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Abstract: Despite their non-diseased nature, healthy human tissues may show a surprisingly large fraction of aneusomic 
or aneuploid cells. We have shown previously that hybridization of three to six non-isotopically labeled, chromosome-
specific DNA probes reveals different proportions of aneuploid cells in individual compartments of the human placenta 
and the uterine wall. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated 
from anchoring villi or the uterine wall had gained individual chromosomes. Chromosome losses in placental or uterine 
tissues, on the other hand, were detected infrequently. A more thorough numerical analysis of all possible aneusomies oc-
curring in these tissues and the investigation of their spatial as well as temporal distribution would further our understand-
ing of the underlying biology, but it is hampered by the high cost of and limited access to DNA probes. Furthermore, mul-
tiplexing assays are difficult to set up with commercially available probes due to limited choices of probe labels. Many 
laboratories therefore attempt to develop their own DNA probe sets, often duplicating cloning and screening efforts un-
derway elsewhere. In this review, we discuss the conventional approaches to the preparation of chromosome-specific 
DNA probes followed by a description of our approach using state-of-the-art bioinformatics and molecular biology tools 
for probe identification and manufacture. Novel probes that target gonosomes as well as two autosomes are presented as 
examples of rapid and inexpensive preparation of highly specific DNA probes for applications in placenta research and 
perinatal diagnostics. 
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INTRODUCTION 

 The human placenta is a vital organ anchoring the fetus 
to the mother via the uterus and providing an interface for 
the transport of nutrients, gases and waste. The overwhelm-
ing number of chromosomal studies of the placenta has been 
performed on cells biopsied from floating villi, which were 
cultured for several days to obtain metaphase spreads for 
conventional chromosome banding analysis. We decided to 
perform investigations on uncultured interphase cells using 
fluorescence in situ hybridization (FISH), since cell viability 
or proliferation are minor concerns when using FISH [1-5]. 
Probes for our initial studies of aneuploidy in extra-
embryonic tissues were obtained from a commercial source 
(Abbott, Des Moines, IL) [6, 7]. Probe sets were comprised 
of three to four chromosome enumerator probes (CEPs) tar-
geting chromosome types, X, Y, 16 or 18, or locus-specific 
probes (LSPs) for chromosome 13 or 21 [7]. Studying the 
chromosomal make-up of cells in different compartments of 
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anchoring villi and the uterine wall also referred to as ‘basal 
plate’, we found that the karyotypes of these extra-
embryonic cells were mostly unrelated to the karyotype of 
the fetus [5, 7, 8]. The most common abnormality we have 
observed was a gestational age-related gain of chromosomes 
affecting invading cytotrophoblasts (iCTB’s) [7]. For a more 
comprehensive analysis and to be able to increase the num-
ber of chromosome types that can be scored simultaneously 
in a single FISH experiment, we had to develop our own 
custom sets of chromosome-specific DNA probes. 
 While the DNA probe development efforts described in 
the present communication were prompted by the need to 
develop a novel probe set for more comprehensive cytoge-
netic analyses of normal placental tissue compartments from 
uncomplicated pregnancies [6], DNA probes selected in a 
similar fashion are likely to find widespread application in 
investigations of unusual conditions such as spontaneous 
abortions [9, 10] or confined placental mosaicism (CPM) 
[11-14], the cytogenetic analysis of human preimplantation 
embryos [15-21], perinatal analysis [22-24], tumor research 
and diagnosis [1-5, 25-27] as well as radiobiological or envi-
ronmental studies [28-40]. Thus, the description of our probe 
selection approach combining bioinformatics tools for data 
mining of genomic databases with deeply redundant recom-
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binant DNA clone libraries, which follows the brief review 
of the more conventional techniques for DNA probe selec-
tion, may provide useful information for a diverse group of 
researchers in the life sciences and enable the average re-
search lab to prepare chromosome-specific custom DNA 
probes at a very affordable cost. 

Selection of DNA Target Sequences and Preparation of 
Non-Isotopically Labeled DNA Probes for FISH 

 Briefly, successful cytogenetic analysis by FISH is based 
on the formation of stable hybrids between the DNA targets 
inside cell nuclei or metaphase chromosomes and the labeled 
DNA probes molecules provided by the investigator [41]. 
The DNA probes can either be marked by a fluorochrome, 
which can then be detected by eye or a camera attached to a 
fluorescence microscope, or by a non-fluorescent, non-
isotopical hapten, most often biotin, digoxigenin or dinitro-
phenol, which is detected by a fluorescent moiety such as a 
fluorochrome-labeled avidin or antibody. Different probe 
types are available to suit particular applications: whole 
chromosome painting probes allow the delineation of inter-
chromosomal translocations in metaphase spreads [37, 42, 
43], while intra-chromosomal rearrangements are detected in 
metaphase or interphase cells with chromosome band-
specific probes [44-47]. In addition, there are DNA probes 
that target somewhat smaller, gene- or locus-specific regions 
[34, 48-52]. 
 While the FISH technology found widespread application 
in research laboratories around the world, its acceptance in 
clinical settings is still hampered by a limited selection of 
commercially available, U.S. Food and Drug Administration 
(FDA)-approved tests and the typically labor-intensive, 
costly nature of producing DNA probes that perform well in 
multiplexed assays [53]. While FDA approval may be re-
quired for all diagnostic probes that are shipped across state 
borders in the U.S., the in-house preparation of DNA probes 
might lead to significant cost savings in research laborato-
ries. Our laboratories have a long-standing track record of 
production of novel DNA probes and innovative cytogenetic 
assays, many of which have found their way into contempo-
rary cancer research or preimplantation genetic diagnosis 
(PGD) analysis [16, 43, 45, 47, 48, 50, 54-60]. To facilitate 
the distribution of molecular cytogenetic assays and make 
DNA probes as well as multiplex FISH tests available to the 
less experienced laboratory, we have undertaken probe pro-
duction pilot studies which take advantage of the vast re-
sources generated in the course of the Human Genome Pro-
ject such as physical maps and recombinant DNA libraries.  
 Our initial studies focused on the preparation of novel 
DNA probes for chromosome scoring or ‘enumeration’ in 
interphase cell nuclei and metaphase spreads, since these 
seem to remain the most common applications in research 
and the clinical settings [53, 61]. The vast majority of these 
CEPs target highly reiterated, tandemly-repeated DNA se-
quences in order to bind many copies of a rather small probe 
sequence to a tightly localized area or volume. Different 
ways of isolating and purifying such DNA probes exist [25, 
54, 59, 60, 62-66].  
 Briefly, up until the 1980’s, satellite DNA sequences 
were enriched, isolated and characterized by a cumbersome, 
labor-intensive workflow which involved either density gra-

dient centrifugation or timed reassociation of single stranded, 
thermally denatured DNA followed by enzymatic digestion 
of single stranded DNA by exonucleases. This was followed 
by molecular cloning, library screening, clone characteriza-
tion and DNA sequencing which made this a rather costly 
enterprise [67-69]. The use of endonucleases to break up 
large tandemly repeated DNA clusters facilitated the hunt for 
chromosome-specific heterochromatic, satellite DNA, expe-
dited the cloning-characterization steps and lead to major 
progress in the identification of chromosome-specific high 
order tandem repeats [62, 70-74]. 
 The breakthrough in the isolation of chromosome-
specific DNA polynucleotides and preparation of DNA 
probes for FISH came with the application of DNA amplifi-
cation using the polymerase chain reaction (PCR) in the late 
1980’s: chromosome-specific sequences could be extracted 
on-line from larger, high order tandem repeats of satellite 
DNA to define the PCR primer sequences and amplify a spe-
cific fragment from genomic DNA [54] (Fig. 1A). 
 In a variation of this scheme, chromosome-specific se-
quences could be amplified with consensus PCR primers from 
template DNA which provided limited sequence variety, such 
as flow-sorted human or mouse chromosomes [25, 75] (Fig. 
1B). In general, DNA probes generated this way still repre-
sented a pool of diverse sequences and molecular cloning was 
required to isolate the highly specific, informative probes [25]. 
 It wasn’t until the completion of a first draft of the human 
genome sequence when new sets of genomic tools became 
available that would revolutionize the ways individual inves-
tigators analyze the human genome in the 1990’s and on-
wards often using no more than their personal computer and 
an on-line connection to publicly available databases. Large 
insert, recombinant DNA libraries such as YAC [76, 77], P1 
[78, 79] or BAC [66, 80, 81] libraries had been constructed 
and characterized, clones had been end-sequenced and 
placed on the larger physical maps by basic sequence align-
ment procedures [82]. 
 The work of Baumgartner et al. (2006) [65] showed that 
a combination of database searches (to identify BAC clones 
rich in satellite content) in combination with in vitro DNA 
amplification can expedite the preparation of chromosome-
specific DNA probes. However, this approach still requires 
some a priori knowledge of the target sequence to specify 
the PCR primers [65]. 
 We recently demonstrated that publicly available on-
line databases can be analyzed using a suite of simple bio-
informatics tools to identify chromosome-specific BAC 
clones [60]. Specifically, we used our proprietary informa-
tion of a Y chromosome-specific sequence [83-85] and a 
DNA sequence alignment program (BLAST) [82] to iden-
tify BAC clone RP11-243E13 as a potential DNA probe. 
Using the Genome Browser program at the UC Santa Cruz 
(UCSC) Genome Center web site (genome.ucsc.edu), we 
then identified a BAC clone mapped to the satellite con-
taining centromeric heterochromatin on the human X 
chromosome (BAC RP11-294C12) [60]. Probes prepared 
from these two BAC clones showed an impressive better-
than-expected performance in FISH experiments by dis-
playing strong, highly specific FISH signals localized ex-
clusively to the target chromosomes (Fig. 2).
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Fig. 1. In situ hybridization of cloned, chromosome-specific PCR products. A) Biotinylated DNA prepared from PCR products with 
chromosome Y -specific oligonucleotide primers bind specifically to the heterochromatic region of the human Y chromosome. B) The Y-
specific probe shown in A) can be combined with a biotinylated probe for the smaller tandemly repeated DNA cluster at the centromeric re-
gion of the X-chromosome. Bound probes were detected with avidin-FITC (green fluorescence) on ethidium bromide (red fluorescence)
stained chromosomes, here shown as grey scale images. (Bars = 10 �m). 

Fig. 2. In situ hybridization analysis of DNA probes prepared from BAC clones. The BAC clones RP11-294C12 and RP11-242E13 hy-
bridized to metaphase spreads prepared from short term cultures of human lymphocytes showed specific hybridization to the target regions on 
the X (arrowhead) and Y (arrow) chromosome, respectively. A) Schematic representation of the FISH target regions on the X and Y chromo-
some. B) Hybridization of both probes to metaphase chromosomes. C) Hybridization signals in diploid interphase cell nuclei. (Bars = 10 �m).

Probe Preparation and Fluorescence in Situ Hybridiza-
tion (FISH) of BAC-derived DNA Probes 

 The procedures used for hybridization of BAC-derived 
DNA probes follow pretty much the published procedures 
for oligonucleotide, plasmid or P1-derived DNA probes [50, 
86, 87]. In typical experiments, the BAC DNAs are extracted 
from overnight cultures following an alkaline lysis protocol 
[88] or using a BAC DNA miniprep kit (Zymo Research; 
Irvine, CA). The DNAs are confirmed on a 1% agarose gel 
and quantitated spectrophotometrically. Probe DNAs are 
labeled with biotin-14-dCTP or digoxigenin-11-dUTP 
(Roche; Indianapolis, IN) by random priming using a 
commercial kit (BioPrime Kit, Invitrogen; Carlsbad, CA). 
Slides of metaphase spreads of cells are made from short-
term cultures of peripheral blood lymphocytes from a karyo-
typically normal male following published procedures [35]. 
 The slides (metaphase cells, interphase cell nuclei or 
slides carrying deparaffinized tissue section) are denatured in 
70% formamide at 70 °C, dehydrated and overlaid with a 
hybridization cocktail containing 20-50 ng of denatured 
probe DNA in buffer containing 10% dextran sulfate and 50-

55 % formamide. Following overnight incubation at 37°C 
(48 or more hours for deparaffinized tissue sections), slides 
are washed to remove excess probes and incubated with a 
fluorochrome-conjugated avidin or corresponding antibodies 
as required [59, 66, 89]. Finally, the slides are mounted with 
4,6-diamino-2-phenylindole (DAPI) (0.1�g/ml) in antifade 
solution coverslipped and imaged on a fluorescence micro-
scope. 

BAC-Derived DNA Repeat Probes for Autosomal  
Targets 

 We were also interested in whether this concept of 
knowledge-based probe selection can be extended to probes 
for human autosomes. In our 2006 paper [65], we had pro-
posed a satellite-rich BAC clone, RP11-469P16, as template 
for a PCR based probe generation scheme. The UCSC Hu-
man Genome Browser at genome.ucsc.edu indicates the 
presence of a long interspersed repeated DNA sequence 
(LINE) in the BAC insert, which may lead to undesirable 
cross-hybridization since LINEs are not chromosome-
specific, but exist in thousands of copies across the human 
genome.  

A B C
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 According to information provided on the UCSC Ge-
nome browser web site, a BAC insert typically consists of 
25-350 kb of DNA. During the early phase of a sequencing 
project, it is common to sequence a single read (approxi-
mately 500 bases) at each end of each BAC from a large 
library. Later on in the project, these BAC end reads are 
mapped in silico to the genome draft sequence. Tracks in the 
genome browser as shown in Fig. 3 show these mappings in 
cases where both paired ends could be mapped within. A 
valid pair of BAC end sequences must be at least 25 kb but 
no more than 350 kb away from each other. The orientation 
of the first BAC end sequence must be "+" and the orienta-
tion of the second BAC end sequence must be "-". BAC end 
sequences are placed on the assembled sequence using Jim 
Kent's blat program [90]. Tracks can be used for determining 
which BAC contains a given gene or DNA repeat clusters 
using the ‘RepeatMasker’ program (www.repeatmasker.org). 
Please note that for the heterochromatic regions, there has 
been almost no clone validation in place to ensure that the 
predicted size or location of the BAC probe is correct. 
 When using a DNA probe prepared from BAC RP11-
469P16, FISH results showed cross-hybridization to multiple 
chromosomes other than chromosome 2 (Fig. 4A, B). How-
ever, a DNA probe prepared from BAC clone RP11-100H17 
(Fig. 3, arrow), which is expected to bind ~20 kb proximal of 
RP11-469P16 on the short arm of human chromosome 2, 
gave strong, highly specific FISH signals on interphase and 
metaphase cells (Fig. 4C). This can be attributed to the lack 
of interspersed non-chromosome specific DNA repeats in the 
insert of BAC RP11-100H17 as well as it’s composition of 
DNA tandem repeat units of entirely chromosome 2-specific 
satellite DNA. 
 Since inserts of BAC clones that contain satellite DNA, 
but no short or long interspersed repeated DNA sequences 
(SINEs, LINEs) appear to render a high signal-to-noise 
ratio and strong chromosome specific signals which can 
easily be scored by eye using a microscope, we prepared a 
SINE-/LINE-free DNA probe for the short arm of chromo-
some 4, band p11. The BAC RP11-360M1 carries an insert 
of an estimated 59846 bp, which is rich in tandemly-
repeated satellite DNA repeats, but free of interspersed 
repeat DNA (Fig. 5). 
 In situ hybridization of the chromosome 4-specific 
DNA probe prepared from BAC RP11-360M1 in combina-
tion with a differently lebeled probe (BAC RP11-294C12) 
for the centromeric region of the X chromosome to depar-
affinized human placental tissue section showed excellent 
probe performance, i.e., strong and highly specific DNA 
signals with were easily scored (Fig. 6). 

CONCLUDING REMARKS 

 Molecular cytogenetic analyses using FISH have pro-
vided major contributions to our understanding of disease 
processes including tumorigenesis, cancer progression and 
metastasis, but also to the existence of aneuploid cell 
populations or cohorts in seemingly normal tissues [5, 61, 
91-96]. 
 For example, with an incidence of one in every 5-6 
clinically recognized pregnancies, spontaneous abortions 

(SABs) during the first trimester are the most frequent 
pregnancy complication in women [9]. Causes of SABs 
have been identified as chromosomal abnormalities, uterine 
defects, immunological problems, hormonal imbalance and 
infections [2-6]. While more than half of all first trimester 
SABs are associated with chromosomal abnormalities, 
nearly 40% remain unexplained [6]. With no apparent as-
sociation between placental villous morphology and fetal 
chromosomal abnormalities, SABs with either euploid or 
aneuploid conceptuses demonstrated incomplete cytotro-
phoblast (CTB) differentiation and compromised invasion 
[7-9]. These observations prompted our studies of the 
chromosomal make-up of extra-embryonic cells at ma-
terno-embryonic and fetal-maternal interfaces, i.e., the hu-
man placenta and the uterine wall. However, as mentioned 
in the introduction the application of DNA probes de-
scribed in this review is not limited to investigations of 
fetal or extra-embryonic tissues. 

 The novel database mining approach to DNA probe 
selection described here is a fast and inexpensive solution 
to the problems of ‘probe bottlenecks’ in clinical research. 
Mapping information for BAC clones is publicly available 
from UCSC or the National Center for Biomedical Infor-
mation (NCBI)/National Institute of Health, USA, different 
libraries outside the US, such as the Wellcome Trust 
Sanger Institute, Hinxton, UK, or the Resources for Mo-
lecular Cytogenetics, Dipartimento di Genetica e Microbi-
ologia, Universita' di Bari, Bari, Italy, as well as several 
commercial sources are available to purchase these clones. 
The BAC-derived satellite DNA probes also seem to out 
perform most of the chromosome enumerator probes that 
are presently in use in research and clinical laboratories. In 
summary, the procedures described in the present commu-
nication allow a laboratory with typical, non-specialist 
equipment to prepare chromosome-specific DNA probes in 
just a few days and thus represent the most efficient, rapid 
and cost-conscious approach to generation of chromosome-
specific DNA probes for cytogenetic studies. 

DISCLAIMER 

 This document was prepared as an account of work 
sponsored by the United States Government. While this 
document is believed to contain correct information, nei-
ther the United States Government nor any agency thereof, 
nor The Regents of the University of California, nor any of 
their employees, makes any warranty, express or implied, 
or assumes any legal responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or serv-
ice by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States 
Government or any agency thereof, or The Regents of the 
University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of 
the United States Government or any agency thereof, or 
The Regents of the University of California.
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Fig. 3. Screen dump of the UCSC Genome Browser (GoldenPath) display showing the BAC ends mapped to the targeted region of chromo-
some 2: 92,269,115 bp to 92,335,426 bp. The alignment BAC clone end sequences with the draft sequence of the human genome places BAC 
RP11-100H17 (arrow) in a region comprised entirely of satellite DNA, while BAC RP11-469P16 (arrowhead) is predicted to contain a cluster 
of long interspersed repeated DNA sequences (LINEs)(circled). 

Fig. 4. FISH performance of BAC-derived DNA probes targeting the centromeric heterochromatin of chromosome 2. A-B) A DNA 
probe prepared from BAC clone RP11-469P16 shows multiple signals in normal interphase cell nuclei (A) or on metaphase spreads (B). Ar-
rows in B) point at the target region on chromosome 2. C) A DNA probe prepared from BAC clone RP11-100H17 binds exclusively to the 
chromosome 2-specific target region (arrows). (Bars = 10 �m).

Fig. 5. Screen dump of the UCSC Genome Browser display showing the BAC ends mapped to the region chromosome 4: 49,093,534 bp to 
49,183,369 bp. The alignment BAC clone end sequences with the draft sequence of the human genome places BAC RP11-360M1 (high-
lighted) in a region comprised almost entirely of satellite DNA and completely free of interspersed repeated DNA sequences such as short 
interspersed repeats (SINEs) or LINEs. 

A B C
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Fig. 6. FISH analysis of placental tissue sections. Probes prepared from BAC clones RP11-294C12 (confirmed target is chromosome X) 
and RP11-360M1 (supposed to bind to chromosome 4) give compact, easy-to-score hybridization signals on formalin-fixed, paraffin-
embedded tissue sections. The red or green signals from the original image together with the DAPI counterstain are overlayed in this gray-
scale image. (Bars = 10 mm).
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ABBREVIATIONS 

BAC = Bacterial Artificial Chromosome* 
CEP = Chromosome Enumerator Probe 
CPM = Confined Placental Mosaicism 
DAPI = 4,6-Diamino-2-phenylindole 
iCTB = Invasive Cytotrophoblast 
LINE = Long Interspersed DNA Repeat 
LSP = Locus-Specific Probe 
SAB = Spontaneous Abortions 
SINE = Short Interspersed DNA Repeat 
UCSC = University of California Santa Cruz 
YAC = Yeast Artificial Chromosome 
PGD = Preimplantation Genetic Diagnosis 
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