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Abstract

Information capture by photoreceptors ultimately limits the quality of visual processing in the brain. Using conventional
sharp microelectrodes, we studied how locust photoreceptors encode random (white-noise, WN) and naturalistic (1/f
stimuli, NS) light patterns in vivo and how this coding changes with mean illumination and ambient temperature. We also
examined the role of their plasma membrane in shaping voltage responses. We found that brightening or warming increase
and accelerate voltage responses, but reduce noise, enabling photoreceptors to encode more information. For WN stimuli,
this was accompanied by broadening of the linear frequency range. On the contrary, with NS the signaling took place within
a constant bandwidth, possibly revealing a ‘preference’ for inputs with 1/f statistics. The faster signaling was caused by
acceleration of the elementary phototransduction current - leading to bumps - and their distribution. The membrane
linearly translated phototransduction currents into voltage responses without limiting the throughput of these messages.
As the bumps reflected fast changes in membrane resistance, the data suggest that their shape is predominantly driven by
fast changes in the light-gated conductance. On the other hand, the slower bump latency distribution is likely to represent
slower enzymatic intracellular reactions. Furthermore, the Q10s of bump duration and latency distribution depended on
light intensity. Altogether, this study suggests that biochemical constraints imposed upon signaling change continuously as
locust photoreceptors adapt to environmental light and temperature conditions.
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Introduction

Sensory systems face the challenge of reliably encoding the

outside world as neural signals in the face of an ever-changing

environment. A classical example is the light adaptation of the

visual system over a vast range of intensities - the ability to

‘disregard’ redundant mean illumination so that contrast patterns

can be encoded within the limited output range of neurons [1–3].

Insect compound eyes, which allow stable intracellular recordings

from their visual neurons in the presence of intact circuitry and

optical structures, make particularly useful models to study light

adaptation [4–14], providing the opportunity to investigate how a

sensory system extracts information from its surroundings, and

how this function is optimized to environmental changes

[2,3,9,15,16].

Photoreceptors constitute the sensory surface of insect com-

pound eyes, the retina. In these cells, light patterns are encoded

into graded membrane potentials for transmission through the first

visual synapse [4,5,9,10,13–15,17]. This starts a parallel flow of

signals that is relayed several times [18,19] before this neural

image reaches the brain. The quality of the neural image at the

photoreceptor level is critical to the animal’s survival, as any

higher-order processing by the brain ultimately relies on this

representation of the visual scenery [1,2].

In insect photoreceptors the absorption of a photon by

rhodopsin leads to the initiation of ionic currents, and these

currents elicit changes in the membrane potential [12]. The

voltage signal is therefore co-processed by the phototransduction

cascade and the membrane [11], both having their properties

dynamically regulated [7,8]. The resulting plastic, adaptive ‘gain

control’ has evolved to work efficiently, despite several limiting

factors. The following constraints are of particular relevance: (1)

the noisiness of both the light input, such as photon shot-noise and

optical blur, and the cellular machinery, such as chemical reaction

dynamics and ion channel kinetics; (2) the vast range of light intensities

to which the animal is exposed, threatening to saturate the small

operational voltage range of a photoreceptor; and (3) the ambient

temperature, which acutely affects the speed of intracellular reactions

as most insects are poikilothermal. Our aim in this study is to

quantify how locust photoreceptors encode visual information in

vivo and how this process is affected by these three major

parameters: noise, light background (BG) and temperature.

The photoreceptors of the desert locust (Schistocerca gregaria) offer

several advantages in investigating how a sensory system reliably

encodes information in a changing, noisy environment. First, the

ecology and behavior of locusts is well-characterized [20]. In their

natural habitat in Africa, these animals are active both by day and

night. Therefore, locusts not only have to adapt to very different

light BGs but they also face large temperature changes, making it

biologically meaningful to investigate how these factors impact the

way photoreceptors encode contrast signals. Secondly, their

relatively large photoreceptors allow stable, long-lasting intracel-

lular recordings [21–24]. One can therefore reliably repeat

the experiment in the same cell at different temperatures and

light BGs. Thus, we can unambiguously distinguish between

variability attributable to the changing mean illumination and/or

ambient temperature and variability attributable to cell-to-cell

differences.
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In this study, we quantify the response dynamics of locust

photoreceptors to random (white-noise, WN) and naturalistic (1/f,

NS) contrast stimuli at different light BGs and temperatures. We

also investigate how their membrane properties change with these

conditions by injecting current waveforms intracellularly. This

combined approach allows us to elucidate the respective roles and

intricate tuning of the phototransduction cascade and plasma

membrane in shaping the voltage responses to light contrasts. We

show that the temperature-dependence of different biochemical

processes involved varies with light adaptation. Nevertheless, we

also find that the locust photoreceptors are able to produce a

remarkably invariable neural representation of naturalistic light

patterns, irrespective of the prevailing light and temperature

conditions. Based on our results, we reason that temporal input

patterns continuously tune the interactions between the fast

membrane reactions (bump waveform) and the slower intracellular

reactions (bump latency distribution), enabling the speed of the

voltage output to encode contrast values of the input. By

accurately encoding the naturalistic contrast input into the rate

of change of voltage responses (and so generating an invariable

bandwidth for NS), the locust photoreceptors provide robust

neural representations of the natural environment already at the

first stage of neural information processing.

Materials and Methods

Preparation
Adult female locusts (Schistocerca gregaria) were reared in the

Department of Zoology in the University of Cambridge. The

culture contained 500–1,000 insects per 45650650 cm rearing

units and was maintained under an 18 h:6 h light:dark cycle. The

temperature during the light period was 37uC and during the dark

period 25uC.

Dissection: the pronotum was carefully removed, the head cut

off and its back sealed with beeswax to prevent it from drying. The

antennae and mouthparts were delicately removed to avoid

muscular saccades. The head was then fixed with beeswax to the

open end of a conical holder, mounted on top of a ceramic

recording platform. Two openings were cut on the head with a

sharp razor edge. The first one, a size of a few ommatidia, was

made on the dorsal cornea of the left eye and sealed with Vaseline

to prevent the eye from drying. The second, a larger one on the

top of the head, was used to implant the indifferent electrode.

Despite the dissection, the health of the preparation was excellent,

providing with very stable recordings. If it were correctly sealed,

the head could survive many hours - when left overnight the

preparation was still alive; it responded electrically to light the

following day. All the experiments were realized during the mid-

afternoon, when the animals were in their ‘day state’ [25–27].

Temperature control
The hollow copper core of the holder was shielded within a

ceramic insulator and fitted tightly onto a Peltier element. Heat

sink paste was used to enhance heat conduction. Underneath the

Peltier element, a large copper rod embedded in ice functioned as

a heat sink. The temperature of the head was measured with a

thermocouple, mounted in the copper core next to the head. A

custom-designed power source, controlled by the feedback from

the thermocouple, was used to drive the Peltier element. The room

temperature was monitored with a separate thermocouple.

Control measurements from the head revealed that its tempera-

ture depended linearly on the temperature of the copper holder at

a given room temperature. The actual temperature of the head

was estimated from a reliable calibration, using the measured

temperature values of the thermocouple at the constant room

temperature of 19uC (constantly monitored and controlled by air

conditioning). All the experiments were realized with an actual

temperature of the head ranging from 13 to 25uC. Although the

behaviorally relevant temperatures for Schistocerca gregaria certainly

extend to higher temperatures, stabilizing the preparation

temperature with such a differential from the room temperature

proved technically difficult. This range of temperature was

nevertheless sufficient to accurately estimate Q10 values (the rate

of change as a consequence of increasing the temperature by

10uC) for various parameters.

Microelectrodes and cell selection
The microelectrodes were pulled with a horizontal laser puller

(P-2000; Sutter Instrument Company) from filamented quartz

glass capillaries (Sutter, with an inner and outer diameter of 0.5

and 1.0 mm, respectively). Electrodes were back-filled with 3 M

KCl, having resistance between 80 and 180 MV in the tissue.

Microelectrodes were mounted on a manual micromanipulator

(HB3000R; Huxley Bertram) and entered the compound eye

through the previously prepared small hole. A blunt reference

microelectrode, filled with locust Ringer’s containing in mM: 10

TES buffer, 140 NaCl, 10 KCl, 4 CaCl2, 4 NaHCO3, 6

Na2HPO4, adjusted to pH 6.8 with NaOH/HCl [28], entered

the locust’s head through the other opening.

Membrane potentials of green-sensitive R1–R6 photoreceptor

cells [29,30] were recorded with a switched-clamp amplifier SEC-

10L (NPI Electronic) operating in the compensated current-clamp

mode. A successful photoreceptor penetration was seen as a 60–

80 mV drop in the electrode potential followed by vigorous

responses to dim pulses. Before the experiments, the cells were

allowed to dark-adapt and seal properly. Only data from

photoreceptors with saturating impulse responses $40 mV and

dark resting potential #260 mV were used in the analysis. In this

article, we exhibit our findings using two exemplary photorecep-

tors. Similar results were obtained from other photoreceptors

(n = 15) that endured long-lasting recordings. These data are

presented in the Supporting Information. A first photoreceptor is

used throughout Materials and Methods to illustrate the way data

was analyzed (Figs. 1 to 3) at a constant temperature (19uC). The

second one is used throughout the article (Figs. 4 to 12). Because of

its exceptional stability, we were able to use this cell in many

separate experiments and so to explore how light adaptation

occurs over a vast range of background intensities and temper-

atures (from 17 to 23uC). For these experiments we used both

white-noise (WN) and naturalistic stimulation (NS), and were able

to further investigate how the membrane properties of the cell

varied at each experimental condition. Additionally, we made

recordings from many other photoreceptors (.30 of outstanding

quality) over a smaller range of experimental conditions. These

recordings were consistent with the general framework presented

here. Because we believe that intrinsic functional variability

between photoreceptors could be an important feature of locust

vision (see Discussion), we do not show averaged quantities. Data

from these cells is shown as Q10 values in Table 1 and detailed

further in Table S1.

Recording procedures
The stimulus generation, data acquisition, and signal analysis

was performed by a custom written program (BIOSYST, � M.

Juusola, 1997–2008) based on the MATLAB programming

language (Mathworks) using an interface package for

National Instruments boards (MATDAQ, � H.P.C. Robinson,

Locust Photoreceptors
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1997–2008). More details on data acquisition and analysis are

given in Juusola and Hardie [7] and Juusola and de Polavieja [6].

Light stimulation
Light stimuli were provided with a green high-intensity light-

emitting diode (Marl Optosource) driven by a custom-built LED

driver. The light output of the LED was monitored continuously

with a pin diode circuit. The LED light output was attenuated by

neutral density filters (Kodak Wratten) to provide five illumination

levels, or adapting backgrounds; each one log-unit apart, indicated

as BG0 (107 photoconversions s21), BG-1, BG-2, BG-3, and BG-4.

The light output range was calibrated by counting the number of

single photon responses, bumps, [22] during prolonged dim

illumination [31]. A Cardan arm system allowed free movements

of the light source at a constant distance (85 mm) from the eye’s

surface with the light source subtending an angle of ,2u,
comparable to the reported values for the angular sensitivity of

locust photoreceptors (from ,1.2u when light-adapted to ,2.6u
when dark-adapted, [24]).

White-noise stimuli (WN) were generated using MATLAB

functions. These pseudorandom contrast modulations had Gauss-

ian amplitude distributions and were spectrally flat up to a chosen

cut-off frequency (an example can be seen below, in Fig. 5J). WN

stimuli with different cut-off frequencies were used in preliminary

experiments (from 10 Hz to 10 kHz, at BG0 in the same cell),

causing similar changes in the responsiveness and information

transfer of the photoreceptors as reported earlier with blowfly

photoreceptors [6]. We used 1s-long WN light stimuli and selected

200 Hz as the cut-off frequency, as this covered the range of

frequencies locust photoreceptors could see (Fig. 1) without

allocating much power on light patterns that are too fast for these

cells to follow. 1 s-long naturalistic stimulus (NS) sequences were

extracted from patterns downloaded from the van Hateren

database [10]. They had a characteristic 1/f-type spectrum, a

non-Gaussian distribution (an example can be seen below, in

Fig. 9J), and were presented to the eye at 1 kHz. Four different NS

patterns were first used to control that the results were

independent of some peculiarities in the intensity variations but

rather depended on the global statistics of the stimuli. The total

power of the chosen NS pattern (the one that elicited the largest

responses) and the total power of the WN stimulus pattern were

very similar (differed by ,4%). Therefore, any observed difference

could be attributed to differences in the statistical properties of the

stimuli.

Preliminary results (Figs. 1–3) indicated that three adapting BGs

were representative of three different working regimes of the

photoreceptor. These BGs are named as ‘dim’ (BG-3), ‘mid’ (BG-

2), and ‘bright’ (BG0). Light contrast (c) was defined as a change in

the light intensity (DY) divided by the mean light BG (Ymean):

c~
DY

Ymean

ð1Þ

Figure 1. Signal and noise analysis of the voltage responses to a white-noise (WN) light stimulus. A, A pseudorandom light intensity
pattern superimposed on a constant light background provided a WN contrast stimulus that was presented 30 times to the cell. The evoked
responses are averaged to give the voltage signal and the remaining differences are the noise traces (A, scale bars: 500 ms, 5 mV). B, The
corresponding power spectra are calculated for each of the five light BGs. Note that Æ|S(f)|2æ, Æ|N(f)|2æ, and Æ|r(f)|2æ are displayed using the same scale, in
mV2 Hz21. Æ|C(f)|2æ is in c2 Hz21. C, These changes can be further quantified by computing the signal-to-noise ratio spectrum, SNR(f), and the cross-
spectrum between the signal and the stimulus. These two spectra are the starting points to quantify the properties of the photoreceptor voltage
responses (Figs. 2 and 3), the SNR(f) being used for the analysis of the coding properties (Fig. 2) and the cross-spectrum for the analysis of the transfer
properties (Fig. 3). ‘Power’ on the ordinate scale of the cross-spectrum means here c mV Hz21.
doi:10.1371/journal.pone.0002173.g001

Locust Photoreceptors
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For white-noise contrast modulation, DY was defined as the SD of

the stimulus modulation. For naturalistic stimulation, the read-out

values of the pin diode circuit monitoring the LED output were

used without any calibration. These data are therefore presented

using arbitrary units (a. u.) instead of contrast units. For direct

comparison with WN, the NS data could be re-scaled in term of

contrast units, but as its probability distribution departs completely

from Gaussian, the SD of such a distribution has little significance.

Alternatively, the NS values could be normalized by setting the

lowest bound (when the diode is in effect off) to 0 and its highest

Figure 2. Voltage responses to a WN light stimulus: analysis of
the coding properties of the photoreceptor. Analysis of the
coding properties of the photoreceptor, based on the SNR(f) (Fig. 1C,
right). A, The total signal power increases ,40 times from BG-4 to BG0.
The variance calculated in the time domain, sS

2, (not shown) is virtually
identical, verifying the calculations. B, The total noise power is reduced
,2 times from BG-4 to BG0. Here again it is identical to the noise
variance calculated in the time domain, sN

2, (not shown). C, Information
in the frequency domain is calculated from SNR(f) at each frequency as
log2[SNR(f)+1]. All the information resides in a frequency range below
100 Hz. This information is integrated to give the information transfer
rate (Shannon’s formula), D, which increases ,11 times from BG-4 to
BG0. The ratio of the signal and noise variances, SNRt (not shown) scales
well with the information transfer rate. This highlights that the
information transfer rate is a measure of the number of the ‘coding
states’ used by the cell during a second. These states are the different
voltage levels confined within the used voltage range (which is , signal
as sS

2..sN
2) and separated one from another by the ‘resolution’ of

the system (noise). From information transfer rate estimates we define
three relevant backgrounds: BG-3, named as ‘dim’ (,100 bits/s); BG-2 as
‘mid’ (,200 bits/s) and BG0 as ‘bright’ (,300 bit.s21). E, Linear
coherence, clin, is calculated from SNR(f). At dim BGs the stimulus is
itself noisy (attributable to the photon shot-noise), and so is the cell’s
behavior. At bright BGs the cell’s response (assuming linearity, see
Materials and Methods) is remarkably noise-free (clin.99% at BG0) up
to ,30 Hz.
doi:10.1371/journal.pone.0002173.g002

Figure 3. Voltage responses to a WN light stimulus: analysis of
the transfer properties of the photoreceptor. Analysis of the
transfer properties of the photoreceptor, based on the cross-spectrum
between the stimulus and the signal (Fig. 1C, left). A, Gain is the norm of
the frequency response (see Materials and Methods). It displays the range
and extent of stimulus frequencies the cell amplify linearly. B, Areas
(integrals) under gain curves at different BGs, and D, corresponding 3 dB
cut-off frequencies. The amplification increases with the light BGs whereas
the cut-off frequency remains virtually unchanged. C, Phase of the
frequency response and the minimum phase, calculated from the gain
curves, exhibits a phase-lag. E, Impulse response K1 is calculated from the
frequency response function (real parts seen as gain, A, and phase, C). It
approximates the linear filtering properties of the system. Brightening
increases its area, scaling closely with the gain power (not shown), and
reduces its onset-delay, F, as well as its time-to-peak (the delay between
onset and peak is virtually constant ,20 ms). The dead-times estimated
from the phase-shift observed in C (not shown) and from the impulse
response (F) behave very similarly, vindicating the analysis. G, Noise-free
coherence, cNF, indicates the frequency range where a photoreceptor, if
operating linearly, would reproduce exactly the same response at each
stimulus presentation. cNF departs from unity at certain frequencies,
reflecting selective nonlinearities, which enhance particular features of the
stimulus. The bandwidths of the coherences, H, are defined as the
frequency beyond which c,0.5. The bandwidths increase with brighten-
ing BGs, reflecting the photoreceptor’s ability to follow the stimulus on a
shorter time-scale (clin). This increased precision takes place in a frequency
range where the photoreceptor encodes linearly the WN stimulus
(cNF.clin at each BG).
doi:10.1371/journal.pone.0002173.g003
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(where the diode saturates) to 1. Either procedure left the results

virtually unchanged. In the experiments, the cells were adapted to

a selected light BG for .20 s before the WN or NS patterns were

presented. Notice that because the WN patterns were superim-

posed on a constant light BG, whereas the NS patterns - that

included longer dark periods - were not, the mean of the WN

stimulus is higher than that of the NS stimulus, despite both having

the same power.

Current stimulation
To investigate how membrane properties of locust photorecep-

tors are modulated during light adaptation, we injected pulses or

pseudorandomly modulated current into photoreceptors via the

recording microelectrode. Electrode capacitance was carefully

compensated before the current injection experiments. The use of

a switched-clamp amplifier allowed us to record and monitor the

true intracellular voltage and current during current injections and

light stimulation [32].

Data acquisition
Current and voltage responses were low-pass filtered at 1 kHz

(KEMO VBF/23 low pass elliptic filter). These signals were

sampled at 10 kHz for NS - 1 kHz was sufficient for WN signals as

the corresponding light stimuli are cut-off at 200 Hz - then

digitized with a 12 bit A/D converter (PCI-MIO-16E-4; National

Instruments), and stored on the hard disk of a PC. The sampling

was synchronized to the computer-generated stimuli and records

of light and current stimulus, and voltage responses were stored

during each recording cycle. To allow a fair comparison between

WN and NS, the voltage response was re-sampled from 10 to

1 kHz. We checked that the results of the calculations were

virtually independent on the sampling rate by re-sampling the data

at 0.5, 1 and 2 kHz and repeating the analysis. The recording

system, including the microelectrode, had a frequency response

with a 3-dB high-frequency cut-off at 10 kHz or higher and

therefore had negligible effect on the results. The noise level,

estimated from measuring voltage fluctuations (SD) when the

electrode was in the eye tissue, was ,0.2 mV. Each experiment

proceeded from the dimmest to the brightest adapting BG, at a

given temperature.

Data analysis
Most of the data analysis was conducted as explained in Juusola

and Hardie [7] and in Juusola and de Polavieja [6]. Here we

summarize the different stages of the analysis, using the example of

a photoreceptor’s voltage responses to light WN at 19uC. This

allows us to define the relevant parameters used throughout this

article and to highlight their biological significance, and by doing

so to present the underlying assumptions and approximations of

this study. We describe how the bump and membrane properties

were investigated, and give a brief description of the triple

extrapolation method used for estimating the information transfer

rate of voltage responses to NS. We further define how the

probability distributions were calculated to gauge the system’s

stationarity, and how Q10 values were estimated to quantify

temperature-dependent changes.

Processing in the time domain: signal and noise

analysis. Repeated presentations of the stimulus (WN or NS)

evoked slightly different voltage responses. (WN data consisted of

31 responses, 101 responses were recorded for NS stimulation). In

both cases, we rejected the first trace from the analysis as they

systemically showed strong adaptive behavior. For each recording

series, the averaged response is the ‘signal’, whereas the ‘noise’ is

the difference between individual traces and the ‘signal’ (Fig. 1A).

Hence for an experiment using n trials (with n = 30, WN, or

n = 100, NS) there is one ‘signal’ trace and n ‘noise’ traces. In the

simple case where linearity and additivity can be assumed

(reasonable for WN, as discussed later on in the article), the noise

term constitutes a random parameter that independently

‘contaminates’ each trial. In the case of NS, the noise term

represents the probability distribution of all the possible response

traces. The variance of the signal, sS
2, and noise, sN

2, were then

calculated from the corresponding signal and noise traces.

Additionally, we calculated the noise using the following method

that prevents signal and noise from being correlated [33]. n-1 trials of

an experiment consisting of n trials were used to compute the mean

and the remaining one to compute the noise. This procedure is

repeated for each possible set of n-1 responses, giving n uncorrelated

noise traces. These two methods gave similar noise estimates.

We checked the distributions of signal and noise at the different

experimental conditions. For the WN stimulation the distributions

are very close to Gaussian at most conditions, although the noise

distribution is skewed toward depolarization at very dim BGs,

attributable to individual bumps, and the signal distribution is

slightly skewed away from depolarization at the brightest BGs,

attributable to saturation. When stimulating with NS, the

distribution of the signal departs clearly from a Gaussian

distribution, resembling the distribution of the response given

below in Figure 11, whereas the distribution of the noise is

Gaussian. However, in line with data obtained from photorecep-

tors of the flies Calliphora [6] and Drosophila [14] the variance of the

responses differs at different moments of stimulation. This suggests

that the ‘noise’ may play a role in the coding and the transfer of

the visual information. Fourier analysis of signal and noise neglects

the potential importance of ‘noise’, being an inherent limitation of

this type of approach (see Discussion).

Figure 4. Light background and temperature are critical
parameters for the visual coding in locust photoreceptors. A,
Light-induced depolarization, at 19uC, is clearly seen in 1 s-long
recordings of the membrane potential of a photoreceptor adapted to
different light conditions – to darkness and to three different light BGs.
Brightening reduces voltage noise, as seen from the corresponding
probability distributions (right; scale bar: 500 ms). B, Voltage responses
of a dark-adapted photoreceptor to a 10 ms-long light pulse of
saturating intensity at 17, 19, 21, and 23uC (scale bars: 100 ms, 10 mV)
show that warming accelerates voltage responses to light but has little
impact on their amplitude (,40 mV). The mean potentials have been
set to the same value for clarity. The arrow indicates a fast depolarizing
transient [29], similar to the ones reported in Calliphora [76] and
Drosophila [7] photoreceptors.
doi:10.1371/journal.pone.0002173.g004

Locust Photoreceptors
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Calculation of the spectra. We calculated the corresponding

power spectra for the mean stimulus, the signal, and every noise and

response traces (Fig. 1B). They were divided into 50% overlapping

stretches and windowed with a Blackman-Harris 4-term window

[34]; then a fast Fourier transform algorithm was used to calculate

their power spectra. Noise and response spectra were then averaged

to improve these estimates (Bendat and Piersol, 1971). Æ|C(f)|2æ,
Æ|S(f)|2æ, Æ|N(f)|2æ, and Æ|r(f)|2æ are the stimulus (contrast, C), signal

(S), noise (N), and response (r) power spectra, respectively, where ||

denotes the norm and Æ æ the average over the different stretches.

From the spectra the different 3 dB-cut off frequencies, f3 dB, are

calculated as the bandwidth at half height. Alternative ways of

calculating the f3 dB, e.g. using the value where half the area under

the curve is reached, gave virtually identical results. The coding

properties are deducible from the SNR(f) (see below; Fig. 1C right),

whereas the transfer properties can be derived from the cross

spectrum between the stimulus and the signal (Fig. 1C left) as will be

explained below.

Figure 5. Analysis of the voltage responses to a light WN stimulus at different BGs and temperatures. Changes in signal, A, and noise, B,
power with brightening and warming lead to an increase in information transfer rate, C. Warming increases 3 dB cut-off frequencies of the signal, D,
noise, E, and gain function, F. Dead-time in the voltage response, as seen with the onset time of the impulse response, G, is also reduced with both
warming and brightening. H, Cut-off frequency of the noise-free coherence, cNF, i.e. the frequency beyond which cNF,0.5, and I, cut-off frequency of
the linear coherence, clin, are presented using the same scale, highlighting that for every experimental condition cNF.clin. J, WN stimulus can be
characterized by its temporal pattern (scale bars: 300 ms, 1 contrast unit), by its probability distribution and by its power spectrum.
doi:10.1371/journal.pone.0002173.g005

Locust Photoreceptors
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The SNR spectrum: coding properties. For the WN

stimulation, signal-to-noise ratio SNR(f) was calculated from the

signal and noise power spectra, Æ|S(f)|2æ and Æ|N(f)|2æ, respectively,

as their ratio (Fig. 1C right). From Æ|S(f)|2æ, Æ|N(f)|2æ and SNR(f)

several parameters about the coding efficiency of the cell can be

calculated (Fig. 2). Figures 2A and 2B show that brightening

increases the signal power but reduces the noise power,

respectively. In this article, when we mention power we mean

the value integrated over the corresponding power spectrum. This

result is further confirmed in the time domain from the

independent measurements of the signal, sS
2, and noise, sN

2,

variances, and their ratio, SNRt. We also estimated the information

transfer rate from SNR(f) using the Shannon formula, which is

applicable for this special case when both signal and noise

distributions approximate a Gaussian [35]:

H~

ð?
0

log2 SNR fð Þz1½ �:df ð2Þ

where the lower limit of the integral was set to 2 Hz, because of

the finite size of the recording (1 s), and the upper limit was set to

100 Hz, because of the unreliability of the signal at higher

frequencies (Fig. 2C). Note that since SNRz1~ SzN
N

~ r
N

,

intuitively the information transfer rate measures the number of

‘coding states’ the cell uses. Two voltage states must be separated

by at least N for being distinguishable and the useable voltage

range r consists of r/N such states. The information transfer rate of

the responses scales closely with the SNR over the tested

luminances (not shown), vindicating the analysis.

From the SNR(f) we also calculated the linear coherence clin

[33]:

c2
lin fð Þ~ SNR fð Þ

SNR fð Þz1
ð3Þ

Notice that SNR
SNRz1

~ S
SzN

~ S
r
; assuming that the system behaves

linearly (see below for a test of this assumption), the more clin

departs from unity the noisier the response at the given frequency

(Fig. 2E).

Figure 6. Bump noise analysis of the voltage responses to a WN
light stimulus. A, Single photon response recorded in a dark-adapted
photoreceptor at 26uC and super-imposed c-distribution (n = 4,
t= 8 ms). An initial estimate of these parameters is necessary to guide
the fitting algorithm. These first-guess parameters can be estimated by
calculating the power spectrum of a single bump and fitting a
Lorentzian to obtained curve (see Materials and Methods). For this
bump the parameters estimated in the frequency space gave n = 4,
t= 9 ms. The c-distribution accurately describes the bump shape. The
mean residual of the fit is 0.085 mV2 (estimated between 0 and 90 ms,
i.e. where the bump is actually happening), smaller than the
fluctuations of membrane potential in bump-free zone (variance
,0.1 mV2). B, At a given temperature we estimate the noise spectra
of the voltage responses at the three adapting BGs and in darkness. The
dark noise is virtually the same over the temperature range; it is
subtracted from the total noise at each BG to give the light-induced
noise power spectra. By fitting a single Lorentzian to these spectra we
obtain parameters for the bump waveform (see Materials and Methods).
C, Normalized bump shapes for different BGs at 19uC and for different
temperatures at the dim BG illustrate that both brightening and
warming accelerate the bumps. D, This is further quantified by
estimating the bump durations (or time-to-peak; not shown as it
displays identical behavior).
doi:10.1371/journal.pone.0002173.g006
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The cross-spectrum of signal and stimulus: transfer

properties. The cross-spectrum (Fig. 1C left) is calculated

from the Fourier transforms of the signal and stimulus. It can be

used for building several estimators that give insight about how a

photoreceptor transforms the light stimulus into a voltage signal

(cf. Fig. 3, below). Here we consider the cell as a filter; knowing its

input (the controlled contrast stimulus) and output (the recorded

voltage changes), we characterize its transfer properties. From the

previous analysis it is clear that the noise is very small compared to

the signal (SNRt,70 at bright BG). In such practically noise-free

(NF) conditions, we can use the noise-free coherence function, cNF,

to estimate the system’s linearity [36]:

c2
NF~

S S fð Þ:C� fð Þj j2T
S S fð Þj j2T:S C fð Þj j2T

ð4Þ

where * denotes complex conjugate. cNF is essentially the

normalized signal and stimulus cross-spectrum. Assuming noise-

free transmission, if cNF is unity the system behaves linearly. This

assumption is true in locust photoreceptors in most light conditions

as seen in Figures 2E and 3G over a wide range of stimulus

frequencies (see also [24]). This range, roughly between 4 and

60 Hz, is also where most information is carried (Fig. 2C).

Therefore, for WN stimulation we can consider a photoreceptor as

a linear filter and calculate its frequency response, T(f), as:

T fð Þ~ SS fð Þ:C� fð ÞT
SC fð Þ:C� fð ÞT ð5Þ

T(f) is a complex-valued function and therefore can be expressed in

term of its norm G(f), the gain of the contrast-to-voltage

transformation shown in Figure 3A, and its phase P(f), the

phase-shift between the input and the output shown in Figure 3C,

explicitly:

G fð Þ~ T fð Þj j

P fð Þ~tan{1 Im T fð Þð Þ
Re T fð Þð Þ

� � ð6Þ

The contrast gain defines how a photoreceptor selectively

amplifies the stimulus frequencies (Fig. 3A), which can be further

characterized by its amplification integral and 3 dB cut-off

frequency (Fig. 3B and D). It is easily seen from these figures

that photoreceptor contrast gain increases with luminance but its

frequency distribution remains relatively constant. Judged from

their phase functions (Fig. 3C), photoreceptors are not minimum

phase systems, but that their responses include a dead-time, as first

described by [37]. To quantify this we first calculate the phase-shift

of a minimum phase system, which would have the same gain:

Pmin fð Þ~{Im Hi ln G fð Þð½ �ð Þ ð7Þ

where Hi is the Hilbert transform [38]; for details see Bracewell

[39]. The phase-shift caused by the dead-time is then

w(f) = P(f)2Pmin(f). The dead-time was estimated over the flat

frequency range (from 2 to 80 Hz) as Q(f)/2pf (Fig. 3C).

Another useful way to characterize the linear filter properties of

a photoreceptor is to calculate its impulse response, or first-order

Wiener kernel, K1 (Fig. 3E), by taking the inverse Fourier

transform of its frequency response:

K1 tð Þ~F{1 T fð Þ½ � ð8Þ

Figure 7. Bump latency distributions. A, Latency distribution is calculated by deconvolving the bump shape from the corresponding impulse
response (see Materials and Methods) at each experimental condition. B, Estimated latency distributions are shown for the same conditions as in
Figure 6. As their time-to-peak decreases with brightening or warming, bumps appear sooner. C, The bumps are also more precise (synchronized), as
it can be seen in the decrease of the width of the (normalized) latency distributions.
doi:10.1371/journal.pone.0002173.g007
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This represents the impulse response. It summarizes in a

graphically explicit way two important features of the frequency

response: the amplification (estimated from the area of K1, not

shown, that scales perfectly with the integrals of gain Fig. 3B), and

the dead-time (estimated from K1 onset delay, Fig. 3F, scales well

with the dead-time estimated from the phase-shift, not shown).

The time-to-peak values of the impulse responses are in good

agreement with Howard [24].

Bump analysis: the elementary events and their

distribution. We compared noise power spectra recorded in

light and dark to gain insight to the elementary events, the bumps,

which combine to form the total response. We first assume that the

light-induced noise and the noise coming from other sources, i.e.

intrinsic and instrumental, are independent and additive. Then, by

subtracting the noise power estimated in darkness from the noise

power at different light BGs - at a given temperature - we can

estimate the light-induced noise power. We tested that the bump

waveform follows a c-distribution [40] (this is shown in Fig. 6A,

below):

C tð Þ~ 1

n!t

t

t

� �n

e{t=t ð9Þ

We can obtain the two parameters n and t by fitting a single

Lorentzian, i.e. the Fourier transform of the c-distribution, to the

experimental power spectrum:

~
C fð Þ
�� ��2~ 1z 2pt:fð Þ2

h i{ nz1ð Þ
ð10Þ

where , denotes the Fourier transform. From these two

parameters the effective bump duration, i.e. the duration of a

square pulse with the same power, is calculated:

D~t
n!ð Þ222nz1

2nð Þ! ð11Þ

As fitting the Lorentzian involves three free parameters: n, t, and a

scaling factor, the algorithm does not always converge satisfactory.

To avoid biasing the results, in the fits n was fixed (n = 4, after

seeing that it effectively retained the trend in the high-frequency

tails of the power spectra). Although the values for t differ with

fixed n, the bump duration D remains remarkably close to its

estimate when fitting with n as a free parameter.

Assuming that photon arrivals follow Poisson statistics it should

be possible to extract the bump amplitude and rate from the light-

induced depolarization of the membrane potential and its variance

at different light BGs. However, as the membrane potential displays

a complex, time-dependent behavior that not only involves

depolarizing transduction currents but also hyperpolarizing activity

of electrogenic ion-exchangers (see Discussion) such analysis is easily

biased and therefore was not explored further in this article.

At this point we have estimates for the impulse response and the

underlying events, bumps that construct it. The adapting bump

model [40] assumes that a simple linear model can describe the

summation of bumps. That is, the impulse response is the time-

dependent product of arrival times of the bumps, i.e. latency

distribution, and the bump waveforms. In other words, the

impulse response is obtained by convolving the bump waveform

by the latency distribution. Thus, the latency distribution can be

inferred by deconvolving the bump waveform from the impulse

response at each experimental condition. Since the impulse

responses, particularly at dim conditions, can be noisy, we used

log-normal fits [24,41] of the impulse responses (Eq. 12) for the

deconvolution to produce robust estimates.

Kfit tð Þ~ Affiffiffiffiffiffi
2p
p

wt
exp

{ln t
�

tp

� 	2

2w2

 !
ð12Þ

where A is the amplitude, w the width, and tp the time to peak of

the impulse response.

Figure 8. Voltage responses to a NS light pattern at 19uC. A, In
separate experiments, a NS light pattern is repeatedly presented to a
photoreceptor as dim and bright intensity variations. B, The superim-
posed traces show the corresponding voltage responses to the 20th

stimulus presentations. For the bright NS the cell dedicates a larger
voltage range for encoding the stimulus. C, Averaging over the 100
individual traces gives the corresponding signals, normalized to exhibit
the differences in their timing. With the dim NS the voltage output of
the photoreceptor follows the light input with a delay greater than the
one with the bright NS by ,1 ms. Nevertheless, the voltage responses
can follow the same stimulus pattern, suggesting that the photore-
ceptor is utilizing the same frequency range at different BGs. This is
confirmed by the analysis of the responses power spectra at different
points during the repeated stimulation (3rd and 30th traces), D. Whilst
the amplification is higher for bright NS, as was already apparent in A,
the range of frequencies encoded is virtually the same. This is
quantified by calculating the 3 dB cut-off frequency, f3 dB, which equals
to 14 Hz in all cases. Comparing the spectra of the responses to the 3rd

(left) and 30th (right) stimulation shows no additional adaptive trend,
suggesting that the system adapts rapidly (after the 1st stimulation) to a
relatively invariable coding state (see Text S1 and Fig. S2). The signal
power spectra (not shown) look very similar to the power spectra of the
responses, as expected from the high signal-to-noise ratio (Fig. 9).
doi:10.1371/journal.pone.0002173.g008
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The adapting bump model can be explicitly written as:

Kfit tð Þ~
ðz?

{?

l tð Þ:C t{tð Þdt ð13Þ

where l(t) is the latency distribution we want to estimate and the

lower limit of integral is taken to 0 – causality - and the upper limit

to 80–120 ms, where the impulse response dies out. Impulse

response and bump waveform were normalized before performing

the deconvolution.

Current injection analysis: membrane properties. The

properties of the photoreceptor membrane were investigated by

injecting current steps. Hyperpolarizing steps lead to passive RC

charging, characterized by a time-constant t. This parameter was

estimated by fitting a single exponential to the smallest

Figure 9. Analysis of the voltage responses to a light NS stimulus at different BGs and temperatures. Responses to a NS light stimulus
change with warming and brightening. Behaviors of signal power, A, noise power, B and information transfer rate, C, as estimated with the triple
extrapolation method, resemble those of the WN experiment (Fig. 5). D, signal 3 dB cut-off frequency remains virtually unchanged over all the BG-
temperature conditions, differing dramatically from the WN experiment, whereas, the cut-off frequencies of noise power, E, and gain, F, behave much
as in WN stimulation. Onset time of the impulse response, G, and the cut-off frequencies of the linear, H, and noise-free, I, coherences show similar
evolution as seen with WN stimulation. The temporal pattern of the NS stimulus, J, displays long-term correlations (with no characteristic time
constant), leading to a typical 1/f power spectrum trend and a probability distribution that completely departs from Gaussian (scale bars: 300 ms, 3
a.u. of light intensity).
doi:10.1371/journal.pone.0002173.g009
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hyperpolarization. We also constructed V-I curves, for which

linear fits give the mean membrane potential, MMP (V value at

I = 0), resistance, R (slope), and then capacitance, C (using t= RC).

In locust photoreceptors potassium channels are activated at a

voltage close to the resting potential, around 265 mV [25,42]. We

found a cell-to-cell variability in the resting potential of dark-

adapted photoreceptors (see Discussion), which were often below

270 mV (,280 mV at 19uC for the photoreceptors presented in

this article; Fig. S1). Around these voltages the potassium

conductances were not activated, as it can be seen from the

absence of rectification when hyperpolarizing (Fig. S1) that a truly

passive RC charging occurs.

To further investigate the dynamic membrane properties of

photoreceptors, we injected WN current [43] into the cells at

different light and temperature conditions. The WN stimulus was

1 s-long, with a SD of 1 nA, and was presented 31 times (last 30

traces used in the analysis) at 1 kHz. Analysis of the voltage

responses was conducted the same way as for the light stimulation.

Figure 10. Membrane properties deduced from the current steps experiment. Voltage responses to the injected current steps were used to
investigate the transmission properties of the photoreceptor membrane (Fig. S1). A, Membrane time-constant, t, is greatly reduced from the dark-
adapted state by dim light adaptation, but it reduces only slightly further with brightening BGs; i.e. the membrane ‘switches’ from a dark to a light-
adapted state. B, Membrane resistance, R, displays a complex behavior in the light BG–temperature plane that correlates with the duration of the
bumps, estimated from the noise power spectra (Fig. 6D). C, Mean membrane potential MMP shows that the light-induced depolarization increases
by ,15 mV from dark to bright BG, yet it is virtually temperature insensitive.
doi:10.1371/journal.pone.0002173.g010

Figure 11. Dynamical properties of photoreceptor membrane investigated by WN currents. A, Noise-free coherence, cNF, shows that the
membrane can linearly translate WN current input into voltage output up to very high frequencies (500 Hz). B, Linear coherence, clin, shows only very
small noise contamination over the whole frequency range. C, Impedance curves, Z(f), show that photoreceptor membrane acts as a low-pass filter.
Data for A–C was recorded at 19uC in dark and at the three light BGs; the results at the other temperatures show nearly identical behavior. From the
impedance functions we estimated the resistance, R, and the 3 dB cut-off frequency, f3dB. D, resistance estimate from WN stimulation strongly
resembles the resistance estimated from the current steps experiment. E, Cut-off frequency is virtually constant and much higher than the cut-off
frequency of the voltage responses to light. F, Plotting the normalized impedance (i.e. current-to-voltage gain) and the light-to-voltage gain clearly
shows that, at the level of the photoreceptor soma, the membrane is not matched to filter out high-frequency phototransduction noise (shown for
19uC – mid BG, all conditions giving similar results).
doi:10.1371/journal.pone.0002173.g011
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Here, the coherence (Eqs. 3 and 4) and impedance, Z(f), i.e. the

gain of the frequency response (Eq. 6), are of a particular interest.

The former characterizes the linear transfer properties of the

membrane, and the latter its filtering with the same linear

assumptions as previously. From the impedance we obtain two

parameters: the DC component, the extrapolated value when

f = 0 Hz, provides another independent estimate of the membrane

resistance; its 3 dB cut-off frequency gives an index of low-pass

filtering by the membrane.

Triple extrapolation method. When stimulated with

naturalistic stimulation, NS, the distribution of the photoreceptor

Table 1. Q10 (17–27uC) for normalized data.

Q10 for: dim BG mid BG bright BG

Dead-time1 2.060.7 1.860.4 1.960.5

n = 8 n = 10 n = 9

Bump duration 1.960.7 1.660.6 2.561.0

n = 3 n = 3 n = 3

Latency width 2.460.8 3.261.0 3.261.1

n = 3 n = 3 n = 3

K1 width 1.860.5 2.060.4 2.560.6

n = 4 n = 6 n = 5

Gain t2 1.760.5 1.760.5 2.260.7

n = 7 n = 11 n = 9

Information WN3 2.761.6 2.361.0 2.660.9

n = 5 n = 8 n = 8

Information NS4 1.660.6 2.060.8 2.060.7

n = 4 n = 7 n = 6

Shown are mean6SD. Values were extrapolated from a smaller temperature
range, using linear or exponential fits (details in Materials and Methods and
Table S1). 1: As defined by the onset time of the impulse response, K1. 2:
Characteristic time-constant defined as: t= (f3dB)21. 3: Information transfer rate
(Shannon’s formula). 4: Information transfer rate (triple extrapolation method).
doi:10.1371/journal.pone.0002173.t001

Figure 12. The photoreceptors enhance transient features of
the stimulus and flatten the probability density of the
transmitted frequencies. The reliability of temporal patterns in the
photoreceptor responses is analyzed by comparing the average
response, A (i.e. signal), to the time-dependent variability of the
voltage responses, B (i.e. noise SD), evoked by a NS sequence. The
probability distributions of these functions are shown in right. Noise SD
is non-uniform across the stimulation pattern, calculated for every time-
point across the voltage traces to the last 90 presentations of the NS
light pattern (the first 10 showing an adapting trend), at the bright BG
at 19uC. At every time-point (left) the spread of voltage values of the
responses follows an individual distribution, varying from skewed to
Gaussian; however, their overall probability distribution approximates a
Gaussian (right). The changes in noise SD are then compared to the
SNR, C, estimated by calculating the signal SD and the noise SD over 5
consecutive time points (using a 10-point window gives similar results).
Notice that the amplitude of the rate of change in the signal, i.e. the
absolute value of its time derivative (red trace), behaves similarly as the
SNR, indicating that the locust photoreceptors encode most efficiently
fast voltage changes. D, By ignoring their temporal order, 1000 values
for (noise SD and signal) and (noise SD and rate of change of signal) are
displayed as functions of voltage and rate of voltage change,
respectively. The noise SD depends mostly on the rate of voltage
change (linear fit slope = 0.08 ms, R = 0.26) and little on the instanta-
neous voltage value (linear fit slope = 0, R = 20.08). Notice that the
noise SD does not only depend on the absolute value but also on the
sign of the derivative. This could imply that there is an asymmetrical
step in the phototransduction cascade, possibly arising from a process
that involves 2 different time-constant for the transition between 2
different states (e.g. phosphorylated/non-phosphorylated). Such asym-
metry would naturally occur if the 2 transitions involved 2 different
enzymes. Alternatively, fast membrane dynamics or synaptic feedbacks
could enhance depolarizing and hyperpolarizing response patterns
asymmetrically. E, The normalized power spectra of the NS stimulus
(ordinate units c2 Hz21) and of one stretch of the photoreceptor
response (as in Fig. 8, at bright BG, ordinate units mV2 Hz21) illustrates
how the cell enhances selected stimulus frequencies, whitening its
output and increasing the entropy of transmitted signals.
doi:10.1371/journal.pone.0002173.g012
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response was not Gaussian. In such conditions, the Shannon

formula (Eq. 2) does not apply. We used the triple extrapolation

method [6] to calculate the rate of information transmitted by the

cell. Briefly, the voltage response is first digitized by dividing it into

time intervals T that are subdivided into smaller intervals t = 1 ms.

This digitization of the response can be understood as containing

‘words’ of length T with T/t ‘letters’. The mutual information

between the voltage response S and the light contrast stimulus can

be written as the difference between the total entropy:

HS~{
X

i

PS sið Þlog2 PS sið Þ ð14Þ

and the noise entropy:

HN~{S
X
i~1

Pi tð Þlog2 Pi tð ÞTt ð15Þ

where Pi(t)the probability of finding the i-th word at a time t after

the initiation of the trial. This probability Pi(t)is calculated across

trials of identical NS. The values of the digitized entropies depend

on the length of the ‘words’ T, the number of voltage levels n and

the size of the data file, HT,n,size. The rate of information transfer is

then obtained taking the following three successive limits:

R~RS{RN~ lim
T??

1

T
lim
n??

lim
size??

HT ,n,size
S {HT ,n,size

N

� 	
ð16Þ

We calculate these limits by extrapolating the values of the

experimentally obtained entropies. Some practical considerations

for the analysis are as follows. After removing the first trial (the first

1–20 traces when an adaptational trend could be seen; see the

section about the system’s stationarity in Discussion and Text S1

and Fig. S2), we typically used the next 100 traces. The voltage

response was re-sampled from 10 kHz to 2 kHz, 1 kHz or 500 Hz

(all giving similar values to the results shown here, using 500 Hz

sampling rate) to remove high-frequency noise, and a response

matrix of 1000/500 points6100 trials was obtained for the

analysis. The order of the trials was also shuffled to minimize

the effect of any remaining adaptational trend. The total entropy

and noise entropy were then obtained from the response matrices

using linear extrapolation with the following parameters: size = 5/

10, 6/10,…,10/10 of data; n= 8, 9,…,17 voltage levels; T21 = 3,

4,…,6 points. We also applied this analysis to WN data, providing

values that closely scaled with the corresponding information

transfer rate estimates (Eq. 2) [6].

Estimation of the probability distributions. To examine

the stationarity of the system (see Text S1 and Fig. S2) joint

probability distribution of the stimulus and the corresponding

response were calculated for every (1 s-long) trace. To achieve this

the parameter space, i.e. light intensity – voltage plane, with light

intensity having arbitrary units between 0 and 1 and voltage

running from 250 to 280 mV, is divided into 10610 = 100 cells

and we ‘follow’ the evolution of the system during each second.

The amount of time it spends in a cell gives, after normalization,

the associated probability. This 2D joint probability is then

‘projected’ onto the light and voltage axes to give the stimulus and

response probability density distributions.

Quantifying the impact of temperature changes:

calculation of Q10. Although the experimental data did not

usually cover a 10uC temperature range, we could extrapolate

reliable estimates for the Q10 of different parameters by fitting the

data with a function corresponding to the observed trend. Table 1

displays the average and standard deviation (SD) of the different

Q10 values, at each light BG. The temperature ranges used for

evaluating the Q10 values, along with the details of their

calculation, are given Table S1, as well as individual values

obtained for each cell.

Supporting Information
Supporting Information for this paper consists of two figures

that vindicate the data analysis, five figures that highlight the

repeatability and generality of the results, and one table that gives

full details on the Q10 analysis. Fig. S1 shows the raw data of the

current injection experiment that is used to measure the

membrane properties (Fig. 10). Text S1 and Fig. S2 challenge

the assumption that the photoreceptor voltage output is stationary

by computing the joint probability distributions between the light

intensity and voltage responses (see Materials and Methods). Fig.

S3 shows the analysis of the voltage responses of another

photoreceptor to WN light stimuli at different BGs and

temperatures. Fig. S4 shows the analysis of the voltage responses

of this photoreceptor to NS light patterns at different BGs and

temperatures. Fig. S5 shows membrane properties of photorecep-

tors at different illumination and temperatures as pooled statistics

of five photoreceptors, studied by current injection experiments.

Fig. S6 shows analysis of the voltage responses of five other

photoreceptors to WN light stimuli at different BGs and

temperatures. Fig. S7 shows an analysis of the voltage responses

of five photoreceptors to NS light stimuli (the same cells as in Fig.

S6) at different BGs and temperatures. Together these data give

further evidence to our finding that the overall response dynamics

of photoreceptors, although not identical, show similar trends.

Table S1 gives full details on the Q10 values for individual

photoreceptors that are summarized in Table 1.

Results

1. Light background and temperature are critical
parameters for visual coding

Figure 4A shows 1-s long recordings of the membrane potential

of a photoreceptor adapted to darkness and to three different

mean illumination levels (light backgrounds, BGs) at 19uC, and the

corresponding probability distributions. Light adaptation depolar-

izes the cell up to 10–15 mV, activating V-dependent channels

[25] thus increasing the conductance and speeding up the transfer

properties of the membrane (analysis of the membrane properties

in section 4). Light adaptation also reduces voltage noise as seen by

the narrowing distribution of the membrane potential. At bright

BGs, photon shot-noise becomes negligible and the noise from the

photoreceptor itself becomes very small, resulting in a probability

distribution of the membrane potential close to the one seen at the

dark-adapted state (Fig 4A, right). From these data, clearly one

critical parameter in determining the photoreceptors’ electrical

properties is the light BG to which they are exposed.

Temperature is also an important factor governing the

photoreceptor’s responses to light. Figure 4B shows how warming

a dark-adapted photoreceptor accelerates its voltage responses to a

10 ms-long light pulse of saturating intensity. By allowing the

usage of higher frequencies, such accelerated responses should

result in a more precise temporal coding when exposed to complex

patterns, as will be shown below.

Hence for the locust, light background and temperature are not

only ecologically relevant, as outlined in the Introduction, but they

are also critical for its visual coding. Notice, however, that this

work concerns only the encoding of the temporal intensity

fluctuations from a single point in a scene and does not address

the problem of image formation. While we should not forget this
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obvious limitation, the arguments about temporal coding are still

valid. For a given spatial resolution (being limited by diffraction:

[44] or by the optical properties of the rhabdom: [45–47]) an

increased temporal resolution improves the visual acuity for

moving objects [24,48,49].

2. Responses to WN: light background and temperature
set the ‘encoding state’ of photoreceptors

2.1. Coding and transfer properties. We recorded voltage

responses to a WN light pattern at different adapting light BGs

(dim, mid, and bright) and temperatures (17, 19, 21, and 23uC).

The recordings we show here are from a single characteristic

photoreceptor cell for the reasons mentioned above. Figure 5

shows the results for nine relevant parameters, as defined in

Materials and Methods: signal power and corresponding cut-off

frequency; noise power and cut-off frequency; information transfer

rate; cut-off frequency of the gain function; onset time of the

impulse response; cut-off frequency of the noise-free coherence;

and cut-off frequency of the linear coherence. These parameters

are displayed in the light BG-temperature plane as contour plots,

together with the used stimulus.

Signal power increases both by warming and brightening

(Fig. 5A), whereas noise power falls at brighter BGs, but is less

influenced by the temperature (Fig. 5B). In general, the shape of

the signal power at bright stimulation appears to mirror that

reported from ocellar photoreceptors of locust at room temper-

ature [50]. The increased signal power implies that the cell utilizes

a larger voltage range for representing light patterns, whereas the

decreased noise power establishes that the increased precision of

voltage responses is attributable to brightening BGs. The

combined effect is the increased information transfer rate (Fig. 5C).

The signal bandwidth used by the photoreceptor widens with

warming, as seen in the increased cut-off frequency of the signal

(Fig. 5D). The noise cut-off frequency (Fig. 5E) increases with

brightening and warming, although showing a somewhat compli-

cated behavior at bright BG (influenced by changing membrane

properties; section 4). Thus, even though the total amount of noise

in the voltage response is reduced at bright BGs, it contaminates

the higher frequencies used by the photoreceptor. The cut-off

frequency of the gain functions (Fig. 5F) behaves similarly to the

signal cut-off frequency, indicating that the transformation from

WN light to voltage response is mostly linear.

Warming accelerates voltage responses of photoreceptors (cf.

Fig. 4B), allowing an effective encoding of higher stimulus

frequencies (Fig. 5F, within 20–30 Hz; see also [18]). In

accordance, Figure 5G shows how either brightening or warming

reduces the delay (or onset) in the voltage responses, as seen in the

linear approximation (impulse response, cf. Fig. 3E). The

coherence functions (Figs. 5H and I) are also consistent with the

observed dynamics. The bandwidth of the noise-free coherence

(Fig. 5I) is always higher than the one of the linear coherence

(Fig. 5H; in line with the findings at 19uC, Fig. 3H), which in turn

is higher than the 3 dB cut-off frequency of the corresponding gain

functions (Fig. 5F).

In general, locust photoreceptors appear to code efficiently WN

light stimuli (gain) by reducing the noise (clin) at the frequencies

where the signals are linear (cNF). This finding supports the validity

of the linear analysis for the given stimulation. The WN signaling

may be non-linear to some extent, as seen in the deviation in

coherence from unity when the stimulus spectrum departs from

being flat (cf. Fig. 1B and Fig. 3G), but with such rapidly changing

and linearizing [31,37,51] stimuli the frequencies where the

photoreceptors transmit most information are linear (as reported

for small sinusoidal contrasts: [24]).

2.2. Bump noise analysis. By stimulating dark-adapted

photoreceptors with a very dim BG (,1 photoconversion s21, BG-

7), we were able to record single photon responses (Fig. 6A; or

elementary responses) and directly test the assumption that their

waveform (bump) follows a c-distribution. The bump parameters

(amplitude = 3.2 mV, half-duration = 39 ms for the one shown in

Fig. 6A) agree with the previous recordings [24]. Although the

fitting algorithm did not converge satisfactory (the fitting was for

‘noisy’ individual bumps, not their averages), we could extrapolate

‘by hand’ the parameters that provided a good approximation for

the recorded bump(s) (Fig. 6A), guided by the values obtained with

the bump noise analysis (see below). Hence the bump waveform

can be well approximated, as used in the following analysis.

We next compared noise spectra estimated in darkness and at

different light BGs. This data allowed us to estimate the shape of

the bumps summing up the light response (see Materials and

Methods). Figure 6B shows the noise power spectra at different

BGs and temperatures, whereas Figure 6C shows typical

(normalized) bump waveforms estimated from these recordings

for different BGs at 19uC and for different temperatures at the dim

BG. From these bump waveforms we calculated the effective

duration of the bumps (Eq. 11), displayed in the light BG–

temperature plane (Fig. 6D). Essentially, neglecting the data point

at the 21uC – at bright illumination (fully explained by considering

the membrane properties, see section 4), brightening and warming

accelerates the bumps. When n is fixed in the fitting algorithm (see

Materials and Methods), the duration (D, proportional to t) of the

bumps describes entirely their shape, a scaling factor aside. This

analysis implies that the elementary coding events are influenced

both by light background and temperature. The adaptive state of

the photoreceptor therefore affects all transduction reactions, not

only on later stages, such as setting the overall gain.

The Q10 for the bump duration, D, was 1.9 at dim BG and 2.5

at bright BG (for 17–27uC; see Materials and Methods). These

values suggest that the sources of the light-induced voltage noise

have typical temperature-sensitivity of biochemical reactions, in

line with the values reported for Calliphora [52], but they are

somewhat larger than the values for Drosophila [8]. See Discussion

and Table 1 for a fuller account of the Q10 values and their

possible significance.

2.3. Bump latency distribution. How do the elementary

responses sum up to form the total response? Using the adapting

bump model [40] we can estimate the bump latency distributions

for the different light and temperature conditions (see Materials

and Methods).

Figure 7A shows how the impulse responses are produced by the

convolution of the bumps and their latency distributions. Figure 7B

shows the latency distributions estimated under the same two

conditions as in Figure 6C (19uC, dim BG) by deconvolving the

bump waveform from the corresponding impulse response.

Because the bumps are much briefer than the distribution of

their occurrence, the latter sets the width of the impulse response

(cf. the scales in Figs. 6C and 7B). Furthermore, as the bumps are

minimum phase events [53], the dead-time, seen in the phase-shift

and impulse response data (cf. Figs. 3F and 5G), comes from the

latency distribution. Hence, bumps are delayed before they are

actually produced on the photoreceptor membrane. The width of

the estimated latency distributions in Figure 7C shows that

brightening and warming enhances the synchronicity of bumps

(see Discussion). Similar to findings from Drosophila [8], the Q10 of

the latency distribution was larger than the Q10 of the bump

duration. Here, however, the Q10 of the latency distribution also

depends on the mean light BG, being the largest at bright

illumination (Table 1). Thus, the light-adaptational acceleration of
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the voltage responses is inherently temperature-dependent: not

only are the bumps themselves faster (cf. Fig. 6) but they also

appear sooner and are better synchronized in warm conditions

(Figs. 7B and 7C).

On a more general perspective, the phototransduction is

modulated at different scales in space (microvilli, soma) and time

(,10 ms for producing a bump; ,40 ms for summing up the

bumps) to set the ‘encoding state’ of the photoreceptor, depending

on the prevailing light and temperature conditions.

3. Responses to NS: input statistics are crucial for visual
coding

Preliminary results shown in Materials and Methods (cf. Figs. 1,

2 and 3) with a WN stimulus suggested that locust photoreceptors

are sensitive to the stimulus statistics, i.e. the stimulus and signal

spectra show variable degrees of localized ripple caused by

nonlinearities (cf. Figs. 1B and 3G). To investigate further how the

stimulus statistics influence the coding strategy of the photorecep-

tor, we repeated the experiments using naturalistic light patterns,

or NS, in lieu of WN at the same BGs and temperatures.

Figure 8A shows typical voltage responses to dim and bright NS

at 19uC. At bright BG, the photoreceptor utilizes a larger voltage

range to encode the light pattern, increasing the rate of

information transfer with light BG (see below). When the averaged

responses (signals) are normalized (Fig. 8C), we notice that the

photoreceptor responds to the contrast stimulus with an increased

delay at dim BGs but it can still follow the same transient changes.

These dynamics imply that brightening NS would reduce delays in

the voltage response without much affecting the photoreceptor’s

filtering properties. Thus, regardless of the prevailing conditions,

locust photoreceptors accurately encode the naturalistic contrast

input. This finding was confirmed by comparing the power spectra

of the 3rd and 30th responses to the repeated NS at different light

BGs (Fig. 8D). While the voltage range used for encoding the NS

pattern increases for bright BGs at a given frequency, the range of

frequencies (i.e. the bandwidth) effectively used by the cell remains

virtually identical (the normalized power spectra overlap near-

perfectly). Crucially, since this unexpected behavior is robust, seen

in all photoreceptors (n = 8), we conclude that locust photorecep-

tors produce spectrally consistent neural representations of the

naturalistic light patterns they encounter. We will show later that

NS patterns are encoded into the rate of change of their voltage

responses and consider the significance of this finding (cf. Fig. 12

and Discussion).

Long-term temporal correlations of NS result in a non-Gaussian

distribution and a 1/f power spectrum (Fig. 9J). The selected NS

and WN stimuli have the same total power. The voltage responses

to NS showed that brightening and warming enhance the signal

power, decrease the noise power, and increase the information

transfer rate – as estimated by the triple extrapolation method -

similar to the WN experiments (cf. Figs. 9A, B and C to Figs. 5A, B

and C). The signal power, and thus the information transfer rate,

is also affected by the ambient temperature, as in the WN

experiments. In general, the information transfer rate of a

photoreceptor (Fig. 9C) depends on the playback velocity of the

selected pattern [6]; NS, played back at 1 kHz, gave slightly lower

values than those of the estimated WN information transfer rate

(Fig. 5C) -WN played back at 200 Hz (see Materials and

Methods). Nevertheless, both of these values were similar to those

estimated in locust ocellar photoreceptors using both Shannon’s

formula and the triple extrapolation methods [50].

The 3 dB cut-off frequency of the signal power spectra is

remarkable constant over the different experimental conditions

(Fig. 9D). This confirms the qualitative behavior observed in the

raw data and signal power spectra (cf. Fig. 8B and D) and

strikingly contrasts with the WN experiment (cf. Fig. 5D). The

noise cut-off frequency (Fig. 9E) behaves similarly to the WN case,

increasing with brightening and warming but also displaying a

complex modulation at bright BGs. These findings indicate that

the properties of the noise in the frequency domain are modulated

by the same parameter for WN and NS, somewhat independently

on the stimulation patterns. We will show in the next section that

this parameter is the membrane resistance.

Although the frequency range used by the photoreceptor

remains constant its frequency response broadens (Fig. 9F),

indicating that the linear approximation may break down to

some extent for the NS data. Comparing the actual response and

the response, estimated by convolving the impulse response and

the stimulus, validates this view: certain dynamic non-linearities

along the processing stages deviate the voltage response by ,10%

from its linear approximation. Interestingly, this effect strongly

varies along the response trace; in particular the linear

approximation captures well the large transient changes. These

findings together suggest that the encoding is mainly linear with a

non-linear component dedicated to enhance ‘interesting’ patterns

in the stimulus (see below).

The impulse responses describe well the reduced delays (Fig. 9G)

observed in Figure 8B, supporting the idea that the encoding

process is mainly linear. This finding is also supported by the

behavior of the coherence functions, which behave very similarly

to the WN experiment (cf. Figs. 9H and 9I to Figs. 5H and 5I).

Thus, the non-linear amplification seems to be specific for certain

patterns in the time domain and not simply specified in the

frequency domain. Thereby, the transfer function of the

photoreceptor would consist of a stationary, linear filter on which

is added a non-linear filter that quickly adapts to the stimulus. The

photoreceptors linearly enhance large transient features of the

stimulus (see Discussion); whereas rapid non-linearities increase

responsiveness to more subtle contrast changes. Of course, on a

longer time scale slow non-linear processes are involved in

realizing the light adaptation.

This break-down of the linear approximation may also partially

reflect signaling constraints. In a very dim environment, a

photoreceptor can respond to brightening but not to dimming

inputs; thus, light contrasts are asymmetrically encoded. The

situation is of course similar, but reversed, for saturation. By

carefully choosing our light BGs and allowing the photoreceptors

to fully adapt to the ambient light before the experiments, we

prevented such saturation non-linearities (cf. the probability

distributions for the voltage output Fig. 12A, below). However,

many other types of constraints are also imposed upon

phototransduction (numbers of microvilli and available molecules;

the speed of bioreactions, refractory periods, energy supply-chains

etc), each with particular dynamics. These complex constraints

could contribute to some of the non-linearities in our data.

The main differences when stimulating the photoreceptors with

NS, as compared to WN, are therefore that: (1) the photoreceptors

make use of non-linear coding to enhance certain patterns in the

stimulus, and (2) they produce outputs within a constant

bandwidth. This may be evidence for a ‘preference’ (or

‘expectation’) of the photoreceptors for the long-term correlations

(responsible for the 1/f spectrum) that occur in natural sceneries as

is reported for spiking neurons of V1 area in the monkey cortex

[54]; see Discussion.

4. Membrane properties participate in light adaptation
The voltage signal sent toward the first visual synapse is

produced by charging the phototransduction (or light) current, and
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this process depends on the membrane properties [11]. To

investigate how the transmission properties of the photoreceptor

membrane change with light adaptation, we conducted current

injection experiments.

4.1. Membrane properties studied with current

steps. Our aim here is to link the measured signaling

dynamics (cf. Figs. 5 to 9) to the transmission properties of the

photoreceptors membrane under similar experimental conditions.

We recorded the voltage responses to depolarizing and

hyperpolarizing current steps at different BGs and temperatures.

From these recordings (cf. Fig. S1) we calculated the relevant

transmission parameters of the photoreceptor membrane, shown

in Figure 10.

The membrane behaves like a switch, changing transiently from

a slow dark-adapted state to a fast light-adapted state. This

transition is particularly clear for the membrane time constant, t
(Fig. 10A). There is a 4-fold reduction in t from the dark-adapted

state to dim conditions but its value is only slightly lessened when

the adapting background is brightened further. Surprisingly, t is

hardly influenced by the ambient temperature.

The membrane resistance, R, has a more complex behavior in

the light BG-temperature plane (Fig. 10B). It is difficult to assess

what is responsible for these changes, but a comparison with

Figure 5 shows what they cause. The duration of the bump

waveform clearly correlates with R (cf. Figs. 6D and 10B). As the

elementary events are very small, their speed is not limited by the

charging of the whole membrane but, nevertheless, depends on the

number of open channels. Hence, when the membrane time

constant and resistance are proportional (assuming membrane

capacitance remains constant, see below), bump duration and t
should correlate; the higher the number of open channels, the

faster bumps. The correlation between the bump duration and the

membrane resistance is further confirmed by normalizing these

two parameters and comparing their behavior in the light BG–

temperature plane: the similarity is .80% for 9 data points over

12 (3 light BGs64 different temperatures), and .50% for the

remaining 3.

The membrane capacitance, C, remains constant over a large

area of the light BG-temperature plane (not shown), as expected

for a photoreceptor surface area that stays about constant during

the experiment. Deviations from this norm could result from

difficulties in electrode compensation, as was also experienced

during dynamic current injection (see below). The MMP depends

only slightly on the ambient temperature, but it increases about

15 mV from dark to bright BG (Fig. 10C). This represents a

dynamic balance between the light-induced depolarizing conduc-

tances, the hyperpolarizing voltage-sensitive conductances and the

hyperpolarizing activity of ion-exchangers. All this activity reduces

membrane resistance, and thus the membrane time constant, t,
consistent with the findings of Figures 10A–B.

To summarize: the transmission properties of the photoreceptor

membrane are remarkably constant over the tested temperature

range. However, the response accelerates when light depolarizes

the photoreceptor. The membrane resistance has complex

behavior, yet to be explained, that probably governs bump speed.

4.2. Current WN stimulation and membrane dynamical

properties. Using WN current injection it is possible to

investigate the dynamic properties of the photoreceptor

membrane, and describe them in the frequency domain [43].

The analysis is conducted in the same way as for the light

stimulation (see Materials and Methods) with the most relevant

parameters shown in Figure 11. Because noise is very small

compared to signal, we first consider the noise-free coherence, cNF.

Figure 11A shows that the membrane translates the current input

into voltage output linearly (,99% unity) up to very high

frequencies (.500 Hz). Similar to other preparations [7,43,55],

rapidly changing current inputs (of different polarity) perturbate

the voltage-dependent activation and relaxation dynamics of the

photoreceptor membrane rather evenly, linearizing its voltage

output [55]. The linear coherence curves, clin (Fig. 11B), show that

the noise resides at relatively low frequencies (below 50 Hz). The

membrane is noisier when light-adapted than when dark-adapted,

but further brightening reduces the noise level, consistent with the

narrowing voltage distributions (cf. Fig. 4A). The coherence

functions are virtually temperature insensitive. The gain function

of the corresponding frequency response between the current

input and the voltage output is the complex impedance, Z [43].

Figure 11C shows how filtering properties (low-pass features of the

impedance function) of the membrane change with light BGs at

19uC. The membrane resistance and cut-off frequency are

calculated from the impedance functions for the different

experimental conditions. The membrane resistance was

estimated from the impedance function at 4 Hz, as this well

approximated the DC values. These estimates (Fig. 11D) strongly

correlate with the resistance measured in the current step

experiment (cf. Fig. 10B), vindicating both analyses. The 3 dB

cut-off frequency of the membrane impedance remains almost

constant and high, ,140 Hz (Fig. 11E).

The remaining differences may relate to the nature of WN

current stimulus that leads to both depolarized and hyperpolarized

potentials. During half of the time of the WN stimulation the

membrane is exposed to depolarizing currents that activate

voltage-sensitive potassium channels [25,42], whereas hyperpolar-

izing current steps do not. Nevertheless, under all conditions the

membrane cut-off frequency is at least 2 times higher (often more)

than the corresponding cut-off frequency of the light-induced

voltage responses. It is therefore unlikely that at the level of the

photoreceptor soma the membrane would filter out high-

frequency noise as it has been shown for other systems [56]. This

behavior is graphically shown in Figure 11F where the gain of the

light-induced voltage response and the membrane impedance are

normalized and plotted together (shown at 19uC, mid BG; all

tested conditions gave similar results).

Exploration of the dynamic properties of the photoreceptor

membrane tells us that the apparent reduction of the time constant

during light adaptation is useful for fast transmission of voltage

responses but it does not play a clear role in noise reduction. The

somatic membrane potential is able to follow current changes in a

linear fashion at frequencies far beyond those produced by the

phototransduction cascade in response to changing light inputs. In

this respect, membrane conductance does not limit the speed of

transmitted transduction signals. However, at the same time a

complex modulation of the membrane resistance strongly

correlates with bump speeds (see Discussion). Thus, it seems that

the membrane helps determine the speed at which phototransduc-

tion currents elicit changes in membrane potential (the lower the

resistance, the faster the bumps), but does not limit the speed of the

underlying transduction reactions (the cut-off frequency is never

reached). Hence, it is not the production of the bumps but their

summation (the latency distribution) that limits the speed of the

voltage responses (cf. Fig. 7).

Discussion

The visual environment poses a serious encoding challenge to

photoreceptors. Besides the vast, logarithmically scalable intensity

range, the events of interest that occur within it come with a large

range of velocities. In contrast, owing to many constraints in
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animal design, photoreceptors have evolved to rely on a small

voltage range and limited transmission speeds to signal these

events. Therefore, photoreceptors require complex nonlinear

operations - jointly termed as light adaptation - to neurally

represent the ever-changing visual world.

In this article, we investigated how light background and

temperature modulate the size and speed of voltage responses in

locust photoreceptors to random (WN) and naturalistic (NS, 1/f)

light stimuli. We established that the response properties of these

cells, as well as their adaptation properties, depend on the statistics

of the stimulus; and showed how the phototransduction machinery

and photoreceptor membrane are involved in the production of

the voltage response. In the following we (1) recapitulate the main

results, (2) propose possible explanations for the observed

sensitivity to the stimulus statistics and discuss its significance,

before closing on (3) the issue of intrinsic cell-to-cell variability.

1. Adaptation to ambient light and temperature
conditions

We found that brightening or warming increases and acceler-

ates voltage responses of photoreceptors (Figs. 5A, D, G and 9A, D,

G). These dynamics are complemented by reduction in voltage

noise (Figs. 5B and 9B) grading toward faster events (Figs. 5E and

9E). Because the frequency range of photoreceptors allocated for

signaling contrast changes broadens (specifically seen with WN

that contains proportionally more fast changing input patterns

than NS; Figs. 5F, H, I and 9F, H, I), overpowering the noise (that

tails off at only marginally higher stimulus frequencies, Fig. 6B),

they can encode faster temporal events and transmit more

information to the brain (Figs. 5C and 9C).

The increase in signaling speed (Figs. 5G and 9G) is caused by

an acceleration of both the elementary phototransduction currents -

leading to bumps (Fig. 6D) - and their distribution (Fig. 7C). We found

that the bump waveform, or duration, is linked to the transmission

properties of the photoreceptor membrane, as investigated by

intracellular current injections (Figs. 10 and 11), showing a strong

correlation between acceleration of the bumps and decrease in

membrane resistance (cf. Fig. 6D to Figs. 10B and 11D). These

findings provide new evidence for the hypothesis that significant

adaptational changes in the speed and fidelity of responses occur at

the level of light-gated ion channels [8,57]. When more light-gated

channels open in synchrony, the generated responses are larger

and less noisy. Our results also highlight the combined action of

light- and voltage-gated ion channels in enabling the photorecep-

tor membrane to perform a predominantly linear translation of

phototransduction currents into the final voltage response

(Figs. 3G, 5H, 9H and 11A) without limiting the throughput of

these messages (Fig. 11F).

The latency distribution of bumps sets the ultimate speed limit

for photoreceptor signaling and so determines the signal

bandwidth. Following a light impulse, bumps scatter over a period

that is much longer than the duration of an average bump

(Fig. 7A). When considered together with the temperature-

dependency of latency distribution (Table 1; Q10,3), which is

greater than that of the membrane-bound reactions responsible for

the bump waveform (Table 1; Q10,2), the findings suggest that

the width of the latency distribution reflects, and is constrained by,

enzymatic reactions at the early stages of the phototransduction

cascade [7,8]. Assuming that the phototransduction units are

microvilli, and as such compartmentalized and separated

[7,58,59], then keeping photoisomerized rhodopsins, which are

few in number compared to other molecules in the phototrans-

duction cascade (such as G-protein and phospholipase-C: [12]),

active over prolonged but random periods should both improve

the gain and integration of responses and reduce the noise from

stochastic photon arrivals (seen as prolonged latency distribution in

the experiments; Fig. 7). In this context, the adjustments of the

latency distribution at different mean intensities and temperature

that we see in locust photoreceptors (Figs. 7B and C; Table 1) may

well participate in the general optimization strategy: minimizing the

effects of photon noise and providing robust neural representations

of the visual world at variable environmental conditions.

Finally, the study of the probability distributions at different

times during the stimulation (Text S1 and Fig. S2) revealed that

the system adapts very rapidly to the mean light level and so

appears stationary, although prolonged adaptational trends could

sometimes be seen. This behavior is probably a by-product of a

photoreceptor regulating its ion homeostasis and, as such, may

contribute only indirectly to the coding of temporal input patterns,

for example at the synaptic level [5,14]. In summary, the bump

waveform is governed by the fast membrane, whereas the bump

latency distribution reflects slower intracellular biochemical reac-

tions; together their complex interactions (dynamic adaptation)

enable efficient contrast coding at variable stimulus conditions.

2. Adaptation to stimulus statistics – temporal input
patterns set the interactions between the fast membrane
and slower intracellular reaction dynamics

Because the natural world consists of extended objects – and not

of independent points - the visual images projected on the array of

photoreceptors of exploratory animals are redundant [2,16],

dominated by slow intensity changes (low frequency or 1/f-type

of correlations: [3,9,60]). Locust photoreceptors are sensitive to

these global input statistics, as highlighted by their responses to

naturalistic light patterns, having 1/f correlations. In the future, it

would be possible to test whether the observed changes reflect

long-term correlations in the stimulus. For example, one may

design stimuli with different correlation schemes and compare the

response properties when changing the time constant of the

correlation term (if there is any), or modifying the strength of the

correlations (changing c in 1/fc-type correlations, e.g. [54]).

Although using the same coding strategy as with WN, the impact

of the light intensity and temperature is different for NS. During

NS, signaling bandwidth of the photoreceptors did not increase

with brightening or warming, in contrast to WN (cf. Figs. 9D and

5D, respectively; Figs. S3D and S4D; Figs. S6 and S7). Hence, the

dynamic response and adaptation properties of photoreceptors

appear to depend on the stimulus statistics used. How do we

explain these findings, and what insight can we draw from them

about phototransduction mechanisms?

Behavior of cells and their interrelationships are regulated by

intracellular biochemical signaling [61]. This signaling has a high

computational power, enabling complex functions [61–64]. Locust

photoreceptors resemble other biochemical computational systems

(e.g. E. coli flagellar motor; [65]) in one important way: their

membrane dynamics are fast, whereas intracellular (phototrans-

duction) reactions are slower (Fig. 11F). Coupling of the fast and

slow dynamics can be responsible for the response to particular

input patterns and their transient storage (dynamic adaptation)

[7,61–63,66,67]

The observed constancy of the signal bandwidth indicates that

locust photoreceptors can represent naturalistic temporal input

patterns (NS) with accurate rate changes in their voltage responses

(Figs. 12A–D). To maximize the communication of important

information (large or transient input patterns; i.e. to protect them

against noise or being clipped by saturation: [6]), this is encoded

into the rapidly rising or decaying responses, as these have the

highest SNR (Fig. 12C; see also [14]). Indeed, it has been shown in
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Calliphora photoreceptors that only the early rising and decaying

phases of voltage responses - evoked by unit-contrast pulses of

different lengths - survive both the background noise and fast

neural adaptation and therefore can accurately encode the actual

contrast value of the stimuli [68]. These findings therefore indicate

that the naturalistic contrasts encountered by locust photorecep-

tors continuously change the rise and decay rates of their

responses, as regulated by dynamic interactions between the fast

bump waveform and the slower bump latency distribution. This

co-processing results in information being encoded into the speed

(rate of change) of the voltage output. This system might have

evolved to work with the naturally occurring 1/f statistics of light

contrast, similar to most one-dimensional natural signals, e.g. [69].

There are at least three factors that are likely to contribute to

the constant signal bandwidth to NS. Firstly, NS, unlike WN

stimuli, have longer periods of relative darkness amongst brighter

patterns. These moments appear to help to sensitize the

phototransduction output so that sparse high-frequency contrast

events can be amplified relative to the background. Because the

same 1/f ratio of the light patterns is maintained at brightening

backgrounds, the signal power spectrum, although now stronger,

retains its characteristic low-passed shape across the range of

illumination (Fig. 12E), providing the same 3 dB cut-off frequency.

This whitening process, which works toward maximizing the

entropy of transmitted signals, is equivalent to flattening the

probability density of the transmitted frequencies [2,3,9,70,71].

Such rescaling of input, where fast contrasts (high stimulus

frequencies) are enhanced at the expense of slower – redundant –

background (slow stimulus frequencies), should necessarily make

use of an adaptational (or ‘computational’) memory at the cellular

level (e.g. the calcium concentration integrated over time: [72])

and other related nonlinearities (enhancement of signal transients

by co-operative reactions: [73]; here at the level of ion-channels or

by synaptic feedbacks, c.f. [14,74]). Indeed, any system with

coupled fast and slow dynamics will exhibit some form of

‘memory’ in its evolution. The sensitivity of photoreceptors to

global, statistical features of the stimuli reported in this study serves

therefore as an evidence for the existence of a ‘computational’

memory at the single cell level in a sensory system [7,61–

63,66,67].

Secondly, during naturalistic 1/f stimulation photoreceptors are

on average less depolarized by light than during WN. This difference

is because the mean of the WN stimulus is higher than the mean of

NS stimulus for the same given light background. The more

depolarized the cells the faster and more synchronized are their

responses (Figs. 3 and 4A). Therefore, a naturalistic stimulus that

switches between dark and light events (Fig. 8A) must on average

generate a broader bump latency distribution than WN stimulus

(cf. Fig. 7B), which carries more photons on the same unit time.

Because the speed of the signals, and so too their bandwidth, is

limited by the latency distribution of bumps (Fig. 7A), the signals

stemming from broader bump latency distributions should be less

influenced by the rapidly adapting bump waveforms than those at

brighter WN stimulation.

Although these two factors together may explain the constant

signal bandwidth from one light level to another, they fail to

explain the lack of difference caused by warming, which reduces

both bump duration and latency distribution (Figs. 6 and 7). To

explain the constant signal bandwidth at different temperatures

requires that the acceleration and deceleration of bump waveform

and latency distribution are variable and scalable (or self-

normalizing). The data clearly shows that Q10 of these and other

critical parameters depends on the light BG, thus on the adapting

state of the cell (Table 1), but gives no indication for the scalability

- so that the total speed of the phototransduction reactions would

not change as the speed differences of individual reactions would

cancel out each other. Hence, this explanation seems unlikely.

Instead, our findings are in line with an earlier suggestion [8] that

the visual performance of poikilothermal insects follows environ-

mental and behavioral constraints, promoting signal integration in

cold and dark conditions and enhancing response speed when it is

warm and bright. Thus, there must remain nonlinear processes

involved in stabilizing the frequency range of voltage signals,

which our analysis still cannot capture.

However, there is at least one more factor that can influence our

interpretation of the data. It appears that to some extent the

constant signal bandwidth could be attributed to limitations in the

spectral analysis. When we average the responses to NS to

eliminate the voltage noise (predominantly representing bump

waveform) or calculate the spectral average from overlapping

samples, these processes themselves may work toward stabilizing

the estimated bandwidth (Fig. 9D). Therefore, our third point

concerns about fallibility of the additivity assumption. Our results

show that while the signal bandwidth (Fig. 9D) remains constant,

the bandwidth of the frequency response (gain; Fig. 9F) increases

with brightening and warming. This behavior is a clear indication

that the simple signal and noise description is not fully appropriate

here, as the average response (signal) lacks information about the

stimulus that is actually encoded by the cell. We dissect this

argument further.

One of the main assumptions of the signal and noise analysis is

that noise is independent and additive. However, this may not be

the case with insect photoreceptors (or possibly with any neuron).

Although random, the ‘noise’ may depend upon the stimulus, or its

history and so to be confused with adaptation. In fact, the noise

distribution changes from one point to another in the voltage

response. By calculating the noise distribution at each point, using

a 10 ms window (Fig. 12B), we found that it remained always

roughly Gaussian but with a rapidly changing SD, resembling

findings from Calliphora [6] and Drosophila photoreceptors [14].

The noise SD did not strictly correlate with the absolute voltage

value at the point where it was calculated, neither with the changes

of the responses, i.e. the first derivative of the signal (Fig. 12D).

Hence the system’s memory of - or dynamic adaptation to - the

preceding events may not only help the photoreceptors to produce

invariable representations of the visual world, but also break the

simple additivity assumption. Concurrently, our inability to

separate adaptation from noise leads to an underestimated

signaling performance of photoreceptors (Figs. 5C and 9C); see

also [6].

We also found other differences in voltage responses of locust

photoreceptors to WN and NS stimulation. Our data further

reveals that, when comparing the signals in dim and bright NS

(Fig. 8), the delay between transient changes in the stimulus and

the corresponding response decreases with brightening. This

reduced delay, or dead-time, can also be seen in the decrease of

the K1 onset time (Fig. 9F). Thus, the dead-time and the signal

bandwidth of the photoreceptor are independent, hence are

outcomes of different intracellular processes; see also [31]. This

conclusion is also supported by the differing Q10s of the dead-time

and latency distribution (Table 1) and the report that bump

duration and latency are very weakly correlated. In locust this

correlation can account for at most 7% of the global variance [24],

similar to Limulus [75].

3. Cell-to-cell variability
We saw significant variability in the resting potential of locust

photoreceptors (dark adapted, at 19uC) with values ranging from
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260 to 280 mV. These cells all provided high quality recordings,

so that the variability in their resting potentials did not reflect the

quality of the microelectrode penetration or sealing. This could, of

course, be caused by biased zeroing of the amplifier voltage before

microelectrode penetration. However, this explanation seems

unlikely as the extracellular potential, the reference value,

remained stable and showed little noise, and so was easy to adjust

throughout long-lasting experiments. The amplitudes of the

voltage responses to a saturating light pulse also varied. This

could partly reflect the uncontrolled positioning of the recording

electrode within the cell. For instance, when the electrode was at a

proximal position –close to the axon terminal- we could see a fast

depolarizing transient similar to the ones reported to occur in fly

photoreceptor axons [76] (arrow in Fig. 4B).

The cell-to-cell variability was unmistakable in the current

injection experiments. For example, some photoreceptors dis-

played a significant voltage-dependent amplification when depo-

larized by current steps at certain light BGs, whereas others did

this at different light BGs or, most frequently, failed to do so - such

as the photoreceptor used in this article. Another example is the

light-induced steady-state potential, or MMP, derived by fitting

the V-I curves (at I = 0), that showed different behaviors, most

commonly being more depolarized at brighter light levels (as

shown in Fig. 10C) but sometimes the MMP would fall at brighter

BGs. The evolution of the MMP seemed to critically depend upon

the precise time-course of the experiment, i.e. the duration of the

dark- or light-adaptation. The same experiment conducted in the

same cell but at different times typically showed hysteresis. When

the order and timing of experiments were fixed, the cell-to-cell

variability was still unambiguously present in the recordings. The

experiments were conducted at the same time of day, during the

mid-afternoon, as a diurnal modulation of the membrane

conductances in locust photoreceptors has been reported previ-

ously [25]. Indeed, exploring whether changes in the photorecep-

tor output occur in a circadian fashion [26,27] would be an

interesting avenue of research. The extreme stability of some of the

recordings even suggests that such modulation could be studied

within a single cell.

Judging all the evidence above, we argue that there is an

intrinsic variability from one photoreceptor to another in the

locust eye. The simplest explanation would be a differential

expression of ion channels, possibly depending upon the position

of the photoreceptor within the eye, which was not controlled in

our experiments; see also [77]. Similar effect could be induced in a

eye-location-specific manner by synaptic top-down regulation

[14]. Different conductances, which would allow signals to be

conducted at different speeds from different eye locations, would

support the idea that the transmission properties of photoreceptors

would correlate to the light statistics at different parts of the visual

field. For example, the photoreceptors staring at the sky and the

photoreceptors facing down will experience two very different

optic flow fields as the animal moves [78,79]. This hypothesis is

testable: (1) by injecting dyes via the electrode at the end of the

experiment (LY or neurobiotine) one can locate the photoreceptor

within the eye; or (2) by measuring the zenith and azimuth of the

light source one can map the receptive field of each cell in

question. For constructing the functional organization of the

average eye, one would then analyze a very large set of

photoreceptors for each location.

Supporting Information

Figure S1 Details on the current injection experiment. Voltage

responses of the photoreceptor used throughout the main article

(Figs. 4 to 12) to depolarizing and hyperpolarizing currents steps of

different amplitudes were recorded when adapted to different BGs

and temperatures. The stimulus, shown on the lower part of the

figure, consisted of eight 150 ms currents pulses ranging from

20.5 to +0.5 nA, each presented 20 times, separated with 250 ms

intervals. The average voltage responses are scaled by their mean

DC components for each experimental condition. From these

traces were calculated the parameters showed in Figure 10.

Found at: doi:10.1371/journal.pone.0002173.s001 (6.71 MB TIF)

Figure S2 Joint probability distributions of the voltage responses

to WN and NS light stimuli at 19uC. Joint probability distributions

between the light intensity and voltage responses, and the

individual probability distributions for the corresponding stimuli

and responses are shown for the WN and NS stimuli, for the dim

and bright BGs, at the 1st and the 30th s of stimulation, at 19uC,

using the same cell used throughout the main article (Figs. 4 to 12).

The response distributions at the 1st s are transposed on the

corresponding distributions at the 30th s (dashed lines) to help to

discern any adaptive trends. The results at the other temperatures

were practically identical.

Found at: doi:10.1371/journal.pone.0002173.s002 (9.73 MB TIF)

Figure S3 Repeatability and generality of our results: voltage

responses to a light WN stimulus at different BGs and

temperatures for 1 photoreceptor. Similar analysis as in Figure 5

in the main article, using another photoreceptor of exceptional

stability. Note the temperature range investigated is slightly

different from the one in Figure 5. A, Signal and B, noise powers.

C, Information capacity. 3 dB cut-off frequencies of the signal, D,

noise, E, and gain function, F. G, Dead-time in the voltage

response, as estimated by the onset time of the impulse response.

Bandwidths of the noise-free, H, and linear, I, coherences.

Found at: doi:10.1371/journal.pone.0002173.s003 (6.04 MB TIF)

Figure S4 Repeatability and generality of our results: voltage

responses to a light NS stimulus at different BGs and temperatures

for 1 photoreceptor. Similar analysis as in Figure 9 in the main

article, using the same photoreceptor as in Figure S3. A, Signal and

B, noise powers. C, Information transfer rate, as estimated with the

triple extrapolation method. 3 dB cut-off frequencies of the signal, D,

noise, E, and gain function, F. G, Dead-time in the voltage response,

as estimated by the onset time of the impulse response. Bandwidths

of the noise-free, H, and linear, I, coherences.

Found at: doi:10.1371/journal.pone.0002173.s004 (6.04 MB TIF)

Figure S5 Repeatability and generality of our results: membrane

properties investigated by current injection experiments for 5

different photoreceptors. Voltage responses to injected current

steps (A and B) or WN (C and D) were used to investigate how the

membrane properties change with light BG and temperature.

Data is pooled from 5 different cells as explained below. A,

Membrane time-constant, tau, is greatly reduced from the dark- to

the light-adapted state but is less affected by temperature (cf.

Fig. 10A). Data at 20, 22 and 26uC are from 3 different cells.

Warming increases the light-induced depolarization, B (cf.

Fig. 10C). The amplitude of the depolarization and not the

absolute value of the MMP is shown as the resting potential is

variable from cell to cell. Data from the 2 cells, the first one

recorded at 15 and 19uC, the second at 19 and 22uC, allowing to

accurately rescale one relative to the other. C, Membrane

resistance, R, displays a somewhat complex behavior in the light

BG - temperature plane. D, The 3 dB cut-off frequency 3 dB,

f3 dB, increases with both warming and brightening (cf. Fig. 11E)

but is much higher than the cut-off frequency of the voltage

response to light in any case.
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Found at: doi:10.1371/journal.pone.0002173.s005 (2.85 MB TIF)

Figure S6 Repeatability and generality of our results: voltage

responses to a light WN stimulus at different BGs and 2

temperatures for 5 different photoreceptors. Similar analysis as in

Fig. 5 and Fig. S3, using five photoreceptors of very good stability. A

whole range of light BGs is investigated at 2 different temperatures

for every cell. Note that the 2 temperatures used vary from cell to

cell. Changes in the light BG - temperature plane is displayed for 9

parameters that help assessing changes in the coding and transfer

properties of the photoreceptor. ITR stands for Information

Transformation Rate, calculated using Shannon’s formula.

Found at: doi:10.1371/journal.pone.0002173.s006 (15.08 MB

TIF)

Figure S7 Repeatability and generality of our results: voltage

responses to a light NS stimulus at different BGs and 2

temperatures for 5 different photoreceptors. Similar analysis as

in Figure 9 and Figure S4, using the same 5 photoreceptors as in

Figure S6. ITR stands for Information Transformation Rate,

calculated using the triple extrapolation method (see Materials and

Methods). The signal bandwidth, shown here as the signal 3-dB

cut-off frequency f3 dB, is remarkably constant, not only across

the different temperature and light BG conditions for a given

photoreceptor, but also across multiple photoreceptors, hence

across multiple animals.

Found at: doi:10.1371/journal.pone.0002173.s007 (15.08 MB

TIF)

Text S1

Found at: doi:10.1371/journal.pone.0002173.s008 (0.03 MB

DOC)

Table S1 Details of the Q10 values for individual photorecep-

tors. Although the experimental data did not cover a 10uC
temperature range in most cases, we could extrapolate reliable

estimates for the Q10 of different parameters by fitting the data

with a function corresponding to the observed trend. All the values

were first normalized, i.e. the maximum value, usually at 17uC,

was set to 1, then fitted with either a linear function (information

transfer rate) or a first-order exponential decay (dead-time, bump

duration, widths of the latency distribution and of the impulse

response, gain, tau). The ratio of the value at 17uC over the

extrapolated value at 27uC gives then the Q10 value. The

characteristic time-constant for the gain was defined as the inverse

of the corresponding 3 dB cut-off frequency. To accurately

represent the timings of the latency distribution and of the

impulse response we did not make any assumption concerning

their shapes but calculated their areas when the maximum value

(i.e. the value at the time-to-peak) was normalized to 1; this area is

referred to as ‘width’. This analysis was conducted for several

photoreceptors that were stable enough to repeat the experiments

over a temperature range sufficient for reliable extrapolations.

Table 1 displays the average and standard deviation (SD) of the

different Q10 values, at each light BG. The values obtained for

each cell along with the temperature ranges used are given in

Table S1.

Found at: doi:10.1371/journal.pone.0002173.s009 (0.04 MB

DOC)
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