
learners’ acquisition of spatial knowledge. Czerwinski et al. (2002)
found that when using a display device with a larger view range,
female participants achieved similar navigation performance as
male participants, thereby showing that the gender bias found in
past reports disappeared. Boumenir et al. (2010) compared the
learning effects of virtual navigation, physical navigation, and 2D
maps and found that the physical navigation group could identify
the same route multiple times, regardless of whether the route
was simple or complex, while the virtual navigation group failed
to reidentify complex routes. Therefore, because virtual display
technology clearly presents limitations, differences between VE
and physical environment learning lead to differences in spatial
representation formed from either learning type. In addition,
the effect of virtual field navigation learning is closely related to
individual experiences (such as 3D game experiences), thereby
affecting wayfinding and spatial representation processes.

Therefore, we argue that the main reasons for the virtual
interaction group’s poorer performance are as follows:

(1) Our measurement methods differed greatly from those
used in previous studies. Several cognitive factors were
analyzed to identify the aspect that constituted the basis
of spatial knowledge, and we argue that the validity of our
evaluation is greater by comparison.

(2) The combination of 2D maps and the physical
environment provided richer learning cues to learners. In
the 2D map-assisted field navigation learning group,
the participants could acquire survey knowledge
through the map and through the scenes of different
perspectives provided by the physical environment. More
learning cues were available to the 2D map-assisted
field navigation learning group; thus, the performance is
correspondingly higher.

(3) The scale of the learning environment and the complexity
of its information can impact learning. In large-scale
and high-complexity environments, virtual street view
learning cannot facilitate the acquisition of complete
spatial knowledge, but small-scale and low-complexity
environments are capable of doing so.

Virtual street view learning ultimately cannot replace field
navigation learning. Even with the aid of 2D maps, virtual
learning did not engender the same level of performance in
tasks than field navigation learning did. Still, most researchers
believe that VE is a good substitute for physical environments,
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and learning in VEs is as effective as in actual physical
environments (Ruddle et al., 1997; Ohuchi et al., 2006; Lahav and
Mioduser, 2008; Münzer and Zadeh, 2016). Virtual interaction
(such as virtual tours) allows learners to navigate an unknown
environment without having to go outdoors. Virtual street view
map learning integrates the features of 2D map learning and field
navigation learning. With the use of 3D technology, it retains a
specific image of the physical environment while equipped with
2D maps. When learning the environment, users can adjust the
scale of the 2D map or street view map at any time. This condition
means that virtual interaction meets the needs of different
learners. Virtual learning also excludes extraneous variables
of field navigation learning, as the experimental environment
can be artificially set up according to the purpose of study,
thereby greatly reducing time, labor, and other costs (Snopková
et al., 2019). Using a virtual model of the environment, Münzer
and Zadeh (2016) efficiently investigated spatial knowledge
acquisition in different training conditions. Moffat et al. (1998)
used a 3D virtual environment to quickly explore the influence
of sex differences on spatial ability. Overall, we can conclude that
VEs give researchers new insight into what is happening during
the process of wayfinding. Therefore, with respect to technology
development, virtual interaction may gradually replace physical
interaction. Future studies should address how we may narrow
the immersion gap between virtual interaction and physical
interaction and mitigate the disadvantages of virtual interaction.

Our results indicate that different modes of interaction greatly
influenced the acquisition of spatial knowledge. For large-
scale environments, field navigation learning is arguably more
conducive to the acquisition of spatial knowledge. Meanwhile,
the generalizability of our results is limited in the sense that
this study was largely restricted to tasks and devices. With
the popularization of VEs, virtual interaction will inevitably
eventually replace physical interaction in the future. We argue
that our focus should be on improving learning efficiency in VEs.

Differences Between Active Learning
and Passive Learning
The main difference between passive learning and active learning
was that the former involved no interaction, whereas the
latter was interactive. Although the results were not significant,
passive learning still tends to be superior to active learning.
The only exception in this part of the study occurred with
the scene recognition and direction judgment tasks, in which
passive learning did not yield better learning outcomes than
active learning. Orientation judgment requires perspective
transformation, while virtual learning lacks the mental and
physical manipulation that field navigation learning allows
(including motion control, proprioception, spatial updating,
etc.). Without active interaction, the participants encountered
difficulty engaging in mental manipulation, such as perspective
transformation, during learning. This finding may explain why
the passive learning group did not perform as well as the active
learning group in these tasks. Overall, our results show no
significant difference between the two learning methods in terms
of influencing participants’ acquisition of spatial knowledge,

and that, even in the scene recognition and configurational
representation tasks, the passive learning group’s performance
was superior to the active learning group’s performance.

These findings contradict Meade et al. (2019) assertion that, in
VEs, active learning is more likely to result in higher accuracy
of spatial memory than passive learning and that this effect
is more significant in older adults. However, given the large
gap between Meade et al. (2019) study and this experiment,
new data may have affected our understanding of the learning
environment and knowledge measurement paradigm. Previous
research (Hazen Nancy, 1982; Peruch et al., 1995; Chrastil and
Warren, 2013) contended that active learning groups outperform
passive learning groups in wayfinding performance. One possible
reason for this inconsistency is that these studies directly assessed
the impact of learning modes on wayfinding ability rather than
on spatial knowledge.

This comparison implies that interaction mode (passive
learning or active learning) has little effect on the acquisition of
spatial knowledge using street view maps. We argue that the main
reasons for such results are as follows:

(1) The attention assignment in the two groups was different.
The participants in the active learning group needed
to assign part of their attention to the operation
rather than the exploration and memorization process.
This condition may have disrupted spatial learning
performance. Comparatively, the passive learning group
did not need to operate a map and simply watched the
assigned video. This approach likely optimized the passive
learning group’s input, reducing distractions and helping
them to better develop spatial representation.

(2) Both active learning and passive learning were equipped
with 2D digital maps, which may have caused an excessive
contribution of spatial parallel processing in working
memory. The contribution of mental manipulation in
active learning is not very large, arguably leading to a
disappearance of the SPT effect. Coluccia et al. (2007)
showed that mental manipulation in working memory does
not strongly contribute to active learning primarily because
maps that provide parallel information about spatial layout
play a fundamental role in learning.

Overall, the difference between passive learning and active
learning is not considerably large, and some current research even
argues that passive learning is better than active learning (Allison
and Redhead, 2017). Our findings indicate that efficient passive
learning using street view maps is possible and that passive
learning is a viable replacement for active learning.

LIMITATION AND FUTURE WORK

In terms of the limitations of our study, the process of field
navigation learning presented challenges in terms of different
weather conditions, car traffic, and other uncontrollable factors
that affected the participants’ performance. Future studies
should consider how such extraneous factors can be reduced.
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In addition, the sense of dynamic change of the street view
maps was not strong in virtual street view learning. Therefore,
intelligent virtual reality systems that can accommodate this
phenomenon should be considered in future research. Moreover,
the 2D map used in the virtual street view learning is virtual,
which may be different from the physical 2D map used in field
navigation learning. Therefore, evaluating whether a 2D map is
needed and whether a difference exists between having a virtual
2D map or a physical 2D map coupled with the virtual street view
map in the future are meaningful.

Another potential issue may be the experimental design.
We did not use a within-subjects design. If the within-subjects
design was chosen, two coessential routes need to be selected
to avoid the learning effect. Controlling the extraneous variables
between two real routes is difficult. However, a within-subjects
design may be more suitable to control the individual difference
in spatial knowledge and observe more prominent differences
among different learning methods. Although many studies
(Meilinger et al., 2006; Parush et al., 2007) used between-
subjects design while not measuring individual differences in
spatial skills (our research did the same; an equal number of
participants were assigned randomly to one of the conditions,
which may decrease the variation among different groups),
spatial ability measures of participants are needed to control
the individual difference in spatial knowledge, thereby making
the results more accurate and convincing. Therefore, a within-
subjects design with counterbalanced learning method sequences
is worth considering in the future.

Future studies should allow active learning groups to engage in
route decision-making while controlling consistent visual input
to provide more adequate active learning conditions (Guo et al.,
2019). Virtual learning devices that provide physical information,
such as omnidirectional treadmills, should also be considered for
use in studies to verify the effect of physical information on spatial
knowledge acquisition.

CONCLUSION

In summary, this study compared the impact of virtual
learning and field navigation learning on spatial knowledge
acquisition, as well as the differences between active learning
and passive learning by using virtual street maps. For the
measurement of spatial knowledge, a set of dimensions
were presented, which measured spatial knowledge such
as scene recognition, orientation judgment, configurational
representation, and distance representation. This study found
that passive learning can replace active learning using street
view maps, which has practical value for spatial learning and
related research.

The following conclusions were drawn from this study:

(1) 2D map-assisted field navigation learning yields better
outcomes than field navigation learning, which means that
2D maps play a significant role in facilitating individuals’
acquisition of configurational knowledge.

(2) 2D map-assisted field navigation learning yields better
outcomes than active learning using street view

maps. Physical interactive learning is also superior
in terms of acquisition of landmark knowledge and
configurational knowledge.

(3) No significant difference exists between passive learning
and active learning using street view maps. When high-
quality learning materials are provided, passive learning
facilitates the acquisition of spatial knowledge more easily
than active learning.

Field navigation learning is still the best way to acquire
spatial knowledge. However, it entails large costs, and its
complex physical environment causes logistical challenges.
Virtual learning, such as street view map learning, alleviates those
challenges. Furthermore, with high-quality VEs, individuals can
form complete spatial knowledge that is close to the knowledge
they would obtain via navigation learning. However, the cost of
VE development is high and virtual active learning is limited
by the form of learning, that is, a device can be used by
only one learner in a certain period of time. Therefore, this
learning method may not be suitable for a large number of
learners to obtain spatial knowledge in a short period of time.
Our findings show that providing learners with navigational
videos of environments is the most economical and efficient
method of spatial learning, especially when training a large
number of learners.
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