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We oftenwish to classify objects by their shapes. Indeed, the study of shapes is an
important part of many scientific fields, such as evolutionary biology, structural
biology, image processing and archaeology. However, mathematical shape
spaces are rather complicated and nonlinear. The most widely used methods of
shape analysis, geometricmorphometrics, treat the shapes as sets of points.Diffeo-
morphicmethodsconsider theunderlyingcurve rather thanpoints, buthave rarely
been applied to real-worldproblems.Using amachine classifier,we tested the abil-
ity of several of these methods to describe and classify the shapes of a variety of
organicandman-madeobjects.Wefind thatonemethod,basedonsquare-rootvel-
ocity functions (SRVFs), outperforms all others, including a standard geometric
morphometricmethod (eigenshapes), and that it is also superior to human experts
usingshapealone.When theSRVFapproach is constrained to takeaccountofhom-
ologous landmarks it can accurately classify objects of very different shapes. The
SRVF method identifies a shortest path between shapes, and we show that this
can be used to estimate the shapes of intermediate steps in evolutionary series.
Diffeomorphic shape analysis methods, we conclude, now provide practical and
effective solutions to many shape description and classification problems in the
natural and human sciences.
1. Introduction
Given a set of images of objects, we may wish to classify them by their shapes,
by which we mean their forms stripped of any differences in size, orientation,
position in space or surface patterns. Humans intuitively understand shape in
this sense: we identify objects that have the same shape even when they differ in
size or are oriented at different angles relative to us [1–5], and other animals
seem to have similar abilities [6,7].

The analysis and classification of shapes has applications in fields as varied
as biology, medicine, archaeology, image analysis and architecture [3,8,9]; many
algorithmic methods that allow us to analyse shapes objectively have,
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Figure 1. An overview of shape analysis methods. Shapes, such as the two vases shown, are described by points in a manifold of possible shapes (centre). Eigen-
shape analysis ignores the complex geometry of shape space and assumes that the space is Euclidean. Diffeomorphic methods, by contrast, either work on the
original shape space (e.g. large deformation diffeomorphic metric mapping (LDDMM)) or else transform the original shapes into a simpler space—a sphere in the
case of square-root velocity function (SRVF) or a vector space in the case of geometric currents.
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accordingly, been proposed. These methods differ in how
they describe shapes and estimate the distances among them.
A shape outline can be represented in two fundamentally
different ways: either as a set of points or as a curve. If rep-
resented as sets of corresponding points then the distance
between two shapes is typically computed as the sum of the
squared distances between the points; if represented as
curves then as the amount of bending and stretching required
to transform one into the other [10,11]. These two approaches
differ not only in how they represent shapes and the distance
metrics that they use; they also make different assumptions
about the geometry of shape space.

We use a distance-based classifier to compare shape analy-
sis methods based on these two shape representations. Based
on the outline contours of objects from three real-world data-
sets we test whether the methods are comparable to human
experts performing the same shape-based clustering. Follow
this we consider other analyses that these methods can use-
fully be applied to in order to support scientists in any field
where shape may provide useful information.

1.1. The strange geometry of shape space
Although a planar shape can be represented as a curve drawn
in two-dimensional space, the space ofN point positions repre-
senting that curve has many more dimensions: for each of
the N points we have x and y coordinates, so need 2N numbers
to describe each shape. Point configurations that differ only in
position, scale, reflection, rotation or some combination of
these, describe the same shape, which means that the set
of different shapes is not the whole of R2N , but a subspace of
it. And that, in turn, means that shapes live not in ordinary
Euclidean space, but in a nonlinear space embedded within
it [12,13]. For the basic case of triangles, which are in R6—
three points in R2—the shape space of allowable shapes is a
hemisphere [2,14]. The points describing more complex
shapes exist in unknown, but certainly much more complex,
shape spaces. And curves, which are continuous, exist in
infinite-dimensional shape spaces [15].

Geometric morphometric methods treat outline shapes as
sets of points, assuming that the points identified on each
shape are in correspondence and thus parametrize the shape
[8,9,16]. One common approach is to treat the coordinates
of each point as a statistical random variable in Euclidean
space, assuming that the variations are small enough to be
approximated linearly. Known variously as eigenshape analysis
[17–19] or statistical shape models [20], they begin by extract-
ing shapes from forms by standardizing position, scale, and
rotation using a procedure called Procrustes alignment [21].
The dimensionality of the space of coordinate points is then
reduced by a method such as principal components
analysis (PCA), and the sum-of-squared distances between
shapes computed among the vectors of derived variables.

The strange geometry of shape space means, however, that
distances between sets of point coordinates may not be very
useful as aids to classification of different shapes. An alterna-
tive is to consider the shape as a piece of elastic and ask how
much ‘energy’—stretching and bending—is required to trans-
form one shape into another; conceptually this is an
extension to the thin-plate spline methods of geometric mor-
phometrics [8]. Under certain restrictions, one curve can be
continuously deformed into another using a smooth, invertible,
function, i.e. a diffeomorphism (in contrast, thin-plate spline
methods are not necessarily invertible and lose some math-
ematical benefits). Large deformation diffeomorphic metric
mapping (LDDMM) algorithms transform shape curves into
each other and estimate a distance directly in the space of dif-
feomorphisms, which is an infinite-dimensional manifold that
can be equipped with a Riemannian metric [15,22] (figure 1).
As with eigenshapes, they deal with form not shape, and so
require that Procrustes alignment be applied first.

It can be beneficial to simplify the shape space by trans-
forming the shapes before analysis. The square-root velocity
function (SRVF) method maps shapes in such a way that the
shape space is a sphere. The distances among shapes can,
then, be easily computed as great circles [11,23,24] (figure 1).
Geometric currents do something conceptually similar, trans-
forming each shape into a mathematical function that can be
represented as a point in the standard Euclidean vector
space based on geometric measure theory [25]. Since this
linear space is equipped with a Euclidean metric, it very
easy to compute distances among shapes, and other standard
statistical techniques such as PCA can also be used [26,27].
However, unlike SRVFs, it is not possible to transform the
points in the new space back into the original shapes.
Although the distances are now Euclidean, the geometric cur-
rent transformation preserves much of the information present
in the original shape space [26]. Neither the SRVF nor the geo-
metric currents methods require Procrustes alignment.

Geometric morphometric methods have been used in
fields such as evolutionary biology [8,28], medical image
analysis [29,30] and archaeology [16,31,32] for many years.
Diffeomorphic methods, by contrast, have been applied only
recently (e.g. [33–41]). As far as we know, these two, rather
different, approaches to shape analysis have not been tested
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against each other on real objects. Diffeomorphic methods
should, in principle, provide better estimates of the true
distances among real objects, but whether they do so in
fact—and whether any gain in accuracy justifies their greater
computational cost—is unclear. Given the range of shape
variation among real objects, the approximation that shape
space is linear may even be reasonable [14].

Here, then, we test one approach of geometric morpho-
metrics, semi-landmarks eigenshapes analysis, and three
diffeomorphic methods—LDDMM, SRVF and geometric cur-
rents—against each other in order to find out which of them
performs best when classifying the shapes of real objects. The
objects belong to three very different classes—ancient Greek
vases, the leaves of Swedish trees and gastropod shells—
chosen so that our results can be directly applicable to sup-
port archaeologists, botanists and zoologists, all of whom
describe the shapes of the things that they study.

Each of our datasets is divided into classes, for example,
genera of shells. Our test, then, rests on the ability of a statisti-
cal classifier, trained on distances computed by our various
methods, to identify those classes. We show that, for all data-
sets, one diffeomorphic method—that based on SRVFs—is
superior to all other methods, including eigenshapes which,
however, usually works impressively well. However, we also
wanted to know what a good classification—the kind that a
trained human might make—looks like, so we asked experts
to undertake the same test. We find that most of our algorith-
mic methods beat the human experts. We conclude that such
methods, particularly those that operate on curves rather
than points, are very effective when applied to many shape
classification problems, and can even be superior to humans.
Finally, in homage to the grandfather of shape analysis,
D’Arcy Wentworth Thompson, we show that some of these
methods provide an answer to the problem that he posed in
Chapter XVII of On growth and form [42]: how mathematics
might be used to transform one shape into another.
2. Results
We studied the two-dimensional outline shapes of three very
different sets of objects: vases, leaves and shells. The vase out-
lines are based on 716 images of Athenian black- or red-figure
vases classified into 24 classes: the shape categories used by
vase scholars; the leaf outlines are based on 440 images of
Swedish leaves classified into 15 Linnaean species; the shell
outlines are based on 235 images of gastropod shells classified
into 10 Linnaean genera. Figure 2 shows, for each dataset, one
of the original images from which outlines were extracted, as
well as the outline of a randomly chosen member of each
class. Our examples embrace a great variety of shapes.
Where the outlines of Greek vases are mostly smooth, those
of shells and leaves are often very jagged; and while our
shells have quite similar aspect ratios, some leaves are needles,
others are pancake-like and others are something between.
Within each class, the individual objects are unique and
distributed more-or-less evenly among classes.

2.1. Square-root velocity functions are superior to other
shape description methods

To test our four shape description methods—eigenshapes,
LDDMM, SRVFs and geometric currents—we first calculated
the pairwise distances between all objects of each set—vases,
leaves and shells—using each method. We then trained a stat-
istical classifier on the distances among a training set of
between 51% and 67% of the objects, and then asked the clas-
sifier to assign the remaining test objects to a class based on
the distances among the objects. To ensure that our results
did not depend on the chance allocation of individuals
among training and test sets, we constructed a hundred
different sets by random stratified sampling and ran the clas-
sifier on each. Since the shape analysis methods compute
distances between shapes, the obvious classifier is one that
uses such distances directly, here the k-nearest neighbour
(k-NN) classifier. We measured classification success as the
F1-score, the harmonic mean of precision and recall of the
obtained classification relative to ground truth [43]. Note
that k in k-NN is a user-specified parameter that selects the
number of neighbours to use; we selected an optimal value
for k for each shape method and dataset in initial experiments
based on the F1-score.

Even though the training sets were small—a few hundred
individuals divided among 10–24 classes—the k-NN proved
remarkably good at classifying outline shapes. Its ability to
do so, however, depended on the shape description method
used. Figure 3 shows the ranked performance of each
method over the object samples. The SRVF method was the
top-ranked method in all cases, being able to classify vases
into their classes with 97% accuracy, leaves with 92% and
shells with 84% (F1-scores); geometric currents performed
next best overall, followed by eigenshapes.

In order to show each method to its best advantage we
varied their parameters (see §4); figure 3 reports the best
result for each class. The variation in performance that
comes from tweaking parameters can be instructive. When
trying eigenshapes, for example, we varied the number of
principal components that went into the distances and
found that, in all cases, the winner used at least 90% of the
total variance and for vases 99.9%, which suggests that
some of the shape differences between classes are very
subtle indeed.

The best method, using SRVFs, improves shape classifi-
cation accuracy over eigenshapes by 5–10% depending on
the object class. However, the superiority of diffeomorphic
methods is also evident when we plot the positions of the
objects in the relevant shape space. Eigenshapes, geometric
currents and SRVFs all yield principal components and, in
general, the classes are better separated in principal
component spaces based on geometric currents or SRVFs
than they are in eigenshape space (figure 4a).

We can also compute the average shape of each class
using our various methods. For SRVFs this is the Karcher
(Fréchet) mean, an average shape estimated in Riemannian
space [44]. Figure 4b shows that, where eigenshape means
are rather amorphous, even blob-like, Karcher means retain
more detail and so resemble the original objects much more
closely (compare the objects in figure 4b with those in
figure 2). Thus our results show that the diffeomorphic
shape description method based on SRVFs is better than
the standard method, eigenshapes, at classifying the shapes
of real objects and also at producing accurate averages of
groups of objects. We note, however, that eigenshapes actu-
ally work surprisingly well and beat one diffeomorphic
method, LDDMM, at least in our implementation.

Why are some of our diffeomorphic methods superior
to geometric morphometrics when used in a supervised
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classifier? It may be supposed that the curvature of shape
space only matters when comparing objects of very different
shapes and that, when comparing similar objects, a linear
approximation will do. However, this is clearly not so. As
the confusion matrices show (figure 5), the superiority of
SRVFs over eigenshape distances lies precisely in their ability
to discriminate among very similar objects, such as the two
types of stemless cups (kyathos and skyphos), the three
genera of Buccinid shells (Buccinum, Neptunea and Siphonalia),
or the two species of Ulmus leaves. This suggests that shape
space is geometrically complex at even very small scales.

2.2. A machine shape-based classifier is superior
to human experts

We would like a machine classifier that classifies at least as
well as humans do. But not all humans are equally adept at
classifying all things. To find out how well our shape-based
k-NNs perform we formed a panel of experts composed of
three classical vase scholars, three botanists and three
malacologists, and asked them classify the dataset of which
they were knowledgeable into classes (i.e. the malacologists
only got shells). We generated a test set of outlines that
resemble those in figure 2 and asked all three experts and
the SRVF-based k-NN to cluster them into a specified
number of classes, without naming those classes. Thus the
role of experts and k-NN were the same except that, instead
of being based on a training set, the experts had to rely on
what they already knew.

For these particular test sets, the SRVF-based k-NN classi-
fier achieved F1-scores of 0.971, 0.908 and 0.848, for vases,
leaves and shells, respectively: comparable to the scores we
found on our hundred-replicate data sets (figure 3). Our
experts were not as good: the mean F1-scores of the three
(±1 s.d.) were 0.847 ± 0.087, 0.799 ± 0.039 and 0.574 ± 0.044
for the same objects. The best that any expert did on any data-
set was 0.95 (for vases), but even that expert was beaten by
the machine. Interestingly, the rank order of the average abil-
ities of our expert groups—vase scholars > botanists >
malacologists—is the same as that of the machine classifiers,
which suggests that the a priori taxonomies of vases, leaves
and shells that we used embody successively less shape
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information. Moreover, as the confusion matrices show,
experts and algorithms tend to make the same kind of
mistakes (figure 5). Where our experts tended to confuse
kyathoi and skyphoi vases, the three species of Ulmus
leaves, and shells belonging to the muricid genera Hexaplex
and Chicoreus, so did the algorithms. There are some
differences. The SRVF-based k-NN correctly classified most
Conus and Conasprella shells correctly even though they
have very similar cone-shaped shells. Our experts, by con-
trast, all failed to do so. In general, however, our results
suggest that, when classifying shapes, human experts and
machine classifiers based on distances in shape space do
much the same thing. It is just that algorithms do it better.
2.3. Classifying in global shape space
As discussed above, SRVF distances are better than eigen-
shape distances at discriminating very similar shapes. But it
does not follow from this that they are better at classifying
very different shapes. To investigate this, we began by exam-
ining the relative positions of our object classes in shape space
when measured by either eigenshape or SRVF distances. We
estimated the average pairwise distances among all classes
within a group (e.g. vases) for both distance metrics and
found that, for leaves and vases, the Pearson correlation
between the two distance metrics was high (r = 0.69 and
0.84, respectively), which implies that the relative distances
of object classes are similar regardless of the metric used.
Shells, however, were very different: the two distances were
essentially uncorrelated (r = 0.1). One of the methods must
be locating classes of shells incorrectly in shape space
(figure 6a).

To find out which method was at fault, we constructed
neighbour joining trees using the average distances between
shell classes (figure 6b). Since the classes are genera, these
trees can be viewed as phylogenies. Based only on shape
we do not expect their topologies to be the same as a
DNA-based phylogeny, but we do expect genera that
belong to the same family to group together. This was
roughly true for eigenshapes, but not SRVF distances. For
example, the Conid genera, Conus and Conasprella, have
very similar shapes—our experts could scarcely tell them
apart—and are very different from all the other genera, yet
the SRVF tree splits them apart and makes them sister taxa
to different Buccinids (figure 6b, ‘closed SRVF’). SRVF dis-
tances, then, although good at discriminating among very
similar genera, make no biological sense when considering
shell space as a whole.

We hypothesized that this failure is due to the fact that the
SRVF algorithm knows nothing about biological homology,
and can rotate the objects. When finding the shortest path
between two curves the algorithm does so even if that
means matching the apex of one shell to the siphonal canal
of the other. Misalignments of this sort presumably occurred
repeatedly (figure 6b, ‘closed SRVF’, red shells), and so we
incorporated an implementation of the SRVF-based algor-
ithm that uses open, rather than closed, curves and
constrained it so that the first and last coordinates, which
are based on homologous points near the apices, were
matched to each other. Thus, the SRVF-based algorithm
now makes use of two landmarks at the start and end of
the curve (conceptually, the eigenshapes algorithm uses all
the points as landmarks, but may optimize their locations).
We found that using these ‘open’ curves, the correlation
between the eigenshapes and SRVF distances improved
somewhat for vases and leaves and considerably for shells:
where previously it was r = 0.1 now it was r = 0.68. Moreover,
the NJ tree based on the open-curve SRVF distances was far
superior to either eigenshapes or closed-curve SRVF dis-
tances, for now all three families—Muricidae, Conidae and
Buccinidae—were monophyletic (figure 6b, ‘open SRVF’).
The open-curve SRVFs were also at least as good as the
closed-curve SRVFs on the original k-NN classification task
(F1-scores: 0.969 ± 0.002, 0.938 ± 0.003 and 0.844 ± 0.006 for
vases, leaves and shells respectively). Thus, when classifying
objects of very different shapes we recommend ensuring that
the objects are parametrized using the same start and end
points, and restricting the SRVF algorithm to match open
curves with constrained start and end points, as well as
potentially incorporating other homologous landmarks
if provided.
2.4. Finding the shortest paths in shape space
The SRVF algorithm and LDDMM work by transforming
shapes into each other. When doing so, they find a geodesic—
the shortest path in shape space. Any point along this path
can be back-transformed into a shape in the original space to
produce a transformational series. To illustrate this we trans-
formed the outline of a plausible ancestor, or at least ancient
relative, to one of our modern objects and inferred some
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intermediates. Figure 7a–c shows the transformation of a
Proto-Attic Neck Amphora (725–675 BCE) into an Athenian
Red Figure Neck Amphora (525–475 BCE) [45]; an Early Mio-
cene (20–18 Ma) maple Acer palaeosaccharinum [46] into the
recent A. platanoides; and the first known Conid gastropod,
the Late Paleocene Hemiconus leroyi (59.2–56Ma) into the
recent Conus furvus [47,48]. These examples are only illustra-
tive: we do not claim that the earlier objects are true
ancestors of the more recent ones. Indeed, the transformed
objects need not be linked by evolutionary descent at all. In
1995, the New Zealand Pop artist Dick Frizzell transformed
an American icon, Mickey Mouse, into a Māori one, the Tiki
(figure 7d,e; usedwith permission of the artist). The SRVF geo-
desic path from Mickey to Tiki is slightly different from the
artist’s—and 23% more efficient (figure 7f ).
3. Discussion
Although geometric morphometric methods have been
widely used, they only approximate distances in the complex
geometry of shape space [13,14]. For biological objects this
approximation largely suffices [14] and, consistent with this
claim, we find that eigenshapes analysis generally performs
quite well at our classification task. However, two diffeo-
morphic methods, based on SRVFs and geometric currents,
are even better at distinguishing and classifying objects of
different shape, and this is true for objects as disparate as
vases, leaves and shells. In addition, the mean shape of
groups of objects in these shape spaces also clearly preserve
more detail than linear shape means do. These results
imply that diffeomorphic methods, until now mostly studied
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by mathematicians, belong in the scientist’s toolbox. All the
implementations that we used are publicly available (see
Material and methods).

The three diffeomorphic methods do not perform equally
well at the classification task. Since LDDMM does not sim-
plify the shape space it might be expected that it would
give the most accurate distances relative to human experts.
In fact, of the three it performs the worst. This is because
the metric used trades-off the precision of the transformation
with the length of the path between them. For this reason, it
sometimes finds a transformation that is only close to the true
target shape, and so may miss some of the finer distinctions
among our classes. Since SRVFs and geometric currents
induce spaces with much simpler geometries, they should
be able to match curves exactly. However, implementation
in a computer requires additional constraints. The geometric
currents algorithm first discretizes the shapes and, in doing
so, sacrifices some information about them, while the SRVF
algorithm avoids this at the cost of simplifying the path
between the shapes. A priori it is not clear which of these
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approaches would be most effective, but empirically the
SRVF approach is for these datsets.

Our machine shape classifier worked best on the vase
dataset, slightly less well on leaves and only moderately
well on shells. It may be supposed that these differences in
performance depend on the shapes themselves. However,
since the performance of the experts showed exactly the
same rank order, it is much more likely that they depend
on the quality of the classes. While our ground-truth classes
were imposed by humans and chosen by us in the expec-
tation that their members have, on average, different
shapes, their natures vary. The vase classes are based on a
scholarly taxonomy that largely depends on their gross
shapes, but the leaf and shell classes are not; for modern bio-
logical genera and species are distinguished not only by gross
shape and positioning of constituent parts (e.g. spiral ribs,
varices, leaf veins), but also microscopic, ecological, behav-
ioural and genetic traits or abstract properties such as the
ability to interbreed. Even the differences between vase
classes are not all visible from their outlines, depending, in
part, on constructional details. This means that the amount
of information about class identity that is visible from
shape outlines varies greatly among the three datasets.

Our classifiers used only shape rather than the many
other features that might distinguish these groups. Further-
more, the classifier that we used—a k-NN—requires very
small training sets compared to the large training sets
required by more sophisticated ML methods such as a convo-
lutional neural network (CNN). However, k-NN is the natural
choice, since our analysis gives distances among shapes
rather than features. Even so, the success of our shape-
based classification is remarkable. We imagine that they
might be useful for the automatic classification of the innu-
merable objects that differ in shape, not only those we have
studied here, but even things as diverse as protein structures,
the spectrograms of bird songs or the melodies of pop songs
(e.g. [49–52]). Given suitable data our methods could also be
applied to three-dimensional shapes (e.g. [32,53]); see [54] for
a three-dimensional generalization of the SRVF. This would
be particularly useful for rotationally asymmetrical objects,
but also require much more computational effort.

Our classifier was more accurate than the judgements of
experts, almost regardless of the shape-analysis method
under the hood. Why is this? We asked our experts and
found that they were often led astray by prior knowledge.
Where the machine classifier was trained to distinguish the
groups actually present, the experts sometimes sought the
groups that they thought should have been there. For
example, all three malacologists failed to distinguish between
the closely related genera Conus and Conasprella. They did so
because the classification of the Conidae remains unsettled
[55], and the relationship between shell shape and genera
unclear. Indeed, one of our experts had second thoughts
about the cones, gave us a revised classification before
being told the ground truth, and got the best F1-score
among the malacologists, 0.716. Our intention is not to
diminish experts who, after all, usually have much more
information about the objects that they classify, but rather
show how effective machine shape-classifiers can be, even
when based on very small training sets. Had we given our
experts information about the particular classes that we had
pre-determined—either as verbal descriptions or examplars—
then the results may well have been different.

Compared to linear methods, diffeomorphic approaches
are computationally expensive. In the implementations we
used, a SRVF-based or LDDMM registration for a single
pair of shape outlines takes, on average, 1–3 s to process on
a modern laptop. Computing all 255 970 pairwise distances
for our Greek vase dataset of 716 objects takes, then, 85 h if
performed sequentially. The geometric currents algorithm is



(a)

(b)

(c)
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Figure 7. Examples of shape transformations along geodesic paths. (a) A Proto-Attic Neck Amphora (675–700 BCE) transformed in five steps into an Athenian Red
Figure Neck Amphora (525–475 BCE); (b) an Early Miocene (20–18 Ma) maple leaf Acer palaeosaccharinum into the recent Acer platanoides; (c) the Late Paleocene
Hemiconus leroyi (59.2–56 Ma) into the recent Conus furvus; (d ) Mickey to Tiki Tu Meke (1995) by New Zealand artist Dick Frizzell; (e) Frizzell’s shapes isolated as
outlines; ( f ) Mickey into Tiki outlines as the shortest distance in SRVF shape space.
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much faster and takes about 10 s to complete the same task,
although it does suffer from some memory issues. However,
eigenshapes—Procrustes alignment, PCA and distance
calculations—takes, on average, only 1.5 s (all timings based
on the same core i7 computer and based on Python code).

A fundamental difference between the methods is that
geometric morphometric methods depend on the correspon-
dence of explicitly homologous points—landmarks—while
the diffeomorphic methods use the underlying curve outline.
We initially used closed curves, that is, curves without a start
or end. This is beneficial if the objects are presented in any
orientation, but, as we have shown, it can provide too
much variability. When diffeomorphic algorithms rotate
shapes relative to each other to find lower energy paths
they should, in general, align homologous parts to each
other. However, if the shapes are sufficiently different they
need not: instead, the spire of one shell might be aligned to
another’s siphonal canal or the neck of one vase to another’s
base. Indeed, when comparing distantly related classes (par-
ticularly within the shells, but also sometimes the vases) we
found instances where this appeared to be the case. Such mis-
alignments may not matter for the purposes of local
classification, but any evolutionary interpretation of the dis-
tances would be incorrect, for the inferred path would be
one that evolution could not possibly have taken.

If the shapes are pre-processed to incorporate some infor-
mation about homology then this can be used. To deal with
this case, we constrained the SRVFs to be based on open
curves with fixed start and end points, which removes the abil-
ity of the algorithm to rotate the objects (a similar approach is
taken in [56]). The same methodology could be used to incor-
porate other homologous landmarks should they exist,
meaning that the a priori information established over many
years of scholarly study can still be incorporated. However,
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our results show that the diffeomorphic methods are appli-
cable even when this information is not available. Of course,
as with any classification method, verification and further
analysis of the results require expert human input.

More than a hundred years ago, D’Arcy Wentworth
Thompson posited his ‘theory of transformations’, which
held that species closely related by evolutionary descent
should also be related by ‘simple’ shape transformations;
and that ‘small’ transformations indicate particularly close
evolutionary affinities [42,57]. To demonstrate this Thompson
relied on outline drawings of an animal, adding a rectilinear
grid that was deformed using a regular transformation, with
the image of the animal deformed along with it until it more
closely matched another animal. Our modern equivalents
dispense with the grid and match the curves more accurately.
However, in spirit they are the same, and our transformations
illustrate how the evolution of shape in Riemannian space
can be modelled so that it might be mapped onto a
phylogeny, or even used to infer one [58,59].
9:20220493
4. Material and methods
4.1. Datasets
The vase images were obtained from the Beazley Archive Pottery
Database (BAPD; https://www.beazley.ox.ac.uk/index.htm) at
Oxford University; their taxonomy, which was modified slightly
from the standard shape taxonomy given in the BAPD, was
checked by two experts, T.M. and D.R.-P. The leaf images are
based on the Swedish Leaf Dataset at https://www.cvl.isy.liu.
se/en/research/datasets/swedish-leaf/ previously used in the
image analysis and shape literature [60]; the images came with
species labels, which were checked by an expert, T.E.R. The
shell images were obtained from Gastropods.com (http://gastro
pods.com); the images came with species labels whose taxonomy
was standardized to the World Register of Marine Species
(WoRMs; http://www.marinespecies.org) and checked by
A.M.L. Each image represents a unique object and was checked
to ensure that it was complete and in standard orientation.
The sources of the original images are given in the Readme in
this repository: https://github.com/smarsland/Classifying
OrganismsArtefactsShape.
4.2. Data preparation
Shape methods require an outline of the object, and often it is
necessary to extract this from a digital photograph. While this
has been an area of research interest for a long time in computer
vision—and is something that humans do easily—there do not
yet exist completely reliable methods [61]. We used a common
contour extraction algorithm, the marching squares method
[62] on a binarized version of each image, with the threshold
chosen experimentally. For the leaves and shells no other pre-
processing was performed, but for the vases the handles were
removed using a spline fit, which was manually verified and, if
necessary, corrected. The vases were also made to have a reflec-
tive symmetry through a central vertical axis by computing the
outline contour of each side, and using the shorter one of the
pair, reflecting it to make the full shape. This removes structures
such as the spouts of pouring vessels.

Each outline curve was sampled to have an identical number
of equally spaced points—139 for the vases, 150 for the shells and
200 for the leaves—by sampling a cubic spline fitted to the curve.
Preliminary experiments showed that at these resolutions no
difference between the interpolated curve and the original
shape were visible to the naked eye. The point sets were aligned
using Procrustes alignment to remove the global transformations
of scale, rotation and translation from the curves. This is necess-
ary for eigenshapes and LDDMM, but not for the methods based
on SRVFs or geometric currents. Examples of the resulting shape
outlines with filled interiors are shown in figure 2. The same
datasets of shape outlines were used when testing all methods.
The shape outline data are available at the following DOIs.
Vases: https://doi.org/10.6084/m9.figshare.14551002, leaves:
https://doi.org/10.6084/m9.figshare.14551005, shells: https://
doi.org/10.6084/m9.figshare.14551044.
4.3. Estimating distances
Parameters for each method were chosen experimentally based
on the training data, and the upper-triangular distance matrix
between all pairs of shapes computed for each method. Eigen-
shapes: We used the points that parametrize the curve as semi-
landmarks. We experimented with optimizing the position of
these landmarks, but it was computationally expensive and did
not improve the results. We computed the principal components
of the point coordinates of all shapes and, from these, the Eucli-
dean distances among them using the first d-dimensions, where d
was chosen based on the amount of the variance explained, ran-
ging from 0.75 to 0.999. LDDMM: We used the implementation
described in [63] available at https://github.com/tonyshar
dlow/reg_sde, running for 20 timesteps. SRVF: We used the
fdasrsf library available at https://github.com/jdtuck/fdasrsf_
python. For closed curves, we used the path-straightening algor-
ithm described in [64] and available in the fdasrsf library. The
algorithm transforms one shape to another in κ≥ 2 steps. The
output is the geodesic distance, which is the inner product in
SRVF space between the first shape and the final shape in the
transformation. To compute our distance matrix, we set κ = 2.
For open curves, the points were presented in pre-defined
order, and these points cannot be translated; this removes the
rotations. The geodesic distances between open curves were
computed using the default parameters in the fdasrsf library.
This computation includes an additional re-sampling step,
where curves were interpolated at 100 points using a univariate
spline fit. Geometric currents: We used the method described by
Benn et al. [26] available at https://github.com/olivierverdier/
femshape. This implementation takes three parameters: a non-
negative integer, s, determining the size of the matrix represen-
tation; the mesh-size, m; and a scaling parameter, σ≥ 0. We
tested three options for each parameter where 1≤ s, σ≤ 4 and
16≤m≤ 24.
4.4. Machine classification
Most machine learning algorithms take as input features of the
elements of the dataset (or their complete representation),
rather than distances. We, however, used our various shape
analysis methods to compute distances among objects and
wish to classify on those. For this reason, we implemented our
own k-NN classifier that takes a distance matrix as its input
and assigns elements of the test set to the class of the majority
of the closest k points in the training set, where k is a user-
selected parameter. We tested values of k between 3 and 12 for
each method and object class and found the k that results in
the highest F1-score. We ran the k-NN on 100 randomly selected
samples from the training sets of each dataset and computed the
F1-scores. For vases the ratio of training : test set was 480 : 236,
leaves 300 : 140, and shells 120 : 115. In order to ensure that train-
ing set size was not the reason for better performance in the case
of vases, we also reduced the size of the training set in that case
(to 10 in each class), leaving the test set alone, without signifi-
cantly changing the results. Interestingly, even when reducing
the training set further, to 2 in each class, the classifier still did
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well. We used the sklearn implementation of the F1-score with
the average parameter set to ‘weighted’.

4.5. Expert classification
Each expert was given a standard test set of shape outlines as
individual images and asked to partition them into n groups,
where n is the number of ground-truth classes, by sorting them
into folders. The objects were anonymized so that no expert
had any information about them that the machine classifier did
not. The experts were not asked to identify the groups that
they formed. Each expert’s classification was then compared to
the ground-truth classification with the F1-score.

4.6. Transformations
To create the transformation plots seen in figure 7, we used the
SRVF path-straightening algorithm with κ = 5. Note that
the transformations are not necessarily symmetric even if the
shapes themselves are, such as Mickey and Tiki. Therefore, to
display a symmetric transformation between Mickey and Tiki,
we split the outlines in half and transformed these halves from
one to another. The transformations were then reflected and
attached. To test the efficiency of our transformation with the
artist’s, albeit in a metaphorical sense, we computed the sum
of the distances between consecutive outlines, i.e. the energy
needed to deform one shape into the other.
Data accessibility. Sources are provided in the paper, and code is avail-
able on github as specified in the paper. Data access is described in
the Material and methods.
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