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Review

G- [311_TD$DIFF]Quadruplexes: More Than Just a Kink in
Microbial Genomes

Nandhini Saranathan1 and Perumal Vivekanandan1,*

G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures
formed by guanine-rich DNA and RNA sequences. In this review we aim to
provide an overview of the biological roles of G4s in microbial genomes with
emphasis on recent discoveries. G4s are enriched and conserved in the regu-
latory regions of microbes, including bacteria, fungi, and viruses. Importantly,
G4s in hepatitis B virus (HBV) and hepatitis C virus (HCV) genomes modulate
genes crucial for virus replication. Recent studies on Epstein–Barr virus (EBV)
shed light on the role of G4s within the microbial transcripts as cis-acting
regulatory signals that modulate translation and facilitate immune evasion.
Furthermore, G4s in microbial genomes have been linked to radioresistance,
antigenic variation, recombination, and latency. G4s in microbial genomes
represent novel therapeutic targets for antimicrobial therapy.

Biological Role of G4s
G4s are nucleic acid secondary structures consisting of stacked planar G-tetrads. An intra-
molecular quadruplex is formed by four tracts of two or more guanines each, separated by
nucleotide residues of one to seven bases in length [Gn Nx Gn Ny Gn Nz Gn; n = 2+, x,y,z � 1 and
�7] (Figure 1). An intermolecular quadruplex is formed by guanine runs present [315_TD$DIFF]in two or four
different nucleic acid strands. Adjacent guanines in a G-tetrad are connected via hydrogen
bonds on their Hoogsteen faces [1]. The loop sequences (Nx, Ny, and Nz) connect the G-runs.
Motifs with loop sequences that are over seven nucleotides long can also form G4s, albeit in a
context-dependent manner [2,3].

The transient formation of G4s under thermodynamically favorable conditions has important
regulatory roles dictated by the genomic location. G4s are ubiquitously found in the telomeres
of eukaryotes [4]. The formation of G4s by the G-rich telomeric repeats inhibits extension of
telomeres by telomerase; thus stabilization of G4s in telomeres with ligands represents a
potential anticancer strategy [5]. Nearly 50% of human genes have a G4 motif in their
promoter region [6]. Importantly, oncogenes like c-Myc, VEGF [7], and KRAS [8] are nega-
tively regulated by their promoter-borne G4s [5]. G4 structures can also form in RNA.
Quadruplexes formed in the 50 UTR of the mRNA inhibit cap-dependent translation (e.g.,
NRAS and BCL-2) and enhance IRES-mediated cap-independent translation (e.g., hVEG-F
and FGF2) [9,10]. Besides, G4s also influence other molecular mechanisms in RNA biology
such as splicing, ribosomal frameshifting, mRNA localization, repeat-associated non-AUG
(RAN) translation, and maturation of miRNAs (reviewed in [10]). Furthermore, formation of an
intermolecular hybrid quadruplex (HQ) between nontemplate DNA and nascent mRNA acts
as a transcription-termination signal [10]. In addition to gene expression, the spatial associa-
tion of quadruplex motifs with the recombination hotspots in the human genome implicates
quadruplexes in recombination [11].
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microbes. Their ability to influence
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The repertoire of cellular proteins binding G4s is both structurally and functionally diverse; it
comprises a number of zinc-finger transcription factors (SP1, MAZ, PARP, CNBP), splicing
factors (U2AF), proteins of the shelterin complex, RNA-binding proteins such as hnRNPs and
RHAU, and RGG-box-containing multifunctional proteins, including nucleolin and FMRP [12–
14]. Persistence of G4 structures can dysregulate the cellular activities they control and also
compromise genomic integrity [15,16]. Helicases, including FANCJ, Pif1, DHX36 [17], BLM,
and WRN, can unwind the G4s in eukaryotic genomes. Extensive research on G4s has led to
the identification of G4 ligands which are compounds that can specifically bind to these nucleic
acid secondary structures [18].

Not much was known about G4s in microbial genomes about a decade ago. In the last few
years, the roles of G4s in microbes have been increasingly recognized (Figure 2). In this review,
we aim to provide insights on the biological role of quadruplexes in microbial genomes with an
emphasis on recent findings.

Role in Virulence of Pathogens
In this section, we discuss three virulence-related microbiological features regulated by G4s.

Virulence factors are biomolecules produced by the pathogen that enable them to successfully
establish infection and multiply in the host. They include adherence factors, immunomodula-
tors, drug efflux pumps, and toxins.
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Figure 1. [310_TD$DIFF]Structure of a G-Quadruplex (G4). (A) The nucleotide sequence of a G4 motif with varicoloured G-triplets
separated by loop sequences (L1, L2, L3). (B) A 2D representation of a typical G4 fold showing the three planar quartets.
The spheres at the vertices of the quartets represent one G from each of the four G-triplets. The black sphere at the centre
denotes the central metal cation (Na+, K+) needed to stabilize the G4 structure. (C) A top view of a planar G-quartet showing
the Hoogsteen bonds (dashed lines), the atoms thereof, and a cation in the central cavity. Figures are not drawn to scale.
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Antigenic Variation
Depending on the tissue environment, pathogens have specific surface adaptations, including
pili, fimbriae (in bacteria) and host cell receptor-binding glycoproteins (in viruses and parasites),
all of which enable entry into the host. The surface-exposed proteins are at the interface of
host–microbe interaction and are highly antigenic. The surface proteins of some pathogens are
continuously altered by antigenic and phase variation to overcome host adaptive immune
responses. Besides sequence mutation and natural competence to DNA transformation [19],
themolecular basis of antigenic variation (Av) also involves recombination of genomic segments
leading to the production of altered surface proteins [20]. Interestingly, G4 motifs have been
identified at the recombination sites associated with Av in bacteria and parasites [21,22].
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Figure 2. Molecular Mechanisms Affected by G-Quadruplexes (G4s) in Microorganisms. The functional roles of G4s identified in microbes are included in
this graph. The segments in the outermost circle (blue) denote the molecular biological processes regulated by G4s. The segments of the intermediate circle (orange)
indicate the types of microbe affected for each biological process (see the legend beside the graph). The specificmicroorganism under each type is denoted either by an
abbreviation (for viruses) or a three-letter notation (for bacteria and parasites) in the vertical bars in the innermost circle (see the legend beside the graph). The vertical
bars in the innermost circle are colour-coded for bacteria (green), viruses (red), and parasites (black). The curved lines connect a givenmicrobewith multiple quadruplex-
regulated biological processes. Red curved lines connect viruses, and blue curved lines connect parasites.
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Intramolecular quadruplexes have been identified to play potential roles in the Av of (i) pilE in
Neisseria gonorrhoeae, the bacterium that causes gonorrhea, (ii) vlsE in the Lyme disease agent
Borrelia burgdorferi, and (iii) tprK in [316_TD$DIFF]Treponema pallidum [23–25]. Conventionally, Av by gene
conversion involves the unidirectional transfer of genetic segments from the donor loci, a tandem
array of silent alleles of the surface protein, to a downstream recipient locus that actively expresses
the gene encoding the surface protein; this process is assisted by recombinases. Pili are hair-like
appendagesmadeupofpilinproteinswhicharepresenton thebacterial cell surfaceandexhibitAv.
In N. gonorrhoeae, it has been demonstrated experimentally that the G4 formed near the pilE, a
pilin-expression locus, binds RecA and provides a topological advantage for the nicking process
essential to initiate recombination [26].Deletionof thisquadruplexmotif suppressesAv inNeisseria.

Lyme disease is caused by a tick-borne bacterium belonging to the genus Borrelia. The vls
locus in B. burgdorferi is associated with Av. The coding strand of the vls locus has over a 100-
fold enrichment of guanine (G)-runs of at least three nucleotides or more despite the preference
for AT-rich codons [24]. These G-rich sequences form G4s and are suggested to play a role in
recombination-mediated Av in Borrelia species.

T. pallidum is a spirochete that causes syphilis. TprK is a surface protein that undergoes Av in T.
pallidum. G4-forming sequences were identified proximal to the TprK gene, indicating a
possible role for these DNA secondary structures in Av among treponemes [25]. However,
the proposed functional roles for quadruplexes identified in the Av loci of the two spirochetes
are not supported by experimental evidence.

[317_TD$DIFF]The family of erythrocyte membrane proteins-1 (PfEMP-1) is an important virulence factor of the
malarial parasite, Plasmodium falciparum. Symptoms of malaria appear in about a week after
exposure when the parasite enters red blood cells (RBCs) and digests hemoglobin [27].
[318_TD$DIFF]Proteins of the PfEMP-1 family are expressed on the surface of infected erythrocytes during
the asexual life cycle in man and are encoded by var, a family of 60 genes which are
predominantly present in the subtelomeric region of chromosomes [28]. The var genes undergo
recombination (indels and translocations) to facilitate sequence variation in PfEMP1 and
immune evasion. Interestingly, about a quarter of all putative quadruplex motifs in the P.
falciparum genome are associated with the promoters of the var genes [29]. Stanton et al.
identified a close association between the recombination breakpoints and G4 motifs in P.
falciparum [30]. Breakpoints were found to occur proximal to quadruplexes, especially in
subtelomeic regions, indicating that G4s have a role in var-associated recombination. Although
recombination in P. falciparum genomes occurred proximal to quadruplex motifs, the median
distance of a G4 from a breakpoint was about 16 kb. The specific mechanisms underlying G4-
assisted var gene recombination are not fully understood; nonetheless, a potential role for DNA
repair has been speculated.

Recombination- [319_TD$DIFF]Mediated Microbial Evolution
In addition to contributing to antigenic diversity in microbes (discussed above), G4s facilitate
generation of genetic heterogeneity and evolution of HIV-1, the causative agent of AIDS. The
recombination rate of HIV-1 stems from the ability of the reverse transcriptase (RT) to switch
between RNA templates and generate chimeric proviral DNA. Recombinant HIV-1 strains have
been associated with increased transmission efficiency and resistance to anti-HIV therapy [31].
The two positive-sense RNA strands of HIV-1 are held together by hairpin loops in the
dimerization site (DIS) at the 50 end of each of the RNAs [32]. This allows for strand transfer
by RT, making the region a recombination hotspot. Similar to the hairpin loops, intermolecular
G4s tether the recombining segments, thus bringing them into each other’s proximity to
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promote initiation of recombination. Independent studies identified intermolecular G4 motifs in
three regions of the HIV-1 RNA (i) a 130-nt region comprising the DIS and 50 portion of the gag,
(ii) central polypurine tract (cPPT), and (iii) the U3 region on either termini of RNA [33–36]. Under
in vitro conditions, synthetic RNA oligonucleotides corresponding to these G4s caused pausing
of RT in the presence of potassium ions. Moreover, in an in vitro strand transfer assay, efficient
switching over of RT between templates was observed under conditions that promote quad-
ruplex formation (presence of potassium ions). These studies suggest that quadruplexes allow
for dimerization of the HIV-1 genome at multiple loci along its length, thus contributing to
recombinogenicity and rapid evolution of HIV-1.

In addition to HIV-1 evolution, other functional aspects of G4s discussed in this review, and the
selective retention or exclusion of G4s from specific genomic loci in bacteria and yeast, indicate
that G4s play a role in the evolution of microbes (Figure 3) [30,37–42].

Gene Expression and Packaging of Virions
Long terminal repeats (LTRs) present on either termini of the HIV-1 genome enable integration
of the HIV-1 provirus into the host genome and contain within them the necessary genomic
elements for expression and control of HIV-1 genes. Three overlapping quadruplex motifs were
identified in the U3 promoter region of the LTR between positions �105 and �48 [43]. The
motifs encompass the binding sites of the two transcription factors, NF-KB and SP1. These
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Figure 3. The Link between G-Quadruplexes (G4s) and Microbial Evolution. The conservation or elimination of G4s from specific genomic locations within a
species or across related species of microbes implicates these nucleic acid secondary structures inmicrobial evolution. Besides, G4s directly participate inmechanisms
that generate diversity in the microbial populations, such as antigenic variation and recombination. E. coli, Escherichia coli; S. cerevisiae, Saccharomyces cerevisiae.
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G4s negatively regulate the activity of the LTR promoter and hence the replication of HIV-1.
Interestingly, the presence of the quadruplex in the LTR promoter is not restricted to HIV-1 but
is evolutionarily conserved among the primate lentiviruses [41].

Human herpesviruses (HHVs) are large double-stranded DNA (ds-DNA) viruses that infect a
variety of tissues. In HHVs, putative promoter regions have higher G4 densities than the coding
regions, suggesting a regulatory role for G4s in gene expression [44]. G4s in the promoters of
UL2, UL24, and K18, all of which have previously established roles in virulence, were found to
be negative regulators of promoter activity (Figure 4A) [45–48]. Herpesvirus genes are divided
into immediate early (IE), early (E), and late (L) based on the time at which they are expressed in
the replication cycle. IE genes act as trans-activators or trans-repressors of the E and L genes.
IE genes are expressed within a few hours of virus entry into the host cells. Interestingly, the
regulatory regions of IE genes were particularly enriched for G4 motifs [44].

Besides transcription, a recent report also implicates G4s in the packaging of herpesvirus
genomes [49]. An earlier study reports that, following concatemeric replication of HHV-1, the
cleavage of unit length genomes and their encapsidation is achieved by the binding of virus
proteins to a DNA secondary structure formed by a DNA packaging sequence (pac-1) [50]. It
has now been identified that the DNA secondary structure formed by pac-1 is a G4 (Figure 4B)
[49]. In fact, the pac-1 sequences of all the eight human herpesviruses contain a highly
conserved G4 motif that predominantly forms intermolecular quadruplexes.

Human papilloma virus (HPV) is a DNA virus that causes warts and cervical cancer. Tluckova
et al. identified the presence of three-tetrad G4motifs in the long control region (LCR) and in the
coding regions of E1, E2/E4, and L2 proteins of eight HPV types [51]. Interestingly, two-tetrad
quadruplexes were identified in the same genomic regions (i.e., E1, E2/E4 and LCR) of manatee
papilloma viruses [52]. In papilloma viruses, the LCR contains a number of cis-acting regulatory
elements for virus replication and transcription that play a role in determining tissue tropism [53].
The early proteins (E1–E7) are nonstructural proteins and have pivotal roles in the modulation of
the host regulatory network while the late proteins (L1, L2) are required for virion assembly [54].
The specific biological roles for the G4s in papilloma viruses remain to be discovered; however,
potential functional roles in gene expression have been speculated for these DNA secondary
structures based on their key genomic locations in certain HPV types.

Host G4- [312_TD$DIFF]Binding Proteins Encoded by Microbes
Severe acute respiratory syndrome-coronavirus (SARS-CoV) is an enveloped virus with a
positive-sense single-strand RNA genome. Nonstructural protein (nsp3) is a multidomain
protein that is a part of the replication/transcription complex (RTC) of the virus [55]. The
SARS-unique domain (SUD), exclusively present in the nsp3 of SARS-CoV, is believed to
contribute to the higher pathogenicity of SARS-CoV as compared to other human coronavi-
ruses [55]. Interestingly, SUD was identified to bind G-runs and the more ordered G4s, in both
DNA and RNA [56]. The G4-binding property is mapped to theMdomain nestedwithin the SUD
and is indispensable for the replication and transcription of the virus [57]. Putative G-rich targets
of SUD include host mRNAs encoding proteins that regulate key cellular processes such as
apoptosis and cell proliferation. Therefore, G [320_TD$DIFF]4-binding microbial proteins may potentially play a
role in the modulation of key cellular proteins and signaling pathways in the host [55,56].

Role in Virus Latency
The latency programme of viruses allows them to survive inside the host and protects them
against the immune surveillance of the host. The expression of latency-associated genes leads
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to heterochromatinization of the virus genome and the inhibition of proteins necessary for virus
replication [58,59]. HHVs are an example of viruses capable of causing latent infections. During
latency, their large linear ds-DNA genome circularizes to form an episome. The episome is
replicated and segregated between the daughter cells with every cell division in the host,
leading to persistence of the virus.

Herpesvirus genomes consist of unique and repeat regions. Multiple reiterations of G-rich
repeat units capable of forming G4s (known as ‘repetitive G-quadruplex motifs’ – RGQMs) has
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been noted in the eight HHVs [44]. Such G4-forming repeats have recently been identified to be
functionally relevant in the latency of Kaposi’s sarcoma-associated herpesvirus (KSHV) or HHV-
8. KSHV is an oncogenic virus that has acquired a number of its genes bymolecular piracy. The
terminal repeat (TR) region of KSHV genome is enriched for quadruplex-forming sequence
motifs with each repetitive element (about 800 bp), having 12 and 16 putative quadruplex-
forming sequences in the top and the bottom strand respectively [60]. The TR region harbours
the only origin for replication of viral episomes. The preponderance of quadruplexes in the TR
region is relevant in the regulation of episomal replication. Stabilization of the G4s with
PhenDC3 (2,N9-bis(1-methylquinolin-3-yl)-1,10-phenanthroline-2,9-dicarboxamide) or
TmPyP4 (5,10,15,20-tetrakis(1-methylpyridin-1-ium-4-yl)-21,22-dihydroporphyrin) halts the
replication forks at the boundary of the TR; replicative stress ensues and results in the firing
of the otherwise dormant origins in the viral episome. Consequently, the [321_TD$DIFF]two replication
parameters [322_TD$DIFF]– the number of replication forks and the number of origins – increase in a
dose-dependent manner. Furthermore, a transient replication assay also indicated inhibition
of KSHV DNA replication and a decrease in the number of copies of the viral episome, post-
treatment with PhenDC3 (Figure 4C). Interestingly, even upon removal of the ligand, the number
of KSHV genome copies was lower as compared to that in cells without the ligand, indicating
reduction of virus episomes.

Integration into the host genome is another strategy employed by herpesviruses for latent
survival. Human herpesvirus 6A, the causative agent of roseola infantum, undergoes stable
integration at the telomeric ends of the host chromosomes by homologous recombination.
About 1%of the human population has the congenital presence of HHV-6a due to integration of
the virus in germline cells [61]. The formation of G4s by the telomeric repeats (TTAGGG) is well
documented [4]. A recent study demonstrated that the stabilization of telomeric G4s by
BRACO-19 (N-[9-[4-(dimethylamino)anilino]-6-(3-pyrrolidin-1-ylpropanoylamino)acridin-3-yl]-
3-pyrrolidin-1-ylpropanamide) significantly reduced the integration frequency of HHV-6A in
telomerase-expressing cells [323_TD$DIFF][61]. The authors argue that stabilization of the telomeric G4s
interferes with telomerase activity, resulting in reduced chromosomal integration of HHV-6a.

Epstein–Barr virus (EBV) is an oncogenic herpesvirus that is associated with B cell lymphoma
and nasopharyngeal carcinoma. During latency, EBNA1, a genome-maintenance protein
(GMP), tethers the circular EBV episome to cellular chromatin and ensures its transmission
to daughter cells on completion of each cell cycle [62]. EBNA-1 also regulates host and viral
transcription. It is imperative that the synthesis of the latency proteins is tightly controlled lest
they are processed and presented to MHCs as antigens, defeating the primary biological
function of this group of proteins.

Murat et al. identified putative quadruplex motifs in EBNA1 and GMPs encoded by other
gamma herpesviruses [63]. Furthermore, they also describe quadruplex-mediated repression
of EBNA1 protein levels. The translation of several oncogenic proteins in humans is known to
be controlled by quadruplexes in the 50UTR or coding region [9]. EBNA-1 is a key player in
EBV-induced oncogenesis [64,65]. Interestingly, the level of the EBV oncogene, EBNA-1, is
maintained by the folding and unfolding dynamics of its mRNA-borne quadruplex. The
segment of EBNA1 mRNA that encodes its glycine–alanine repeat (GAr) domain was found
to be rich in G4 motifs. Polysome distribution profiling, in vitro translation, and cell culture
experiments identified that formation of quadruplexes obstructs the progress of ribosome
machinery, resulting in low levels of EBNA1 and a concomitant decrease in presentation to T
cells (Figure 4D). In addition, nucleolin was identified to bind the G4 formed in the GAr domain
of EBNA-1 mRNA [66]. This interaction limits the synthesis of EBNA-1 to levels that allow
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persistence of the virus and evasion of the host immune system. Mutation of the EBNA-1
mRNA quadruplex or absence of nucleolin resulted in alleviation of translation inhibition and
increased presentation of EBNA-1.

Besides regulating synthesis, G4s also come into play in the functional aspects of EBNA-1. As a
GMP, EBNA-1 is involved in episomal replication and attachment tometaphase chromosomes.
These functions are carried out by the linking regions LR1 and LR2 present in EBNA-1. LR1 and
LR2 bind cellular RNA-quadruplexes to recruit origin recognition complex (ORC) to OriP, the
origin of episomal replication in EBV [67]. BRACO-19 outcompetes EBNA-1 in binding to the
intermediary RNA quadruplex, thus inhibiting the replication of EBV in latently infected cells.
Consequently, a reduction in the EBV copy number and its attachment to metaphase chro-
mosomes was observed by q-PCR and flow cytometry, respectively.

Viruses exploit the molecular machinery of the host for successful infection. They utilize the
quadruplex-binding abilities of host proteins to regulate the dynamics of quadruplex formation
in their genome and the downstream effects thereof. The quadruplex in the LTR promoter of
HIV-1 provirus binds the host protein nucleolin [68]. Nucleolin stabilizes the quadruplex and
represses the transcriptional activity of the LTR promoter, allowing the virus to enter latency.
Interestingly, heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), a host protein,
binds and unfolds the quadruplex in the LTR promoter of HIV-1 provirus, leading to enhanced
transcription [69]. Taken together, these results suggest that G4s in virus genomesmay interact
with host proteins not only to facilitate virus latency but also to revoke viruses from latency.
These studies on G4–protein interactions highlight how G4s contribute to the molecular milieu
of host–pathogen interaction.

G4s as Antimicrobial Targets
The emergence of antimicrobial resistance is a major limiting factor in the management of
infectious diseases such as AIDS and tuberculosis. Indiscriminate use of antimicrobial agents
and patient noncompliance contribute to the emergence of antimicrobial resistance [70]. The
need to develop or identify novel therapies as well as novel therapeutic targets to tackle
antimicrobial resistance has been increasingly recognized.

The identification of G4s in microbial genomes as targets of antimicrobial therapy has led to
the identification of novel antimicrobial agents. G4s have been shown to inhibit the transcrip-
tion or translation of structural and nonstructural proteins in viruses, deleteriously affecting the
virus loads and their pathogenicity; the stabilization of these quadruplexes with ligands has
been investigated as a potential mechanism for targeting viruses. For example, the HIV-1 nef
gene contains quadruplex motifs that inhibit synthesis of the Nef protein [71]. The addition of
TmPyP4, a quadruplex-binding ligand, further lowered the expression of this protein. The Nef
protein is required for efficient viral entry, integration of provirus into host genome, and
replication in the host cells [72]. It also modulates a number of cellular immunity factors like
CD4 and MHC I to enhance the survival of the virus [73]. Defects in the nef gene or its deletion
from the virus genome affect the infectivity of the virus and delay the progression to AIDS
[74,75].

HCV is an enveloped positive-sense RNA virus. Chronic HCV infection is a major cause of
hepatocellular carcinoma (HCC). A quadruplex motif in the core gene inhibits the synthesis of
core (capsid) protein and replication of HCV [76]. Stabilization of this quadruplex in the HCV
core gene with ligands results in stalling of the viral RNA-dependent RNA polymerase (RdRp) at
the G4 motif, resulting in decreased HCV core protein levels.
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Ebola virus, a negative-sense RNA virus, causes hemorrhagic fevers and represents one of the
well studied zoonotic filoviruses. A 27-nt long G4motif was identified in the L gene of Ebola virus
that encodes the RdRp [77]. Stabilization of this G4 motif in the L gene with a quadruplex-
binding ligand led to reduced transcription of the L gene. The RdRp encoded by the L gene is
indispensable for the life cycle of Ebola virus. The stabilization of the G4 motif in the L gene with
ligands reduces the replication competence of Ebola virus. Furthermore, the authors report G4
ligands as more potent antiviral agents as compared to ribavirin.

Negative regulation of virus transcription, translation or replication by quadruplex motifs in virus
genomes forms the basis of using G4-binding ligands as antiviral agents. Considering that the
G4s that negatively regulate virus replication are retained in virus genomes during evolution, it is
likely that viruses may stand to benefit from these G4s in their genomes. Further research in this
area may help us better understand this conundrum. In the last few years, the antimicrobial
activity of quadruplex-binding ligands has been demonstrated in bacteria and parasites in
addition to viruses (Table 1).

Although G4-binding ligands appear to be promising as potential antimicrobial agents, an
important but often ignored aspect is specificity. It is very likely that G4 ligands will bind several
host G4 motifs, which outnumber the microbial quadruplex motifs. Studies investigating the
undesired interaction of G4-binding ligands with G-quartets in the host genome may help us to
better understand the therapeutic potential of this class of drugs.

Across different types of microbes, the modulation of transcription by G4s and its cascading
effect on specific microbial phenotypes appears to be a common theme (Figure 5).

Table 1. Antimicrobial Activity of G4-Binding Ligands

Pathogen G4 ligand Suggested mode of actiona [312_TD$DIFF] Refs

Herpes simplex virus-I BRACO-19,
c-exNDI-2

Inhibition of HSV-1 DNA
replication (Figure 4E)

[78,79]

HIV-1

BRACO-19 Inhibition of reverse
transcription and transcription
by binding to G4 in the U3
region of RNA and proviral
DNA, respectively

[80]

TmPyP4 Inhibition of Nef-dependent
HIV replication

[71]

c-exNDI-2 Negative regulation of HIV-1
transcription by binding to the
G4 in the LTR

[81]

Mycobacterium tuberculosis BRACO-19, c-exNDI Inhibition of bacterial growth
(no specific mechanism
is elucidated)

[82]

Plasmodium falciparum Quarfloxin Deregulated expression of G4-
associated genes and
inhibition of ring-stage
parasites

[83]

Ebola virus TmPyP4 Inhibition of the L (polymerase)
gene expression

[77]

Hepatitis C virus PDP and
TmPyP4

Inhibition of core gene
expression

[76]

aSome of these require experimental validation.
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Role in Genotype-[324_TD$DIFF]Specific Pathogenicity
HBV is an enveloped hepatotropic DNA virus that replicates with an RNA intermediate.
Persistent infection with HBV can cause serious liver damage leading to cirrhosis and
HCC. The HBV genome exhibits a high degree of genetic variability owing to the lack of
proof-reading ability in the HBV reverse transcriptase. As a result, HBV is classified into 10 HBV
genotypes (A through J) with an intergenotypic sequence variation of at least 8% [84]. The HBV
genotypes differ in transmissibility, virus loads, response to antiviral therapy, and ability to cause
liver disease [84,85]. However, genotype-specific regulatory mechanisms in HBV remain
elusive. We had recently identified a G4 motif as a genotype-specific regulator of HBV
replication [40]. A conserved three-tetrad G4 motif, 190 bp upstream of the transcription start
site, was identified in the preS2/S promoter of HBV genotype B. This motif was virtually absent
in the rest of the HBV genotypes. This quadruplex specifically enhanced the transcription of the
preS2/S transcript and the production of HBV surface antigen (HBsAg). Point mutations
disrupting the G4 motif in the preS2/S promoter of HBV genotype B led to a reduction in
HBsAg production resulting in a fivefold reduction in virion secretion [26].

G4-mediated
control of
microbial

transcrip on

Virion secre on in
HBV

Replica on of
HIV-1, HCV, EBOV

Radioresistance in
D. radiodurans

Replica on of
Plasmodium

parasite in the
erythrocy c stages   

Nitrate
metabolism in
P. denitrificans

Figure 5. Phenotypic Effects of the Modulation of Transcription by G-Quadruplexes (G4s). G4-mediated
control of microbial transcription appears to be a common theme leading to tangible differences in the phenotype of
microbes. G4s in microbial genomes may regulate microbial transcription either negatively (pink circles) or positively (green
circle). D. radiodurans, Deinococcus radiodurans; P. denitrificans, Paracoccus denitrificans; EBOV, Ebola virus.
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Role in Control of Radiation Resistance
Deinococcus radiodurans is an extremophilic bacterium tolerant to ionizing radiations such as
gamma rays and UV rays. Beaume et al. analyzed the promoters of D. radiodurans and found
that G4 motifs were particularly enriched within the 200 bp upstream region in genes that
confer radiation resistance; these include recA, recF, recO, recR, recQ, and mutL, all of which
are involved in recombinational DNA repair [86,87]. Interestingly, the addition of an intracellular
G4-binding ligand led to a marked reduction in the expression of genes associated with
radiation resistance, thus rendering D. radiodurans sensitive to radiation. The ability of G4
motifs to modulate radioresistance in D. radiodurans sheds light on how these DNA secondary
structures contribute to microbial tolerance to environmental pressures by regulating the
transcriptional machinery.

Role in Metabolism
Paracoccus denitrificans is a facultative anaerobe capable of metabolizing nitrogen, nitrate, and
ammonia. Reduction of nitrate or nitrite to dinitrogen, a cellular process known as denitrifica-
tion, is associated with the nasABGHC gene cluster in P. denitrificans [88]. This nitrate-
assimilatory system (nas) is regulated by a two-component NasS–NasT system. NasT is an
effector molecule that positively regulates transcription of nas genes by acting as an anti-
termination signal [88]. The GC-rich genome of P. denitrificans contains a three-tetrad quad-
ruplex motif 150 nucleotides upstream of the nasT gene [89]. Stabilization of the G4 by ligands
(TmPyP4 and a benzophenoxazine ligand) or by cations (KCl) inhibited the transcription of the
nasT gene. Similarly, the presence of G4-stabilizing ligands inhibited the growth of P. deni-
trificans in media containing nitrate as the sole source of nitrogen. This work on P. denitrificans
highlights a role for G4-linked transcriptional control in modulating specificmetabolic pathways.

Studies investigating bacterial and yeast genomes found an enrichment of G4s in promoters of
genes involved in carbohydrate, amino acid, and nucleotide metabolism [37,86,90]. Although
the functional significance of the G4s in the promoters of bacterial and yeast genes involved in
metabolism remains to be demonstrated, it may not be too speculative to suggest a possible
role for these DNA secondary structures in regulating the synthesis of macromolecules in
bacteria and yeast by modulation of key metabolic pathways.

Role in RNA Editing
Trypanosoma brucei is a parasitic kinetoplastid that causes African sleeping sickness in
humans. Mitochondrial transcripts of kinetoplastid organisms undergo extensive editing
post-transcription; this mRNA editing involves deletion or insertion of ‘U’ residues at multiple
locations specified by the anchoring of guide RNAs (gRNAs) encoded by the mitochondrial
genome [91]. The nucleotide composition of the pre-mRNAsmay be potentially altered by up to
50% as a result of editing, which is referred to as pan-editing [92]. Matthias-Leeder et al.
analyzed nine mRNAs of T. brucei and found that the guanosine (G) content is lowered to about
19% from about 34% during pan-editing [93]. Importantly, the authors used computational
methods to demonstrate the progressive decrease in G4 content during pan-editing. There-
fore, pan-editing in African trypanosomes has been suggested as a G4-resolving process that
leads to the generation of G4-free translatable ORFs. The authors also propose the formation of
DNA/RNA hybrid G4s (HQ) between the nontemplate DNA strand and pre-edited transcripts.
Furthermore, it is speculated that the formation of HQs is involved in the termination of
transcription and the initiation of mitochondrial replication. Thus, quadruplexes may play a
crucial role in switching between the two mutually exclusive processes of mitochondrial
replication and transcription in trypanosomes.

Trends in Microbiology, February 2019, Vol. 27, No. 2 159



Concluding Remarks
Among the microorganisms that contain a G4 in their genome, the over-representation of
viruses associated with cancer, namely, KSHV, EBV, HCV, HBV, and HPV, is noteworthy
[40,51,60,63,76]. The existence of these secondary structures in zoonotic agents such as
Ebola virus and vector-borne pathogens such as Zika virus, Plasmodium spp., B. burgdorferi,
and T. brucei, is particularly interesting [24,42,93,94]. From an evolutionary perspective, it may
be of interest to identify G4-influenced adaptations, if any, that facilitate the survival of these
microbes in different hosts.

Repeat regions in herpesviruses contain important regulatory elements for replication, pack-
aging, latency, and reactivation [95,96]. The existence of RGQMs amplifies the G4 load of the
genomes of HHVs manifold [44]. Such G4-forming iterative G-rich units also comprise the
simple sequence repeats (SSRs) present in the noncoding regions of Nostoc sp. and Xan-
thomonad spp. [97]. Bacterial SSRs are known to be implicated in antigenic and phase
variation. Given the functional significance of repeat sequences in microbial genomes it
may be interesting to investigate the link between the tandem array of G4s and molecular
processes related to microbial pathogenesis. Recent reports on G4 motifs in viruses infecting
nonhuman hosts shed light on how G4s have been exploited by viruses for virulence and
genome regulation throughout evolution [52,98].

The identification of G4s in microbial genomes has opened up new avenues for therapeutics;
additional studies on the specificity of G4-binding ligands and their undesired effects may help
us to better understand the therapeutic potential of this novel group of antimicrobial agents.
Host protein–microbial G4 interaction or the host G4–microbial protein interactions at the
molecular interface of the host and microbe during infection are fascinating and merit further
investigation [55,56,66–69]. It would be interesting to understand if such interactions defend
the host or demonstrate yet another mechanism of microbial pathogenesis. Intuitively, the
threshold to transcend the thin line between these two opposing outcomes may be subject to
complex regulation which may be important for an understanding of the therapeutic potential of
targeting this host–microbe interaction.

The nucleotide sequences complementary to G4motifs are cytosine-rich andmay form i-motifs
which are higher-order nucleic acid structures formed in near-neutral or acidic pH [99].
Recently, i-motifs were visualized in human cells [100]. It may be particularly interesting to
study themolecular dynamics of G4s and i-motifs and its impact onmicrobial pathogenesis and
evolution.

Supplemental Information
Supplemental information associated with this article can be found [325_TD$DIFF]online at https://doi.org/10.1016/j.tim.2018.

08.011.
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