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Abstract: 1α,25-Dihydroxyvitamin D3 [1α,25(OH)2D3, 1] is an active form of vitamin D3 and regulates
various biological phenomena, including calcium and phosphate homeostasis, bone metabolism, and
immune response via binding to and activation of vitamin D receptor (VDR). Lithocholic acid (LCA,
2) was identified as a second endogenous agonist of VDR, though its potency is very low. However,
the lithocholic acid derivative 3 (Dcha-20) is a more potent agonist than 1α,25(OH)2D3, (1), and its
carboxyl group has similar interactions to the 1,3-dihydroxyl groups of 1 with amino acid residues
in the VDR ligand-binding pocket. Here, we designed and synthesized amide derivatives of 3 in
order to clarify the role of the carboxyl group. The synthesized amide derivatives showed HL-60
cell differentiation-inducing activity with potency that depended upon the substituent on the amide
nitrogen atom. Among them, the N-cyanoamide 6 is more active than either 1 or 3.

Keywords: vitamin D; nuclear receptor; lithocholic acid; amide; cell differentiation

1. Introduction

Vitamin D receptor (VDR) is a ligand-dependent transcriptional factor belonging to
the nuclear receptor superfamily [1,2], and mediates most of the biological functions of
vitamin D3, including calcium and phosphate homeostasis, bone metabolism, and immune
regulation. The endogenous agonist of VDR is 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3,
1], an active metabolite of vitamin D3 (Figure 1), which induces increased expression of
target genes. Various vitamin D derivatives have been synthesized as candidate drugs for
skin and bone diseases [3–5], though most of them have the same secosteroid structure as
1α,25(OH)2D3 (1).
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[9]. In HL-60 cell differentiation-inducing assay, 3 was more potent than 1. Gaikwad, S. et 
al. recently reported that 3 shows potent vitamin D activity with a lower calcemic activity 
than 1 [10]. 

 
Figure 1. Structures of 1α,25(OH)2D3 (1), lithocholic acid (LCA, (2), and lithocholic acid derivative 
(3) (Dcha-20). 

Analysis of the crystal structure of VDR ligand-binding domain (LBD) bound to 3 
(Dcha-20) showed that the 3-substituent forms direct hydrogen bonds with the two histi-
dine residues His301 and His393, like the 25-hydroxyl group of 1α,25(OH)2D3 (1), but dif-
ferent from the indirect interaction, via a water molecule, of the 3-hydroxyl group of LCA 
(2) with the same amino acid residues of the VDR [8,10]. The carboxyl group of 3 forms 
hydrogen bonds with Tyr143 and Ser274, as in the case of 1α,25(OH)2D3 (1) or LCA (2). 
The carboxyl group of LCA (2) also formed indirect hydrogen bonds with Arg270 and 
Ser233 via a water molecule, while the corresponding interaction was not observed in the 
case of 3. The 3-hydroxyl group of 1α,25(OH)2D3 (1) forms direct hydrogen bonds with 
these amino acid residues in the crystal. Further, our preliminary results on the pharma-
cokinetics of 3 indicated that this compound is eliminated very quickly from the serum in 
mice (data not shown), and the carboxyl group is one of the target functional groups for 
improvement of this undesirable feature. Therefore, in this study, we designed and syn-
thesized several lithocholic acid amide derivatives 4–8 with various N-substituents in or-
der to clarify the role of the carboxyl group in the VDR binding and vitamin D activity of 
3 (Figure 2). 

  

Figure 1. Structures of 1α,25(OH)2D3 (1), lithocholic acid (LCA, (2), and lithocholic acid derivative
(3) (Dcha-20).

Lithocholic acid (LCA, 2, Figure 1) is a secondary bile acid formed from chenodeoxy-
cholate, and was identified as a second endogenous agonist of VDR [6–9]. However, its VDR
binding affinity and potency are very low, compared with those of 1. We recently developed
a potent lichocholic acid derivative 3 (Dcha-20) that has a 2-hydroxy-2-methylprop-1-yl
moiety instead of the 3-hydroxyl group at the 3 α position of 2 (Figure 1) [10]. In HL-60
cell differentiation-inducing assay, 3 was more potent than 1. Gaikwad, S. et al. recently
reported that 3 shows potent vitamin D activity with a lower calcemic activity than 1 [11].

Analysis of the crystal structure of VDR ligand-binding domain (LBD) bound to
3 (Dcha-20) showed that the 3-substituent forms direct hydrogen bonds with the two
histidine residues His301 and His393, like the 25-hydroxyl group of 1α,25(OH)2D3 (1), but
different from the indirect interaction, via a water molecule, of the 3-hydroxyl group of LCA
(2) with the same amino acid residues of the VDR [8,11]. The carboxyl group of 3 forms
hydrogen bonds with Tyr143 and Ser274, as in the case of 1α,25(OH)2D3 (1) or LCA (2). The
carboxyl group of LCA (2) also formed indirect hydrogen bonds with Arg270 and Ser233
via a water molecule, while the corresponding interaction was not observed in the case of 3.
The 3-hydroxyl group of 1α,25(OH)2D3 (1) forms direct hydrogen bonds with these amino
acid residues in the crystal. Further, our preliminary results on the pharmacokinetics of
3 indicated that this compound is eliminated very quickly from the serum in mice (data not
shown), and the carboxyl group is one of the target functional groups for improvement
of this undesirable feature. Therefore, in this study, we designed and synthesized several
lithocholic acid amide derivatives 4–8 with various N-substituents in order to clarify the
role of the carboxyl group in the VDR binding and vitamin D activity of 3 (Figure 2).
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Figure 2. Structures of lithocholic acid amide derivatives 4–8. 

  

Figure 2. Structures of lithocholic acid amide derivatives 4–8.

2. Results and Discussion
2.1. Synthesis

The lithocholic acid amide derivatives 4–8 were synthesized from LCA (2) via com-
pound 3 (Dcha-20), which was prepared by modification of our previous method [10]
(Scheme 1). Acetylation of the 3-hydroxyl group of LCA (2), followed by reduction of the
carboxyl group and benzylation, afforded compound 11. After hydrolysis of the acetate
and oxidation, the 3-keto compound 13 was converted to a mixture of 3-formyl derivatives
(15a:15b = 8:2) via Wittig reaction. Treatment of this mixture with potassium carbonate
increased the ratio of the desired 3 α-isomer 15a (15a:15b = 10:1).
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Compound 3 was synthesized from aldehyde 15a in 7 steps according to our reported 
method (Scheme 2). Briefly, 15a was reduced to the 3-hydroxymethyl compound 16, fol-
lowed by tosylation and reaction with sodium cyanide, to afford the nitrile 18. Two-step 
methylation of 18 gave compound 20 with a 2-hydroxy-2-methylprop-1-yl moiety at the 3 
position. The terminal polar group in the side chain of 20 was converted to a carboxyl 
group in 2 steps to afford 3 (Dcha-20). The amide derivatives 4–8 were synthesized from 
3 by the method shown in Scheme 3. 

Scheme 1. Synthesis of key compound 15a. Reagents and conditions: (a) Ac2O, DMAP, pyridine
(quant); (b) NaBH4, Et3N, ClCOOEt, THF (quant); (c) CCl3C(=NH)OBn, TfOH, 1,4-dioxane (81%);
(d) K2CO3, MeOH, THF (97%); (e) H2SO4, CrO3, acetone (98%); (f) t-BuOK, MeOCH2PPh3Cl, THF
(quant); (g) HCl, THF (98%); (h) K2CO3, MeOH, THF (66%).
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Compound 3 was synthesized from aldehyde 15a in 7 steps according to our reported
method (Scheme 2). Briefly, 15a was reduced to the 3-hydroxymethyl compound 16,
followed by tosylation and reaction with sodium cyanide, to afford the nitrile 18. Two-step
methylation of 18 gave compound 20 with a 2-hydroxy-2-methylprop-1-yl moiety at the
3 position. The terminal polar group in the side chain of 20 was converted to a carboxyl
group in 2 steps to afford 3 (Dcha-20). The amide derivatives 4–8 were synthesized from 3
by the method shown in Scheme 3.
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Scheme 2. Synthesis of compound 3 (Dcha-20). Reagents and conditions: (a) NaBH4, MeOH (quant);
(b) TsCl, pyridine (98%); (c) NaCN, DMSO (94%); (d) (1) MeLi, (2) HCl (82%); (e) (1) MeLi, (2) NH4Cl
aq (85%); (f) H2, Pd(OH)2-C, MeOH (95%); (g) H2SO4, CrO3, acetone (83%).

2.2. Biological Evaluation

The vitamin D activity of the synthesized lithocholic acid amide derivatives was eval-
uated in terms of cell differentiation-inducing activity toward human acute promyelocytic
leukemia cell line HL-60 [12]. HL-60 cell differentiation was evaluated in terms of the
ratio of nitroblue tetrazolium (NBT)-positive cells (Figure 3 and Table 1). All the amide
derivatives examined induced dose-dependent differentiation of HL-60 cells. In this assay,
the unsubstituted amide 4a exhibited more potent activity (EC50: 0.44 nM), compared
with that of the carboxylic acid derivative 3 (Dcha-20, EC50: 1.01 nM) or 1α,25(OH)2D3 (1,
EC50: 0.74 nM). Interestingly, N-monomethylation of compound 4a, yielding compound
4b, diminished the activity. N-Methyl group would disturb the hydrogen bond formation
of amide group with the amino acid residues of VDR. The introduction of an N-hydroxyl
(compound 5a, EC50: 1.18 nM) or N-methoxyl group (compound 5b, EC50: 1.45 nM) slightly
decreased the activity, though these compounds still showed activity comparable to that
of 3. Interestingly, compound 6 bearing an N-cyano group (EC50: 0.32 nM) was the most
active among the synthesized amide derivatives, being more potent than 3 or 1.
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leukemia cell line HL-60 [11]. HL-60 cell differentiation was evaluated in terms of the ratio 
of nitroblue tetrazolium (NBT)-positive cells (Figure 3 and Table 1). All the amide deriva-
tives examined induced dose-dependent differentiation of HL-60 cells. In this assay, the 
unsubstituted amide 4a exhibited more potent activity (EC50: 0.44 nM), compared with 
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Scheme 3. Synthesis of amide derivatives 4–8. Reagents and conditions: (a) AcCl, MeOH (quant);
(b) NH3 or CH3NH2, MeOH 4a: 51%, 4b: 30%); (c) BnONH2·HCl, DIEA, HOBt, DCC, CH2Cl2 (21:
quant); (d) (1) ClCO2Et, Et3N, (2) CH3ONH2·HCl (5b: 73%); (e) H2, Pd-C, MeOH (55%); (f) H2NCN,
DMAP, EDCI, DIPEA, CH2Cl2 (89%); (g) H2N(CH2)2COOCH3·HCl, NMM, EDCI, CH2Cl2 (22a: 83%,
22b: 96%, 22c: 82%); (h) NaOH, EtOH (7a: 77%, 7b: quant, 7c: 85%); (i) H2N(CH2)2SO3H, DMT-MM,
Et3N, DMF (8a: 74%, 8b: 93%).
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Figure 3. HL-60 cell differentiation-inducing activity of lithocholic acid amide derivatives. Differ-
entiated cells were determined by measuring the ratio of nitroblue tetrazolium (NBT)-positive cells.
(a) #: 1α,25(OH)2D3 (1), •: LCA (2), •: 3 (Dcha-20), �: 4a, �: 4b, (b) #: 1α,25(OH)2D3 (1),4: 5a, N:
5b, H: 6, (c) #: 1α,25(OH)2D3 (1),u: 7a, 3: 7b, u: 7c, ×: 8a, +: 8b.

Table 1. EC50 vales of novel lithocholic acid amide derivatives.

Compound HL-60 Assay
EC50 (nM)

Transactivation Assay
EC50 (nM)

1α,25(OH)2D3 (1) 0.74 0.058
LCA (2) Inactive a Inactive a

3 1.01 0.083
4a 0.44 0.12
4b Inactive a 0.96
5a 1.18 0.14
5b 1.45 0.14
6 0.32 0.10
7a 2.03 not examined
7b 0.45 0.89
7c 0.64 0.081
8a 18.5 not examined
8b 6.56 not examined

a ‘Inactive’ means that the compound had no or week active at the concentrations below 1 µ M.

Among the three derivatives bearing an N-carboxyalkyl group, compound 7a with
one methylene group between the amide and carboxyl groups (EC50: 2.03 nM) showed
lower activity than the parent amide compound 4a (EC50: 0.44 nM), while compounds 7b
(EC50: 0.45 nM) and 7c (EC50: 0.64 nM) with longer alkyl chains were more active than
7a. A similar tendency was observed for the compounds bearing an N-sulfoalkyl group.
Thus, compound 8b (EC50: 6.56 nM) was more active than compound 8a (EC50: 18.5 nM).
Terminal polar groups (carboxyl for 7 and sulfo for 8) adjacent to the amide group appear
to have a negative effect, possibly blocking hydrogen bond formation of the amide with
amino acid residues of VDR, whereas groups more distant from the amide group might
have positive effects such as formation of additional hydrogen bond(s).

Next, we examined the VDR trasactivation ability for selected compounds (Figure 4
and Table 1), according to the method reported in our previous study [13]. 1α,25(OH)2D3 (1,
EC50: 0.058 nM) and compound 3 (Dcha-20, EC50: 0.083 nM) showed potent transactivation
activity at the concentrations above 0.1 nM, while LCA (2) did not show the activity at the
concentration below 1 µ M. All the amide derivatives examined showed dose-dependent
transactivation activity, which was well correlated with the activity in HL-60 cell assay.
Among them compounds 6 (EC50: 0.10 nM) and 7c (EC50: 0.081 nM) were as potent as
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1α,25(OH)2D3 (1) and compound 3 (Dcha-20). The results indicated that the differentiation-
inducing activity of the lithocholic acid amide derivatives would be mediated by VDR.
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Figure 4. VDR transactivation ability of lithocholic acid amide derivatives in HEK293 cells.

2.3. X-ray Crystallographic Analysis

We next attempted X-ray crystallographic analysis of the complex of rat VDR LBD
(residues 116–423, ∆165–211) with several of the lithocholic acid amide derivatives. Accord-
ing to the method reported in our previous study [10,14], a synthetic peptide containing
the target sequence of the coactivator MED1 (mediator of RNA polymerase II transcription
subunit 1, also known as ARC205 or DRIP205) was included in the crystallization solution
of VDR LBD and the test compound. However, the analysis was successful only for the
complex of compound 7b (Table 2). The electron density map clearly shows the VDR
LBD, the coactivator peptide, the ligand and a relatively low number of water molecules.
Figure 5a shows the overall structure of the VDR LBD complex with 7b; it is similar to
those previously reported for VDR LBD complexes with other lithocholic acid deriva-
tives [10,14,15]. The interactions of compound 7b with amino acid residues of the VDR
LBD (Figure 5b) are compared with those of 3 (Dcha-20) in Figure 5c. The hydroxyl group
in the 3-substituent of 7b forms direct hydrogen bonds with two histidine residues, His301
(O···N distance: 2.79 Å) and His393 (O···N distance: 2.68 Å). This is the same as in the
case of 3 (Dcha-20), in which the O···N distances were 2.80 Å for His301 and 2.66 Å for
His393, whereas LCA (2) forms indirect hydrogen bonds with these amino acid residues
via a water molecule. The direct interactions of the hydroxy group in the 3-substituent
with two histidines may contribute to the potent activity of 7b and 3. The carboxyl group
of compound 3 (Dcha-20) formed hydrogen bonds with the phenolic hydroxyl group of
Tyr143 (O··O distance: 2.81 Å) in helix 1 and the hydroxymethyl group of Ser274 (O··O
distance: 3.13 Å) in helices 4/5, whereas the amide group of 7b did not form a hydrogen
bond with any amino acid residue. Instead, the terminal carboxyl group of 7b formed
hydrogen bonds with Arg270 (O···N distance: 2.82 Å) and the backbone amide bond of
Tyr143 (O···N distance: 2.91 Å). Similar hydrogen bond formation with these amino acid
residues of the VDR LBD was observed in secosteroid derivatives bearing a hydroxylated
substituent at the 2-position of the cyclohexane ring.
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Table 2. Data collection and refinement statistics for the crystal structure of VDR LBD bound to 7b
and coactivator peptide. Values in parentheses are for the highest-resolution shell.

Data Collection

Unit cell dimensions
a (Å) 157.8
b (Å) 37.6
c (Å) 40.9

β (deg) 98.6
Space group C2

Resolution (Å) 1.94
Completeness (%) 98.4

Redundancy 3.4
No of unique reflections 17,530

Average I/σ(I) 8.6
CC1/2 0.999

Refinement
R-work (%) 20.7
R-free (%) 24.2

RMS bond length (Å) 0.008
RMS bond angles (deg) 1.514

Atoms
Protein 1935

Ligand and water 46
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Figure 5. Crystal structure of the complex of VDR LBD with 7b. (a) Overall structure, and (b) binding
to the VDR, compared with (c) that of 3 (Dcha-20) (PDB: 7C7V) [10].

3. Conclusions

We designed and synthesized several lithocholic acid amide derivatives of 3 (Dcha-
20) as a lead compound. The carboxyl group of compound 3 (Dcha-20) can be replaced
with various amide bonds without decreasing the activity. Among the synthesized amide
derivatives, compounds 4a, 6 with an N-cyano group and 7b with an N-2-carboxyethyl
group showed the most potent activity. Crystallographic analysis of the complex of the
VDR LBD with 7b showed that the terminal carboxyl group, but not the amide group,
forms hydrogen bonds with amino acid residues of the VDR LBD. The hydroxyl group in
the 3-substituent also forms direct hydrogen bonds with two histidine residues, His301 and
His393. Recently, compound 3 (Dcha-20) was reported to have lower calcemic activity than
1α,25(OH)2D3 (1) [11], which would be favorable for clinical application, but preliminary
studies on the pharmacokinetics of 3 (Dcha-20) indicated that it is eliminated very quickly in
mice. The carboxyl group of 3 (Dcha-20) appears to be important for both the potent vitamin
D activity and the pharmacokinetic properties. The novel amide derivatives of compound 3
also showed potent vitamin D activities, and studies on their pharamacokinetic properties
are now on going. Our results suggest that it may be possible to develop lithocholic acid
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derivatives having potent activity and drug-like pharmacokinetic properties by chemical
modification at the terminal polar group in the side chain.

4. Experimental
4.1. General

1H and 13C NMR spectra were recorded on JNM-ECS 400, JNM-ECS 500, and Bruker
Avance 600 spectrometers. The 1H NMR chemical shifts are reported in parts per million
(ppm) relative to the centerline of the singlet signal of the solvent molecule (7.26 ppm for
chloroform); coupling constants are given in hertz (Hz). The 13C NMR chemical shifts
are reported in ppm relative to the centerline of the triplet at 77.16 ppm for CDCl3. Mass
spectral data were obtained on a Bruker Daltonics micro TOF-2focus in the positive and
negative ion detection modes.

4.2. Synthesis

Synthesis of compound 9: Acetic anhydride (6.174 g, 60.48 mmol) and 4-dimethylami-
nopyridine (97 mg, 0.80 mmol) were added to a solution of lithocholic acid (1.522 g,
4.04 mmol) in dry pyridine (40 mL). The mixture was stirred for 20 h at room temperature,
then quenched with water and extracted with a mixture of ethyl acetate and n-hexane (1:1).
The organic layer was washed with 2 M hydrochloric acid and brine, dried over sodium
sulfate, and filtered. The filtrate was concentrated to give 9 (1.757 g, quant.) as a yellow
solid. 1H NMR (600 MHz, CDCl3) δ 4.74-4.70 (m, 1 H), 2.40 (ddd, J = 15.6, 10.2, 5.4 Hz,
1 H), 2.26 (ddd, J = 15.6, 9.6, 6.6 Hz, 1 H), 2.03 (s, 3 H), 1.98-1.95 (m, 1 H), 1.85-1.80 (m, 5 H),
1.68-1.00 (m, 20 H), 0.92 (d, J = 6.6 Hz, 3 H), 0.92 (s, 3 H), 0.64 (s, 3 H); 13C NMR (150 MHz,
CDCl3) δ 178.33, 170.73, 74.39, 56.43, 55.90, 42.70, 41.82, 40.33, 40.08, 35.72, 35.28, 34.98,
34.54, 32.18, 30.71, 30.60, 28.16, 26.96, 26.57, 26.27, 24.14, 23.30, 21.50, 20.78, 18.20, 12.01;
HRMS calcd for C26H42NaO4 (M + Na)+ 441.2975, found 441,2970.

Synthesis of compound 10: Triethylamine (533 mg, 5.27 mmol) and ethyl chlorofor-
mate (616 mg, 5.680 mmol) were added to a solution of 9 (1.757 g, 4.04 mmol) in distilled
THF (40 mL). The mixture was stirred for 2 h at room temperature, then cooled to 0 ◦C, and
sodium borohydride (737 mg, 19.5 mmol) and dry methanol (20 mL) were added to it. The
reaction mixture was stirred for 2 h 15 min at 0 ◦C and then quenched with water. After
removal of the solvent in vacuo, the residue was extracted with ethyl acetate. The organic
layer was washed with brine, dried over sodium sulfate, filtered, and concentrated. The
residue was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:3)
to give 10 (1.672 g, quant.) as a colorless oil. 1H NMR (600 MHz, CDCl3) δ 4.74-4.69 (m,
1 H), 3.65-3.58 (m, 2 H), 2.03 (s, 3 H), 1.99-1.96 (m, 1 H), 1.97-1.80 (m, 4 H), 1.70-1.02 (m,
23H), 0.93 (s, 3 H), 0.92 (d, J = 6.6 Hz, 3 H), 0.65 (s, 3 H); 13C NMR (150 MHz, CDCl3) δ
170.68, 74.37, 63.58, 56.43, 56.10, 42.62, 41.81, 40.32, 40.08, 35.70, 35.51, 34.95, 34.51, 32.16,
31.74, 29.31, 28.25, 26.95, 26.55, 26.26, 24.13, 23.28, 21.47, 20.76, 18.57, 11.98; HRMS calcd for
C26H44NaO3 (M + Na)+ 427.3183, found 427.3174.

Synthesis of compound 11: Trifluoromethanesulfonic acid (0.25 mL, 2.85 mmol) was
added to a solution of 10 (1.309 g, 3.24 mmol) in dry 1,4-dioxane (40.0 ml) and benzyl
2,2,2-trichloroacetimidate (2.206 g, 8.74 mmol) at 0 ◦C under an argon atmosphere. The
reaction mixture was stirred for 3 h at room temperature, then cooled to 0 ◦C, quenched
with saturated sodium hydrogen carbonate, and extracted with ethyl acetate. The organic
layer was washed with brine, dried over sodium sulfate, filtered, and concentrated. The
residue was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:14)
to give compound 11 (1.297 g, 81%) as a colorless oil. 1H NMR (600 MHz, CDCl3) δ 7.35-7.32
(m, 4 H), 7.30-7.27 (m, 1 H), 4.74-4.70 (m, 1 H), 4.51 (d, J = 12.0 Hz, 1 H), 4.49 (d, J = 12.0,
1 H), 3.46-3.40 (m, 2 H), 2.03 (s, 3 H), 1.98-1.96 (m, 1 H), 1.84-1.79 (m, 4 H), 1.68-1.66 (m, 2 H),
1.56-1.02 (m, 21 H), 0.92 (s, 3 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.63 (s, 3 H); 13C NMR (150 MHz,
CDCl3) δ 170.71, 138.61, 128.30, 127.60, 127.43, 74.41, 72.29, 71.01, 56.44, 56.14, 42.63, 41.83,
40.33, 40.10, 35.73, 35.53, 34.97, 34.53, 32.18, 32.12, 28.24, 26.98, 26.56, 26.28, 26.25, 24.16,
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23.30, 21.48, 20.77, 18.55, 11.99; HRMS calcd for C33H50NaO3 (M + Na)+ 517.3652, found
517.3638.

Synthesis of compound 12: Potassium carbonate (1.464 g, 10.6 mmol) was added to
a solution of 11 (1.344 g, 2.72 mmol) in dry methanol (30 mL) and distilled THF (5 mL).
The mixture was stirred for 6 h 20 min at room temperature under an argon atmosphere
and then quenched with acetic acid. After removal of the solvent in vacuo, the residue
was extracted with ethyl acetate. The organic layer was washed with water and brine,
dried over sodium sulfate, filtered, and concentrated. The residue was purified by silica
gel column chromatography (ethyl acetate/n-hexane = 1:3) to give 12 (1.190 g, 97%) as a
colorless oil. 1H NMR (600 MHz, CDCl3) δ 7.36-7.33 (m, 4 H), 7.30-7.27 (m, 1 H), 4.51 (d,
J = 13.2 Hz, 1 H), 4.49 (d, J = 12.0 Hz, 1 H), 3.64-3.60 (m, 1 H), 3.46-3.40 (m, 2 H), 1.96 (dt,
J = 12.0, 3.0 Hz, 1 H), 1.86-1.66 (m, 7 H), 1.59-0.94 (m, 20 H), 0.91 (s, 3 H), 0.91 (d, J = 6.6 Hz,
3 H), 0.63 (s, 3 H); 13C NMR (150 MHz, CDCl3) δ 138.65, 128.32, 127.61, 172.43, 72.80, 71.88,
71.02, 56.46, 56.13, 42.64, 42.04, 40.37, 40.13, 36.39, 35.79, 35.57, 35.29, 34.53, 32.13, 30.50,
28.27, 27.16, 26.39, 26.28, 24.20, 23.35, 20.78, 18.56, 12.00; HRMS calcd for C31H48NaO2
(M + Na)+ 475.3547, found 475.3541.

Synthesis of compound 13: Sulfuric acid (0.23 mL) was added to a cooled solution of
chromium (VI) oxide (267 mg) in water (0.77 mL) just prior to use. An aliquot (0.7 mL) of this
Jones reagent was added to a solution of 12 (1.173 g, 2.59 mmol) in dry acetone (30 mL). The
mixture was stirred for 30 min at room temperature, then quenched with 2-propanol, and
the solvent was removed in vacuo. The extract was extracted with diethyl ether. The organic
layer was washed with brine, dried over sodium sulfate, filtered, and concentrated. The
residue was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:4)
to give 13 (1.148 g, 98%) as a colorless oil. 1H NMR (600 MHz, CDCl3) δ 7.36-7.33 (m, 4 H),
7.29-7.27 (m, 1 H), 4.51 (d, J = 12.6 Hz, 1 H), 4.49 (d, J = 12.6 Hz, 1 H), 3.47-3.40 (m, 2 H),
2.70 (t, J = 14.4 Hz, 1 H), 2.33 (td, J = 14.4, 5.4 Hz, 1 H), 2.17-2.14 (m, 1 H), 2.05-2.00 (m, 3 H),
1.88-1.79 (m, 3 H), 1.70-1.08 (m, 19 H), 1.01 (s, 3 H), 0.92 (d, J = 6.6 Hz, 3 H), 0.67 (s, 3 H); 13C
NMR (150 MHz, CDCl3) δ 213.64, 138.62, 128.31, 127.60, 127.44, 72.81, 70.99, 56.40, 56.12,
44.32, 42.68, 42.35, 40.65, 40.01, 37.21, 36.99, 35.54, 35.48, 34.85, 32.12, 28.22, 26.58, 26.17,
25.74, 24.14, 22.63, 21.15, 18.57, 12.03; HRMS calcd for C31H46NaO2 (M + Na)+ 473.3390,
found 473.3379.

Synthesis of compound 14: A mixture of (methoxylmethyl)triphenylphosphonium
chloride (18.111 g, 52.8 mmol) and potassium tert-butoxide (6.188 g, 46.7 mmol) in distilled
THF (112 mL) was stirred for 45 min at 0 ◦C under an argon atmosphere. A solution of
13 (6.812 g, 15.1 mmol) in distilled THF (18 mL) was added to it. The resulting mixture
was allowed to warm to room temperature, stirred for 2 h, quenched with water, and
extracted with ethyl acetate. The organic layer was washed with water and brine, dried
over sodium sulfate, filtered, and concentrated. The residue was purified by silica gel
column chromatography (chloroform/n-hexane = 3:2) to give 14 (7.280 g, quant.) as a
mixture of geometrical isomers. Each isomer was isolated in a small amount to determine
the structure. (E)-14: 1H NMR (600 MHz, CDCl3) δ 7.35-7.33 (m, 4 H), 7.29-7.27 (m, 1 H),
5.76 (s, 1 H), 4.51 (d, J = 12.0 Hz, 1 H), 4.49 (d, J = 12.0 Hz, 1 H), 3.52 (s, 3 H), 3.46-3.40 (m,
2 H), 2.31 (dd, J = 13.8, 3.6 Hz, 1 H), 2.12 (t, J = 13.8 Hz, 1 H), 1.98-1.95 (m, 1 H), 1.86-1.79
(m, 3 H), 1.71-1.66 (m, 2 H), 1.57-0.92 (m, 20 H), 0.91 (s, 3 H), 0.91 (d, J = 5.4 Hz, 3 H), 0.64
(s, 3 H); 13C NMR (150 MHz, CDCl3) δ 138.75, 138.63, 128.32, 127.61, 127.43, 118.80, 72.82,
71.07, 59.28, 56.60, 56.23, 43.67, 42.72, 40.24, 40.15, 38.68, 35.76, 35.59, 32.22, 28.29, 26.99,
26.34, 26.28, 25.71, 25.12, 24.24, 23.73, 20.97, 18.61, 12.06; HRMS calcd for C33H50NaO2 (M
+ Na)+ 501.3707, found 501.3698. (Z)-14: 1H NMR (600 MHz, CDCl3) δ 7.35-7.33 (m, 4 H),
7.29-7.27 (m, 1 H), 5.72 (s, 1 H), 4.51 (d, J = 12.0 Hz, 1 H), 4.49 (d, J = 12.0 Hz, 1 H), 3.52 (s,
3 H), 3.46-3.40 (m, 2 H), 2.46 (d, J = 13.8 Hz, 1 H), 2.39 (t, J = 13.6 Hz, 1 H), 1.98-1.95 (m, 1 H),
1.86-1.79 (m, 3 H), 1.71-1.66 (m, 2 H), 1.57-0.92 (m, 20 H), 0.91 (s, 3 H), 0.91 (d, J = 5.4 Hz,
3 H), 0.64 (s, 3 H). 13C; HRMS calcd for C33H50NaO2 (M + Na)+ 501.3707, found 501.3698.

Synthesis of compound 15: 6 M hydrochloric acid (30 mL) was added to a solution
of 14 (6.975 g, 14.6 mmol) in distilled THF (80 mL), and the mixture was stirred for 5 h at
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room temperature. The reaction mixture was quenched with water, and extracted with
ethyl acetate. The organic layer was washed with water and brine, dried over sodium
sulfate, filtered, and concentrated. The residue was purified by silica gel column flash
chromatography (dichloromethane/n-hexane = 1:1) to give a mixture of 15a and 15b
(6.664 g, 98%, 15a:15b = 8:2) as a colorless oil. 15a: 1H NMR (600 MHz, CDCl3) δ 9.64 (d,
J =1.8 Hz, 1 H), 7.36-7.33 (m, 4 H), 7.29-7.27 (m, 1 H), 4.51 (d, J = 13.2 Hz, 1 H), 4.49 (d, J
= 12.0 Hz, 1 H), 3.46-3.40 (m, 2 H), 2.27 (dtt, J = 12.6, 3.6, 1.8 Hz, 1 H), 1.97-0.97 (m, 28 H),
0.96 (s, 3 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.63 (s, 3 H); 13C NMR (150 MHz, CDCl3) δ 205.13,
138.64, 128.31, 127.61, 127.43, 72.80, 71.01, 56.36, 56.11, 51.32, 42.62, 42.56, 40.32, 40.03, 36.06,
35.74, 35.56, 35.10, 32.12, 28.24, 27.16, 26.28, 24.16, 23.81, 20.78, 18.55, 12.00; HRMS calcd for
C32H48NaO2 (M + Na)+ 487.3547, found 487.3535. 15b: 1H NMR (600 MHz, CDCl3) δ 9.71
(s, 1 H), 7.36-7.33 (m, 4 H), 7.23-7.27 (m, 1 H), 4.51 (d, J = 12.6 Hz, 1 H), 4.49 (d, J = 12.6 Hz,
1 H), 3.46-3.39 (m, 2 H), 2.45 (br, 1 H), 2.04-0.85 (m, 28 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.87 (s, 3
H), 0.63 (s, 3 H); 13C NMR (150 MHz, CDCl3) δ 206.55, 138.64, 128.33, 127.63, 127.46, 72.82,
71.03, 56.56, 56.16, 47.08, 42.68, 40.15, 39.98, 39.60, 35.58, 35.54, 34.90, 33.48, 32.14, 28.26,
26.91, 26.26, 26.07, 25.00, 24.18, 23.85, 20.85, 19.60, 18.58, 12.02; HRMS calcd for C32H48NaO2
(M + Na)+ 487.3547, found 487.3531.

The ratio of 15a in the mixture of the epimers was increased by treatment of the
mixture with K2CO3, MeOH, THF (66%), and the isolated 15a was converted to compound
3 (Dcha-20), according to our reported method.

Synthesis of compound 20: Acetyl chloride (0.01 mL, 0.140 mmol) was added to
a cooled solution of 3 (64 mg, 0.15 mmol) in methanol (7 mL) at 0 ◦C under an argon
atmosphere. The mixture was stirred for 4 h at room temperature, then quenched with
water at 0 ◦C, and the precipitate was collected to obtain 20 (72 mg, quant.) as a colorless
solid. 1H NMR (400 MHz, CDCl3) δ 3.66 (s, 3H), 2.39-2.31 (m, 1H), 2.25-2.17 (m, 1H), 1.94
(d, J = 11.4 Hz, 1H), 1.89-1.73 (m, 4H), 1.59-0.90 (m, 25H), 1.22 (s, 6H), 0.91 (d, J = 6.4 Hz,
3H), 0.91 (s, 3H), 0.64 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 174.84, 71.65, 60.39, 56.50, 55.89,
51.50, 51.23, 43.55, 42.70, 40.46, 40.15, 37.43, 35.89, 35.80, 35.34, 34.97, 34.68, 31.01, 30.97,
30.02, 29.97, 28.18, 27.40, 26.45, 24.17, 23.97, 21.07, 20.78, 18.24, 14.17, 12.01; HRMS calcd for
C29H50NaO3 (M + Na)+ 469.3652, found 484.3.655.

Synthesis of compound 4: A methanolic solution of conc. ammonia (4 mL) was added
to 20 (37 mg, 0.084 mmol). The mixture was stirred for 7 d at room temperature, and then
for 4 d at 30 ◦C. The solvent was removed in vacuo, and the residue was purified by GPC
(chloroform) to give 4a (18 mg, 51%) as a colorless solid. 1H NMR (400 MHz, CDCl3) δ
5.36 (brs, 1H), 5.22 (brs, 1H), 2.32-2.25 (m, 1H), 2.15-2.07 (m, 1H), 1.95 (d, J = 11.4 Hz, 1H),
1.87-1.73 (m, 4H), 1.59-0.91 (m, 25H), 1.22 (s, 6H), 0.93 (d, J = 6.4 Hz, 3H), 0.91 (s, 3H), 0.64
(s, 3H); 13C NMR (150 MHz, CDCl3) δ 175.82, 71.65, 56.50, 55.93, 51.22, 43.54, 42.72, 40.46,
40.17, 37.42, 35.89, 35.80, 35.45, 34.97, 34.67, 32.75, 31.59, 30.03, 29.96, 29.76, 28.25, 27.39,
26.45, 24.17, 23.96, 20.78, 18.33, 12.02; HRMS calcd for C28H49NaO2 (M+Na)+ 454.3656,
found 454.3649.

Compound 4b was synthesized similarly. 4b: 1H NMR (400 MHz, CDCl3) δ 5.38 (brs,
1H), 2.80 (d, J = 5.0 Hz, 3H), 2.23-2.19 (m, 1H), 2.08-2.02 (m, 1H), 1.94 (d, J = 11.4 Hz, 1H),
1.85-1.73 (m, 4H), 1.49-0.90 (m, 25H), 1.22 (s, 6H), 0.91 (d, J = 6.4 Hz, 3H), 0.91 (s, 3H),
0.63 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 174.19, 71.66, 56.51, 55.97, 51.23, 43.55, 42.70,
40.47, 40.17, 37.43, 35.89, 35.80, 35.52, 34.97, 34.68, 33.55, 31.82, 30.03, 29.96, 29.77, 28.24,
27.40, 26.45, 26.30, 24.17, 23.97, 20.78, 18.35, 12.02; HRMS calcd for C29H51NaO2 (M + Na)+

468.3796, found 468.3805.
Synthesis of compound 21: O-Benzylhydroxylamine hydrochloride (24 mg, 0.15 mmol),

N,N-diisopropylethylamine (20 mg, 0.16 mmol) and 1-hydroxybenzotriazole (17 mg,
0.13 mmol) were successively added to a solution of 3 (49 mg, 0.11 mmol) in dry dichlorome-
thane (10 mL) at room temperature. After 10 min, N,N’-dicyclohexylcarbodiimide (29 mg,
0.14 mmol) was added to it. The mixture was stirred for 23 h at room temperature, and
then filtered. The filtrate was washed with 5% hydrochloric acid, and brine, dried over
sodium sulfate, filtered, and concentrated. The residue was purified by silica gel column
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chromatography (ethyl acetate/n-hexane = 1:2) to give 21 (68 mg, quant.) as a colorless
solid. 1H NMR (600 MHz, CDCl3) δ 7.85 (br, 1 H), 7.41-7.39 (m, 5 H), 4.92 (br, 2 H), 1.94-0.92
(m, 31 H), 1.22 (s, 6 H), 0.91 (s, 3 H), 0.88 (d, J = 4.8 Hz, 3 H), 0.62 (s, 3 H); 13C NMR (150
MHz, CDCl3) δ 171.44, 137.83, 129.24, 128.59, 128.18, 78.03, 71.66, 56.48, 55.88, 51.21, 43.53,
42.69, 40.45, 40.15, 37.41, 35.88, 35.78, 35.41, 34.95, 34.66, 31.43, 30.02, 29.93, 29.75, 29.66,
28.19, 27.38, 26.43, 24.15, 23.95, 20.76, 18.26, 12.02; HRMS calcd for C35H56NO3 (M + H)+

538.4255, found 538.4241.
Synthesis of compound 5b: Compound 3 (20 mg, 0.047 mmol) in DMF (0.5 mL) was

added to a solution of triethylamine (12 mg, 0.12 mmol) in DMF (0.5 mL). The mixture was
stirred at 0 ◦C for 10 min, and then ethyl chloroformate (6 mg, 0.055 mmol) in DMF (0.5 mL)
was added to it. The resulting mixture was stirred at 0 ◦C for 45 min, and a mixture of
methoxyamine hydrochloride (4 mg, 0.052 mmol) and triethylamine (12 mg, 0.12 mmol) in
DMF (1.0 mL) was added to it. Stirring was continued at room temperature for 4 h, then
the solvent was removed in vacuo, and the residue was extracted with ethyl acetate. The
organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated.
The residue was purified by GPC (chloroform) to give 5b (16 mg, 73%) as a colorless solid.
1H NMR (400 MHz, CDCl3) δ 7.98 (brs, 1H), 3.76 (s, 3H), 2.17 (brs, 1H), 1.94 (d, J = 10.5,
1H), 1.87-1.73 (m, 4H), 1.59-0.91 (m, H), 1.22 (s, 6H), 0.92 (d, J = 8.2 Hz, 3H), 0.91 (s, 3H),
0.64 (s, 3H) ; 13C NMR (150MHz, CDCl3) δ 171.64, 71.73, 64.56, 56.56, 55.95, 51.28, 43.60,
42.78, 40.52, 40.22, 37.48, 35.95, 35.85, 35.51, 35.03, 34.73, 31.45, 30.25, 30.09, 30.01, 29.83,
28.28, 27.45, 26.50, 24.22, 24.02, 20.84, 18.38, 12.08; HRMS calcd for C29H51NaO3 (M + Na)+

484.3761, found 484.3762.
Synthesis of compound 5a: Palladium hydroxide (13 mg) was added to a solution of

21 (68 mg, 0.11 mmol) in dry methanol (15 mL). The mixture was stirred for 24 h at room tem-
perature under a hydrogen atmosphere, then filtered, and the filtrate was concentrated. The
residue was purified by silica gel column chromatography (ethyl acetate/n-hexane = 2:1,
ethyl acetate, then, ethyl acetate/methanol = 20:1) to give 5a (31 mg, 55%) as a colorless
solid. 1H NMR (600 MHz, CDCl3) δ 5.40 (br, 1 H), 5.33 (br, 1 H), 2.28 (ddd, J = 15.6, 10.8,
4.2 Hz 1 H), 2.11 (ddd, J = 16.8, 10.8, 6.0 Hz 1 H), 1.95-1.92 (m, 1 H), 1.85-0.94 (m, 28 H), 1.22
(s, 6 H), 0.92 (d, J = 6.6 Hz, 3 H), 0.90 (s, 3 H), 0.63 (s, 3 H); 13C NMR (150 MHz, CDCl3) δ
176.04, 71.69, 56.52, 55.94, 51.23, 43.56, 42.73, 40.47, 40.18, 37.44, 35.90, 35.81, 35.46, 34.98,
34.69, 32.77, 31.61, 30.04, 29.97, 29.78, 28.27, 27.41, 26.46, 24.18, 23.98, 20.80, 18.35, 12.04;
Anal. calcd for C28H49NO3: C, 75.12; H, 11.03; N, 3.15, found: C, 76.35; H, 11.04; N, 3.20.

Synthesis of compound 6: 4-Dimethylaminopyridine (23 mg, 0.19 mmol), cyanamide
(19 mg, 0.45 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (42 mg,
0.22 mmol) and N,N-diisopropylethylamine (39 mg, 0.30 mmol) were successively added to
a solution of 3 (59 mg, 0.14 mmol) in dry dichloromethane (5 mL). The mixture was
stirred for 18 h at room temperature under an argon atmosphere, then diluted with
dichloromethane, washed with 2 M hydrochloric acid and brine, dried over sodium sulfate,
filtered, and concentrated. The residue was purified by silica gel flash column chromatog-
raphy (chloroform/methanol = 10:1) to give 6 (5 mg, 89%) as a colorless oil. 1H NMR
(600 MHz, pyridine-d5) δ 2.65 (br, 1 H), 2.52 (br, 1 H), 2.01-1.95 (m, 1 H), 1.86-1.72 (m, 6 H),
1.65-0.85 (m, 22 H), 1.44 (s, 6 H), 0.92 (s, 3 H), 0.88 (d, J = 6.0 Hz, 3 H), 0.56 (s, 3 H); 13C NMR
(150 MHz, CDCl3) δ 174.15, 108.26, 71.57, 56.39, 55.76, 51.03, 43.46, 42.64, 40.36, 40.05, 37.34,
35.82, 35.70, 35.21, 34.85, 34.57, 32.21, 30.49, 29.68, 29.62, 29.51, 28.08, 27.30, 26.35, 24.07,
23.85, 20.68, 18.09, 11.90; HRMS calcd for C29H47N2O2 (M-H)- 455.3643, found 455.3627.

Synthesis of compound 22: L-Glycine methyl ester hydrochloride (8 mg, 0.06 mmol)
and N-methylmorpholine (13 mg, 0.12 mmol) were added to a solution of 3 (20 mg,
0.047 mmol) in dry dichloromethane (8 mL). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimi-
de hydrochloride (12 mg, 0.06 mmol) was added to the mixture under an argon atmo-
sphere. The resulting mixture was stirred for 24 h at room temperature, then diluted with
dichloromethane, washed with 2 M hydrochloric acid, and brine, dried over sodium sulfate,
filtered, and concentrated. The residue was purified by silica gel column chromatography
(dichloromethane/methanol = 19:1) to give 22a (19 mg, 83%) as a colorless solid. 1H NMR
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(600 MHz, CDCl3) δ 5.91 (br, 1 H), 4.05 (d, J = 5.4 Hz, 2 H), 3.77 (s, 3 H), 2.30 (ddd, J = 15.6,
10.8, 5.4 Hz 1 H), 2.13 (ddd, J = 15.0, 10.2, 6.0 Hz 1 H), 1.96-1.94 (m, 1 H), 1.87-1.73 (m, 5 H),
1.56-0.96 (m, 23 H), 1.22 (s, 6 H), 0.92 (d, J = 6.6 Hz, 3 H), 0.91 (s, 3 H), 0.63 (s, 3 H); 13C NMR
(150 MHz, CDCl3) δ 173.58, 170.52, 71.55, 56.40, 55.85, 52.19, 51.13, 43.45, 42.61, 41.07, 40.36,
40.07, 37.33, 35.79, 35.70, 35.36, 34.87, 34.58, 33.14, 31.46, 29.93, 29.86, 29.67, 28.13, 27.30,
26.35, 24.07, 23.87, 20.68, 18.23, 11.92; HRMS calcd for C31H53NNaO4 (M + Na)+ 526.3867,
found 526.3860.

Compounds 22b and 22c were synthesized similarly. 22b: 1H NMR (600 MHz, CDCl3)
δ 6.01 (t, J = 6.6 Hz, 1 H), 3.70 (s, 3 H), 3.51 (q, J = 6.0 Hz, 2 H), 2.54 (t, J = 6.0 Hz, 2 H),
2.24-2.18 (m, 1 H), 2.07-2.01 (m, 1 H), 1.95-1.92 (m, 1 H), 1.87-1.73 (m, 4 H), 1.56-0.96 (m,
24 H), 1.22 (s, 6 H), 0.91 (s, 3 H), 0.90 (d, J = 6.0 Hz, 3 H), 0.63 (s, 3 H); 13C NMR (150 MHz,
CDCl3) δ 173.64, 173.32, 71.67, 56.50, 55.96, 51.83, 51.22, 43.55, 42.70, 40.46, 40.17, 37.43,
35.89, 35.80, 35.47, 34.97, 34.67, 33.81, 33.62, 31.70, 30.02, 29.95, 29.77, 28.24, 27.40, 26.45,
24.17, 23.96, 20.78, 18.33, 12.01; HRMS calcd for C32H55NNaO4 (M + Na)+ 540.4023, found
540.4033. 22c: 1H NMR (600 MHz, CDCl3) δ 5.63 (br, 1 H), 3.68 (s, 3 H), 3.29 (q, J = 7.2 Hz,
2 H), 2.37 (t, J = 7.2 Hz, 2 H), 2.22 (ddd, J = 15.6, 10.2, 4.2 Hz, 1 H), 2.04 (ddd, J = 15.6, 10.2,
6.0 Hz, 1 H), 1.94-1.02 (m, 1 H), 1.84 (q, J = 7.2 Hz, 2 H), 1.77-1.73 (m, 3 H), 1.57-0.93 (m,
25 H), 1.22 (s, 6 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.91 (s, 3 H), 0.63 (s, 3 H); 13C NMR (150 MHz,
CDCl3) δ 173.98, 173.80, 71.66, 56.49, 55.95, 51.75, 51.21, 43.54, 42.69, 40.45, 40.16, 38.92,
37.42, 35.88, 35.79, 35.48, 34.96, 34.66, 33.61, 31.77, 31.46, 30.01, 29.94, 29.76, 28.24, 27.39,
26.44, 24.54, 24.16, 23.95, 20.77, 18.34, 12.00; HRMS calcd for C33H57NNaO4 (M + Na)+ 554.
4180, found 554.4179.

Synthesis of compound 7: 15% w/v aqueous sodium hydroxide (1 mL) was added to
a solution of 22a (8 mg, 0.035 mmol) in ethanol (5 mL), and the mixture was stirred for 3 h
at room temperature. Ethanol was removed in vacuo, and the solution was acidified with
conc. hydrochloric acid until a precipitate was formed. This was collected and washed
with water to give 7a (13 mg, 77%) as a colorless solid. 1H NMR (600 MHz, CD3OD) δ 3.86
(s, 2 H), 2.30 (ddd, J = 13.8, 10.2, 5.4 Hz, 1 H), 2.15 (ddd, J = 13.8, 9.6, 6.6 Hz, 1 H), 2.00-1.98
(m, 1 H), 1.91-1.85 (m, 2 H), 1.82-1.76 (m, 2 H), 1.60-0.98 (m, 24 H), 1.17 (s, 6 H), 0.96 (d,
J = 6.0 Hz, 3 H), 0.93 (s, 3 H), 0.68 (s, 3 H); 13C NMR (150 MHz, CD3OD) δ 177.10, 173.50,
72.01, 57.95, 57.46, 52.08, 49.56, 45.15, 43.91, 42.03, 41.90, 41.57, 38.69, 37.27, 36.83, 36.22,
35.82, 33.81, 33.08, 31.00, 29.93, 29.91, 29.25, 28.63, 27.75, 25.30, 24.54, 21.94, 18.83, 12.47;
HRMS calcd for C30H51NNaO4 (M + Na)+ 512.3710, found 512.3707.

Compounds 7b and 7c were synthesized similarly. 7b: 1H NMR (600 MHz, CD3OD)
δ 3.39 (t, J = 6.6 Hz, 2 H), 2.48 (t, J = 6.6 Hz, 2 H), 2.21-2.19 (m, 1 H), 2.10-2.05 (m, 1 H),
2.00-1.98 (m, 1 H), 1.91-1.87 (m, 2 H), 1.78-1.73 (m, 2 H), 1.59-1.49 (m, 4 H), 1.40-0.96 (m,
26 H), 0.94 (d, J = 7.2 Hz, 3 H), 0.93 (s, 3 H), 0.67 (s, 3 H); 13C NMR (150 MHz, CD3OD) δ
176.87, 175.48, 72.00, 57.94, 57.43, 52.08, 45.14, 43.90, 41.89, 41.55, 38.68, 37.26, 36.85, 36.42,
36.21, 35.81, 34.77, 34.00, 33.28, 30.99, 29.92, 29.90, 29.28, 28.62, 27.74, 25.28, 24.53, 21.93,
18.81, 12.45; HRMS calcd for C31H53NNaO4 (M + Na)+ 526.3867, found 526.3862. 7c: 1H
NMR (600 MHz, CDCl3) δ 5.63 (br, 1 H), 3.68 (s, 3 H), 3.29 (q, J = 7.2 Hz, 2 H), 2.37 (t,
J = 7.2 Hz, 2 H), 2.22 (ddd, J = 15.6, 10.2, 4.2 Hz, 1 H), 2.04 (ddd, J = 15.6, 10.2, 6.0 Hz, 1 H),
1.94-1.02 (m, 1 H), 1.84 (q, J = 7.2 Hz, 2 H), 1.77-1.73 (m, 3 H), 1.57-0.93 (m, 25 H), 1.22 (s,
6 H), 0.91 (d, J = 6.6 Hz, 3 H), 0.91 (s, 3 H), 0.63 (s, 3 H); 13C NMR (150 MHz, CDCl3) δ
173.98, 173.80, 71.66, 56.49, 55.95, 51.75, 51.21, 43.54, 42.69, 40.45, 40.16, 38.92, 37.42, 35.88,
35.79, 35.48, 34.96, 34.66, 33.61, 31.77, 31.46, 30.01, 29.94, 29.76, 28.24, 27.39, 26.44, 24.54,
24.16, 23.95, 20.77, 18.34, 12.00; HRMS calcd for C33H57NNaO4 (M + Na)+ 554. 4180, found
554.4179.

Synthesis of compound 8: 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium
chloride (123 mg, 0.44 mmol) and triethylamine (437 mg, 4.32 mmol) were added to a so-
lution of 3 (75 mg, 0.17 mmol) in dry N,N-dimethylformamide (8 mL). The mixture was
stirred for 10 min at room temperature under an argon atmosphere, and aminomethane-
sulfuric acid (132.2 mg, 1.190 mmol) was added to it. The mixture was stirred for 20 h
at room temperature, then filtered, and the solvent was removed in vacuo. The residue
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was extracted with ethyl acetate and water. The water layer was cooled to 0 ◦C, and conc.
hydrochloric acid (5.0 mL) was added. The resulting precipitate was collected, and washed
with water to give 8a (67 mg, 74%) as a pale yellow solid. 1H NMR (600 MHz, CD3OD) δ
4.16 (q, J = 13.2 Hz, 2 H), 2.18 (br, 1 H), 2.02 (br, 1 H), 1.85 (d, J = 11.4 Hz, 1 H), 1.75 (m, 2 H),
1.63 (d, J = 13.8 Hz, 2 H), 1.44-0.84 (m, 24 H), 1.03 (s, 6 H), 0.81 (d, J = 6.0 Hz, 3 H), 0.79 (s,
3 H), 0.53 (s, 3 H); HRMS calcd for C29H50NO5S (M-H)- 524.3415, found 524.3404.

Compound 8b was synthesized similarly. 8b: 1H NMR (600 MHz, Pyrdine-d5) δ 4.23
(t, J = 5.4 Hz, 2 H), 3.48 (t, J = 5.4 Hz, 2 H), 2.40 (ddd, J = 14.4, 10.2, 4.2 Hz, 1 H), 2.25 (ddd,
J = 16.2, 10.2, 6.0 Hz, 1 H), 2.00-1.98 (m, 1 H), 1.82-0.96 (m, 28 H), 1.42 (s, 6 H), 0.90 (s, 3 H),
0.85 (d, J = 6.0 Hz, 3 H), 0.53 (s, 3 H); 13C NMR (150 MHz, Pyrdine-d5) δ 174.07, 70.15, 56.46,
56.19, 52.01, 51.70, 44.00, 42.79, 40.71, 40.33, 37.92, 36.52, 36.41, 35.96, 35.73, 35.45, 34.90,
33.78, 32.26, 30.78, 30.74, 30.33, 28.35, 27.80, 26.75, 24.36, 24.24, 21.08, 18.55, 12.19; HRMS
calcd for C30H52NO5S (M-H)- 538.3572, found 528.3576.

4.3. HL-60 Cell Differentiation Assay

HL-60 cells were cultured in RPMI-1640 medium supplemented with 5% FBS and
penicillin G and streptomycin at 37 ◦C under 5% CO2 in air [14]. The cells were diluted to
8.0 × 104 cells/mL with RPMI-1640 (5% FBS), and an ethanol solution of a test compound
was added to give 10−9 to 10−6 M final concentration. Control cells were treated with the
same volume of ethanol alone. 1α,25(OH)2D3 was always assayed at the same time as a
positive control. The cells were incubated at 37 ◦C under 5% CO2 in air for 4 days. The
percentage of differentiated cells was determined by nitro-blue tetrazolium (NBT) reduction
assay. Cells were incubated at 37 ◦C for 20 min in RPMI-1640 (5% FBS) and an equal volume
of phosphate-buffered saline (PBS) containing NBT (0.2%) and 12-O-tetradecanoylphorbol
13-acetate (TPA; 200 ng/mL). The percentage of cells containing blue-black formazan was
determined in a minimum of 200 cells. All experiments were done in triplicate.

4.4. Transactivation Assay

Human embryonic kidney HEK293 cells (RIKEN Cell Bank, Tsukuba, Japan) were
cultured in Dulbecco’s modified Eagle’s medium containing 5% FBS, 100 U/mL peni-
cillin, and 0.1 mg/mL streptomycin (Nacalai Tesque, Kyoto, Japan). Transfections used 15
ng of pCMX-hVDR, 50 ng of TK-Spp × 3-LUC reporter plasmid, and 10 ng of pCMX-β-
galactosidase for each well of a 96-well plate, and were performed by the calcium phosphate
coprecipitation assay as described previously [13]. Eight hours after transfection, test com-
pounds were added. Cells were harvested after 16–24 h and were assayed for luciferase and
β-galactosidase activity using a luminometer and a microplate reader (Molecular Devices,
Sunnyvale, CA, USA). Luciferase data were normalized to the internal β-galactosidase
control. All experiments were done in triplicate.

4.5. X-ray Crystallographic Analysis

Crystals of VDR complexes were prepared according to the method of Vanhooke
et al. [16] with some modifications. The rat VDR LBD (residues 116–423, ∆165–211) was
cloned as an N-terminal His6-tagged fusion protein into the pET14b expression vector
and overproduced in Escherichia coli C41. The cells were grown at 37 ◦C in LB medium
(including ampicillin 100 mg/L) and subsequently induced for 6 h with 15 µM iso-propyl-
β-d-thiogalactopyranoside (IPTG) at 23 ◦C. The purification procedure included affinity
chromatography on a Ni-NTA column, followed by dialysis and cation-exchange chro-
matography (SP-Sepharose). After tag removal by thrombin digestion, the protease was
removed by filtration through a HiTrap benzamidine column and the protein was further
purified by gel filtration on a Super-dex200 column. The purity and homogeneity of the
rVDR LBD were assessed by SDS-PAGE.

Purified rVDR LBD solution was concentrated to about 0.75 mg/mL by ultrafiltration.
To an aliquot (800 µL) of the protein solution a ligand was added (approx. 10 equiv). Then
the solution was further concentrated to about 1/8, and a solution (25 mM Tris-HCl, pH 8.0;
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50 mM NaCl; 10 mM DTT; 0.02% NaN3) of coactivator peptide (H2N-KNHPMLMNLLKDN-
CONH2) derived from DRIP205 was added. This solution of VDR/ligand/peptide was
allowed to crystallize by the vapor diffusion method using a series of precipitant solutions
containing 0.2 M potassium citrate tribasic monohydrate, 20% (w/v) PEG3350. Droplets
for crystallization were prepared by mixing 2 µL of complex solution and 1 µL precipitant
solution, and equilibrated against 500 µL of precipitant solution at 20 ◦C.

Prior to diffraction data collection, crystals were soaked in a cryoprotectant solution
containing 0.2 M potassium citrate tribasic monohydrate, 20% (w/v) PEG3350, and 17–20%
ethylene glycol. Diffraction data sets were collected at 100 K in a stream of nitrogen gas at
beamline BL-17A of KEK-PF (Tsukuba, Japan). Reflections were recorded with an oscillation
range per image of 1.0◦. Diffraction data were indexed, integrated, and scaled using the
program HKL2000 (HKL Research Inc., Charlottesville, VA, USA). The structures were
solved by molecular replacement with the program Phaser in Phenix [17], using the rat
VDR LBD coordinates (PDB code: 2ZLC), and finalized sets of atomic coordinates were
obtained after iterative rounds of model modification with the program COOT [18] and
refinement with REFMAC [19]. The coordinates and structure factors have been deposited
in the Protein Data Bank (Entry ID: 7VQP).
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