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Rapidly dividing cells maintain chromatin supercoiling homeostasis via two

specialized classes of enzymes, DNA topoisomerase type 1 and 2 (TOP1/2).

Several important anticancer drugs perturb this homeostasis by targeting

TOP1/2, thereby generating genotoxic DNA damage. Our recent studies

indicated that the oncofetal chromatin structuring high-mobility group AT-

hook 2 (HMGA2) protein plays an important role as a DNA replication

fork chaperone in coping with DNA topological ramifications that occur

during replication stress, both genomewide and at fragile sites such as sub-

telomeres. Intriguingly, a recent large-scale clinical study identified HMGA2

expression as a sole predicting marker for relapse and poor clinical outcomes

in 350 acute myeloid leukemia (AML) patients receiving combinatorial treat-

ments that targeted TOP2 and replicative DNA synthesis. Here, we demon-

strate that HMGA2 significantly enhanced the DNA supercoil relaxation

activity of the drug target TOP2A and that this activator function is mecha-

nistically linked to HMGA2’s known ability to constrain DNA supercoils

within highly compacted ternary complexes. Furthermore, we show that

HMGA2 significantly reduced genotoxic DNA damage in each tested cancer

cell model during treatment with the TOP2A poison etoposide or the cat-

alytic TOP2A inhibitor merbarone. Taken together with the recent clinical

data obtained with AML patients targeted with TOP2 poisons, our study

suggests a novel mechanism of cancer chemoresistance toward combination

therapies administering TOP2 poisons or inhibitors. We therefore strongly

argue for the future implementation of trials of HMGA2 expression profiling

to stratify patients before finalizing clinical treatment regimes.

1. Introduction

The fine-tuned regulation of DNA/chromatin topology

is essential for the maintenance of cellular functions

and genome stability. This applies especially to fast

proliferating cancer cells which face severe DNA topo-

logical challenges during genome replication and other

DNA transactions (Droge, 1994; Keszthelyi et al.,

2016; Kotsantis, et al., 2018; Wang, 2002). DNA

topoisomerase type 1 and 2 (TOP1/2) introduce con-

trolled, transient breaks into chromosomal DNA,

thereby resolving DNA/chromatin topological ramifi-

cations and promoting DNA transactions such as the

progression of replication forks and RNA polymerases

(Bermejo et al., 2007; Delgado et al., 2018; Wang,

1985; Zechiedrich and Osheroff, 1990).

Given these crucial cellular functions, a diverse

group of anticancer drugs that target human TOP2 are
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often administered as the first-line therapy to treat pri-

mary as well as metastatic tumors (Hande, 1998a;

Hevener et al., 2018; Pommier, 2013; Pommier et al.,

2010). Etoposide (Etop) or VP-16 and doxorubicin are

the most prescribed TOP2 inhibitors applied alone or

in multidrug treatment regimens. Etop is widely used

in the treatment of testicular, small cell lung cancers,

and lymphomas (Hande, 1998b; Hevener et al., 2018),

whereas doxorubicin is often administered to treat

acute myeloid leukemia (AML) and several other car-

cinomas (Burden and Osheroff, 1998; Meredith and

Dass, 2016; Tacar et al., 2013).

Most clinically relevant TOP2 inhibitors lead to the

formation of covalent TOP2-DNA cleavage complexes

(TOP2cc) by preventing religation of the double-strand

break (DSB) in otherwise transiently cleaved DNA

molecules (Chikamori et al., 2010; Hu et al., 2018;

Osheroff, 1989). These inhibitors are collectively called

TOP2 ‘poisons’ and cause genomewide DNA strand

breaks, for example, during DNA transactions when

replisomes or transcription assemblies collide with

TOP2cc (Baranello et al., 2014; Pommier et al., 2010;

Tammaro et al., 2013; Yan et al., 2016; Yu et al.,

2017). TOP2 catalytic inhibitors, for example, mer-

barone (Merb), do not trap the enzyme in covalent

complexes with DNA (TOP2cc), but they also block

DNA supercoil relaxation. This class of inhibitors is

under clinical evaluation and can induce DNA dam-

age. However, their genotoxic mechanisms of action

remain to be elucidated, with inducing DNA replica-

tion stress and replication fork collapse as strong can-

didates (Fortune and Osheroff, 1998; Glover et al.,

1987; Larsen et al., 2003; Nitiss, 2009; Pastor et al.,

2012; Wang and Eastmond, 2002; Wang et al., 2007).

Although TOP2-targeting anticancer drugs have

successfully been administered in the clinic, the treat-

ment outcome per individual patient varies greatly.

Hence, a better understanding of cancer cell-au-

tonomous factors which determine their treatment

efficacies could have clinical impact. In this context,

the high-mobility group AT-hook 2 (HMGA2) pro-

tein is known as a nonhistone architectural chromatin

factor which has been implicated in carcinogenesis

and in particular metastasis (Gao et al., 2017; Mor-

ishita et al., 2013; Pallante et al., 2015; Young and

Narita, 2007). The protein is not detectable in most

adult somatic cells, but HMGA2 is aberrantly

expressed during malignant cell transformation, par-

ticularly in mesenchymal tumors (Dreux et al., 2010).

Its elevated expression in breast cancer (Wu et al.,

2016), lung cancer (Sarhadi et al., 2006), colorectal

cancer (Wang et al., 2011), oral carcinomas (Miya-

zawa et al., 2004), and several other malignancies has

often been associated with poor clinical treatment

outcomes (Wu and Wei, 2013).

High-mobility group AT-hook 2 possesses three

independent DNA binding domains, which preferen-

tially recognize AT-rich nucleotide sequences in dou-

ble-stranded DNA (Pfannkuche et al., 2009; Reeves

and Nissen, 1990). Besides important regulatory roles

in gene expression, in particular during embryonic/fe-

tal development and tumorigenesis/metastasis in the

adult organism (Droge and Davey, 2008; Fusco and

Fedele, 2007; Pfannkuche et al., 2009; Sgarra et al.,

2018), HMGA2 has also been implicated in DNA base

excision repair (Summer et al., 2009) and DNA dam-

age repair signaling pathways (Hombach-Klonisch

et al., 2019; Natarajan et al., 2013; Palmieri et al.,

2011), hinting at important functions for HMGA2 in

genome stability following genotoxic stress conditions.

In this context, fast proliferation rates of cancer cells

enhance DNA replication stress (Gaillard et al., 2015),

and we have recently demonstrated that HMGA2

broadly protects hydroxyurea (HU)-induced stalled

replication forks from collapse into genotoxic DSBs in

human cancer and stem cells, thus implying that

HMGA2 is also involved upstream of DNA repair

processes as a first line of defense to prevent genome

instability (Ahmed et al., 2019; Yu et al., 2014).

High-mobility group AT-hook 2, by means of its

three AT-hook DNA binding domains, forms unique

complexes with supercoiled DNA (scDNA), thereby

curbing excess topological stress via constrainment of

scDNA (Ahmed et al., 2019; Peter et al., 2016; Zhao

et al., 2017). Intriguingly, depending on the relative

HMGA2 expression levels in various cancer cell mod-

els, HMGA2 either triggered or attenuated the geno-

toxic action of the clinically important TOP1 poison

irinotecan/SN38, specifically at heterochromatic sub-

telomeres (Ahmed et al., 2019). The sensitizing effect

of low-to-moderate HMGA2 expression to irinotecan

treatment was also demonstrated in patient-derived

xenograft models of human colon cancer, and we

mechanistically ascribed these outcomes to a potentiat-

ing drug effect in ternary scDNA-TOP1-HMGA2

complexes. Collectively, these data led to a new model

in which HMGA2 plays an important role in cancer

genome stability at topologically challenged chromatin

regions, such as replication forks and subtelomeres

(Ahmed et al., 2019; Zhao et al., 2017).

Here, we show that the expression of HMGA2 confers

broad protection to cancer cells treated with the clinically

important TOP2-targeting drugs Etop and Merb, leading

to a significant reduction in genotoxic DSBs during the

course of drug treatment. We propose that the DNA

topological stress generated through the drug-induced
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catalytic inhibition and/or the trapping of TOP2 with

DNA in chromatin is counteracted by HMGA2 via a

combination of TOP2 catalytic activation and DNA

supercoil constrainment. Importantly, our proposed

model provides a plausible mechanistic explanation for

the results of a recently published clinical study (Marquis

et al., 2018) with more than 350 AML patients who were

treated with TOP2 poisons in combination with the

DNA synthesis inhibitor cytarabine (Ara-C) as first-line

combination therapy. The clinical data revealed that

HMGA2 expression in leukemic cells in vivo is an inde-

pendent negative predictor of disease relapse and patient

survival (Marquis et al., 2018). Taken together with our

previous HMGA2 studies investigating TOP1 poisons

and DNA synthesis inhibitors (Ahmed et al., 2019; Yu

et al., 2014), our current study strongly enforces the clini-

cal importance of HMGA2 as a prognostic therapeutic

marker in the clinic and as an important drug target.

2. Materials and methods

2.1. Cell culture

All cancer cell line model systems were cultured accord-

ing to ATCC recommendations. Recombinant HT1080

C1/C2 cells expressing doxycycline (Dox) hyclate

(Sigma, Singapore) inducible shHMGA2 were gener-

ated as described previously (Yu et al., 2014), and

HMGA2 knockdown was achieved with Dox treatment

once every day for 4 days. Human HMGA2-expressing

clones A549 (1.3/1.5/1.6) and HeLa (P2/P8/P19) have

been described previously (Summer et al., 2009). H1299

HMGA2 KO cells were generated by CRISPR-Cas9

and have also been described previously (Ahmed et al.,

2019).

2.2. Western blotting

Protein lysates were prepared as detailed previously

(Ahmed et al., 2019). Briefly, cells were resuspended in

RIPA buffer containing Protease Inhibitor cocktail

(Roche, Basel, Switzerland) on ice. The mixture was then

centrifuged at 15 000 r.p.m. for 20 min at 4 °C. The

supernatant was collected, and following protein concen-

tration determination, lysates were separated by SDS/

PAGE, transferred onto 0.2-µm PVDF membranes (Bio-

Rad, Hercules, CA, USA) and blocked in superblock

blocking buffer (Thermo Fisher Scientific, Waltham,

MA, USA). Membranes were incubated with primary

antibodies [a-HMGA2 (CST 5269; 1 : 1000; RRID:AB_

10694917), a-TOP2A (TopoGEN TG2011-1; 1 : 2000;

RRID:AB_1934304), a-TOP2B (Ab109524; 1 : 2000;

RRID:AB_10859793), a-b-actin (Sigma A2228; 1 : 5000;

RRID:AB_476697)] overnight at 4 °C, followed by incu-

bation with secondary antibodies [Polyclonal goat anti-

mouse (Dako, P0447, Carpinteria, CA, USA; RRID:

AB_2617137) and polyclonal goat anti-rabbit (Dako,

P0448; RRID:AB_2617138)] at room temperature for

1 h. Immunoreactivity was developed by chemilumines-

cent HRP substrate (Millipore, Singapore) in a lumines-

cence imager (LAS4000; Fujifilm, Pittsburgh, PA, USA).

2.3. Pulsed-field gel electrophoresis (PFGE) and

Southern blotting

Our pulsed-field gel electrophoresis (PFGE) assay con-

ditions have been described previously (Ahmed et al.,

2019). Briefly, 0.4 9 106 cells were seeded in a six-well

tissue culture plate and treated with indicated doses of

Etop (Sigma) for 24 h and Merb (Santa Cruz Biotech-

nology, Dallas, TX, USA) for 48 h, respectively. 48 h

drug treatment involved media replacement with fresh

Fig. 1. HMGA2 protects against DNA damage induced by Etop. (A) A549 cells (parental and three recombinant human HMGA2-expressing

clonal cell lines; left panel) were treated with 10 lM Etop for 24 h, and their DNA was analyzed for DSB formation by PFGE. DMSO-treated

cells served as controls (center panel). Quantification of Etop-induced DNA fragments (> 1 Mb and 30–100 kb fractions; right panel) after

normalization with total DNA (n = 3 independent experiments). (B) HeLa cells (parental and three recombinant human HMGA2-expressing

clonal cell lines; left panel) were treated as described for A549 cells in (A). DMSO-treated cells were used as controls (center panel).

Quantification of Etop-induced DNA fragments (> 1 Mb and 30–100 kb fractions; right panel) after normalization with total DNA (n = 3

independent experiments). Also, see Fig. S1A for an independent Etop titration analysis in HeLa cells. (C) H1299 cells (HMGA2 KO and

parental; left panel) were treated with 30 lM Etop for 24 h and their DNA was analyzed for DSB formation by PFGE. DMSO-treated cells

were used as controls (center panel). Quantification of Etop-induced DNA fragments (> 1 Mb and 30–100 kb fractions; right panel) after

normalization with total DNA (n = 3 independent experiments). Also, see Fig. S1B for an independent dose titration analysis. (D) HT1080

C1/2 cells with Dox-regulated HMGA2 expression (left panel) were treated with 10 lM Etop for 24 h, and their DNA was analyzed by PFGE.

DMSO-treated cells were used as controls (center panel). Quantification of Etop-induced DNA fragments (> 1 Mb and 30–100 kb fractions)

obtained with C2 cells (right panel) after normalization with total DNA (n = 3 independent experiments). Fig. S1C shows the results

obtained with HT1080 C1 cells. (E) HeLa cells transiently transfected with expression vectors for wild-type HMGA2, 2,3-hook mutant

HMGA2 and mock vector as control (HMGA2 Western blot in left panel) were treated with 10 lM Etop for 24 h and their DNA was analyzed

by PFGE (center panel). Quantification of DNA fragments (> 1 Mb and 30–100 kb fractions; right panel) after normalization with total DNA

(n = 3 independent experiments). (A–E) See section 2.8 for statistical analysis.
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drug added every 24 h. DMSO-treated cells were used

as control. Harvested cells were embedded in 2% low

melting agarose (Sigma) plugs followed by incubation

in lysis buffer (0.2% sodium deoxycholate, 1% sodium

lauroyl sarcosine, 100 mM EDTA, and 1 mg�mL�1

proteinase K) at 50 °C for 24 h. Plugs were washed

four times in TE buffer for 1 h each and elec-

trophoresed through 1% megabase agarose (Bio-Rad)

on CHEF DR II (Bio-Rad). Lambda PFG ladder

(NEB, Ipswich, MA, USA) that ranges from 48.5 to

1018 kb was used as a marker. Subsequently, PFGE

gels were stained with ethidium bromide, and quantifi-

cation was performed using IMAGEJ software, as

described in detail in Figure legends. Following PFGE,

telomeric DNA was detected by Southern blotting

using TeloTAGGG Telomere Length Assay kit

(Roche, 12209136001) as per the manufacturer’s proto-

col and previously detailed in (Ahmed et al., 2019).

2.4. In vitro Etop-induced DNA cleavage assay

Indicated amounts of Etop (Sigma) diluted in DMSO

were incubated with 100 ng of supercoiled Renilla

reporter plasmid (Peter et al., 2016) in a buffer con-

taining 10 mM Tris/HCl, pH 7.9, 50 mM KCl, 50 mM

NaCl, 5 mM MgCl2, 0.1 mM EDTA, 1 mM ATP,

15 µg�mL�1 BSA. The DNA supercoil relaxation reac-

tions were initiated by adding 4.5 U of human recom-

binant TOP2A (Affymetrix, Santa Clara, CA, USA) to

each sample. Reactions were stopped after 30 min at

37 °C with 0.3% (w/v) SDS followed by proteinase K

(Thermo Scientific) digestion for 20 min at 37 °C.
Samples were analyzed on 0.8% agarose gels and visu-

alized with ethidium bromide staining under UV.

2.5. In vitro HMGA2 DNA relaxation assay

One hundred nanogram of supercoiled plasmid DNA

was incubated with different amounts of either purified

wild-type HMGA2 or 2,3 AT-hook mutant HMGA2

protein and 0.12 U of human TOP2A (Affymetrix) for

30 min at 37 °C in a buffer containing 10 mM Tris/

HCl, pH 7.9, 50 mM KCl, 50 mM NaCl, 5 mM MgCl2,

0.1 mM EDTA, 1 mM ATP, 15 µg�mL�1 BSA. In test

runs, we had first established that 0.12 U of human

TOP2A achieved partial DNA relaxation in the

absence of HMGA2, hence allowing us to investigate

catalytic activation functions. Reactions were stopped

with 0.3% (w/v) SDS followed by proteinase K diges-

tion. Samples were electrophoresed overnight on a

0.8% agarose gel and visualized under UV by staining

with ethidium bromide.

2.6. Complementation assay

4 9 105 HeLa cells were seeded in a six-well plate. DNA

transfection was done using lipofectamine 2000 (Invitro-

gen, 11668-019, Carlsbad, CA, USA) as per the manufac-

turer’s instructions. pEF1/Myc-A-hmga2-FLAG was used

for expression of wild-type HMGA2, whereas pEF1/Myc-

A-hmga2-hook2/3Mutant-FLAG was used to express

2,3hook HMGA2 mutant, with pEF1/Myc-A used as

mock control. Thirty-six hours post-transfection, cells were

exposed to Etop for 24 h followed by analysis of DSBs by

PFGE as described in section 2.3. All transfected plasmids

have been described previously (Yu et al., 2014).

2.7. Cell survival assay

Cells were seeded as triplicates in a 96-well black/clear

bottom plate for each condition and 12 h later treated

with indicated doses of Etop/Merb for 48 h. The drug

treatment involved media replacement with fresh drug

added every 24 h. Cell viability was determined using the

CCK-8 assay (Enzo Life Sciences, ALX-850-039-0100,

Singapore) as per the manufacturer’s instructions.

Briefly, 10 µL of CCK-8 solution is directly added to

each well of the plate and incubated for 2 h at 37 °C.
Absorbance was measured at 450 nm using microplate

reader (TECAN Infinite M200 Pro, Tecan Trading AG,

Fig. 2. Effects of HMGA2 expression on cell viability during Etop treatment. (A) Cell viability (CCK8) assay with H1299 (parental and HMGA2

knockout) cells after treatment with three different doses of Etop for 48 h without recovery incubation (n = 2 independent experiments

with 3 technical replicates for each experiment). Fresh drug was added every 24 h during media replacement. (B) Cell viability (CCK8) assay

with HeLa (parental cells and three HMGA2 expressing cell clones) cells after treatment with three different doses of Etop for 48 h (n = 2

independent experiments with three technical replicates for each experiment). (C) Cell viability (CCK8) assay with A549 (parental cells and

three HMGA2 expressing cell clones) cells after treatment with three different doses of Etop for 48 h (n = 2 independent experiments with

three technical replicates for each experiment). (D) Cell viability (CCK8) assay with HT1080 C1 (Dox�/Dox+) cells after treatment with three

different doses of Etop for 48 h. (n = 1 independent experiment with 3 technical replicates for each experiment). (E) Cell viability (CCK8)

assay with HT1080 C2 (Dox�/Dox+) cells after treatment with three different doses of Etop for 48 h. (n = 1 independent experiment with

three technical replicates for each experiment). (A–E) Mean of untreated controls used for normalization. Unpaired two-tailed t-tests. Error

bars, SD. **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant.
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Mannedorf, Switzerland). The mean absorbance of

untreated triplicates was used for normalization.

2.8. Statistical analysis

All quantitative PFGE data are represented as

mean � standard deviation (SD), calculated from at

least three independent experiments. Statistical signifi-

cance is calculated using unpaired two-tailed t-test.

P < 0.05 was considered statistically significant with

*P < 0.05, **P < 0.01, ***P < 0.001. Data were plot-

ted using GRAPHPAD PRISM software (RRID:SCR_

002798GraphPad Software, San Diego, CA, USA).

3. Results

3.1. HMGA2 protects cancer cells against Etop-

induced replication stress

Both TOP1 and TOP2 play key roles in the relaxation

of transient DNA supercoiling that occurs during

replication and other DNA transactions, such as tran-

scription (Bermejo et al., 2007; Droge, 1994; McClen-

don et al., 2005; Pommier et al., 2016; Wang, 2002).

Our previous studies have shown that HMGA2 func-

tions as a replication fork chaperone when replication

is challenged by the DNA synthesis inhibitor HU (Yu

et al., 2014). However, HMGA2 differentially affects

the genotoxic efficacy of the clinically relevant TOP1

poison irinotecan/SN38, and we mechanistically

ascribed these different phenotypic outcomes of drug

treatment to ternary complex formation between

HMGA2, TOP1, and scDNA substrates (Ahmed

et al., 2019). Here, by employing our four previously

established cancer cell models, we first investigated

whether HMGA2 affects DNA damage caused by the

clinically relevant TOP2 poison Etop.

The induction of DNA DSBs after 24 h Etop expo-

sure without recovery time was evaluated by PFGE,

which revealed two distinct genome fragment frac-

tions (megabase-sized and 30- to 100-kb-sized DNA

fragments; Fig. 1A–D and Fig. S1A–C). We found

that the expression of HMGA2 always reduced the

occurrence of DSBs that generated the drug-induced

30–100 kb DNA fragments across all four cancer cell

model systems. These models exhibit differential

HMGA2 expression levels due to either HMGA2

knockout (H1299 cells), HMGA2 knockdown

(HT1080 cells), or HMGA2 overexpression (HeLa

and A549 cells) (Ahmed et al., 2019). Furthermore,

human HMGA2 expressed from a transiently trans-

fected vector in parental HeLa cells that do not

express detectable levels of endogenous HMGA2

confirmed a specific protective function of HMGA2

against Etop-induced DNA breaks (Fig. 1E). This

complementation assay also included a variant

HMGA2 protein in which two (i.e., AT-hooks 2 and

3) of the three individual DNA binding domains of

HMGA2 carried amino acid substitutions (2,3M

HMGA2) that reduced their binding affinities to

DNA (Yu et al., 2014). This variant HMGA2 failed

to complement the lack of wild-type HMGA2 in

HeLa cells. These results highlighted that DNA bind-

ing via HMGA2’s AT-hooks is critical for its protec-

tive function against Etop (Fig. 1E). To validate our

results, we utilized cell viability assays and found that

expression of HMGA2 correlated with increased cell

survival during Etop treatment in all four cancer cell

models (Fig. 2A–E).

3.2. HMGA2 does not affect TOP2 expression

With higher TOP levels being potentially accountable

for enhanced drug sensitivity (Burgess et al., 2008;

MacGrogan et al., 2003; Sevim et al., 2011), we deter-

mined whether differential expression of TOP2A and

TOP2B, the two major isoforms of human TOP2, might

be regulated by HMGA2 and thus could be responsible

for the Etop treatment outcome. Western blot analysis

revealed that the observed protective effect was not due

to changes in TOP2A/B expression levels that consis-

tently correlated with HMGA2 levels (Fig. 3A––D). To

corroborate this conclusion, we performed transient

transfection experiments and complemented HeLa cells

with wild-type or the 2,3M HMGA2 variant and

observed no corresponding changes in TOP2A expres-

sion compared to mock-transfected controls (Fig. 3E).

Furthermore, Etop treatment of H1299 cells did not

alter the expression level of HMGA2, hence ruling out

drug-induced HMGA2 expression changes as a cause

for the protective phenotypes (Fig. 3F).

Etop traps and stabilizes covalent TOP2cc, which

can be converted into DSBs during replication runoff

events (McClendon and Osheroff, 2007; Tammaro

et al., 2013; Yan et al., 2016). We confirmed that our

batch of the Etop drug is active in inducing TOP2cc

formation by using supercoiled plasmid DNA and

recombinant human TOP2A in in vitro DNA supercoil

relaxation assays. Titration of various concentrations

of the drug revealed that plasmid DNA linearization

due to the formation of TOP2cc is induced at Etop

concentrations used in our cell-based assays (i.e., 10–
30 µM; Fig. 3G). Collectively, these data suggest that

HMGA2 attenuates DSB formation and cell death

triggered by Etop and that DNA binding of HMGA2

is critical for this function.
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3.3. HMGA2 counteracts topological stress at

human subtelomeres and catalytically activates

TOP2A

We next explored the possibility of a more direct role

for HMGA2 in regulating topological stress when

TOP2 is inhibited rather than ‘poisoned’. We utilized

Merb, a catalytic inhibitor of TOP2 that does not sta-

bilize cleavage complexes (TOP2cc) that would result

in replication (transcription) runoff at lesions to gener-

ate DSBs, but negatively affects the supercoil relax-

ation activity of TOP2 (Burden and Osheroff, 1998;

Chen and Beck, 1995; Tripathi et al., 2019; Zhang

et al., 2017). It has been argued that Merb causes
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DNA damage by fork stalling and collapse as a result

of the buildup of DNA superhelical tension in the

unreplicated parental DNA (Fortune and Osheroff,

1998; Wang et al., 2007).

Upon Merb treatment, PFGE revealed DNA dam-

age profiles (30–100 kb and > 1 Mb) in all tested can-

cer cell models which are very similar to those induced

by Etop (Fig. 4A–C and Fig. S2A). It appears,

A

B

C HMGA2 KO

Merb (μM) 0 20
0

20
0

20
0

0 20
0

20
0

20
0

H1299

97 kb
48.5 kb

30
–1

00
 k

b
> 

1 
M

b

Intact H1299
HMGA2 KO

200 μM (Merb)

> 1 Mb

0.0

0.2

0.4

0.6

*

*

P2

Merb (μM) 0 25 50 10
0

0 25 50 10
0

HeLa

97 kb
48.5 kb

> 
1 

M
b

Intact

HeLa

P2

> 1 Mb

Merb (μM)

25 50 100 25 50 100 25 50 100 25 50 100
0.0

0.2

0.4

0.6

ns
ns

ns ns

ns
*

Merb (μM) 0 25 50 10
0

0 25 50 10
0

A549

> 
1 

M
b

97 kb
48.5 kb

1.3

Intact
A549

1.3

Merb (μM)

> 1 Mb 30–100 kb

25 50 100 25 50 100 25 50 100 25 50 100
0.0

0.2

0.4

0.6

ns
ns

ns
*

**
***

30–100 kb

30–100 kb

30
–1

00
 k

b
30

–1
00

 k
b

D
N

A
 fr

ag
m

en
ts

 m
ob

ili
ze

d/
To

ta
l D

N
A

D
N

A
 fr

ag
m

en
ts

 m
ob

ili
ze

d/
To

ta
l D

N
A

D
N

A
 fr

ag
m

en
ts

 m
ob

ili
ze

d/
To

ta
l D

N
A

Fig. 4. HMGA2 protects against catalytic TOP2 inactivation ex vivo. (A) A549 cells (parental and HMGA2 expressing cell line 1.3) were

treated with increasing concentrations of Merb for 48 h and their DNA was analyzed by PFGE. DMSO-treated cells were used as controls

(left panel). Fresh drug was added every 24 h during media replacement. Quantification of Merb-induced DNA fragments (> 1 Mb and 30–

100 kb fractions; right panel) after normalization with total DNA (n = 3 independent experiments). (B) HeLa cells (parental and HMGA2
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therefore, that excessive topological stress that results

from the catalytic inhibition of TOP2 leads to DSBs

which are similar to those generated by TOP2cc forma-

tion (McClendon and Osheroff, 2007; Tammaro et al.,

2013). Importantly, HMGA2 expression protected cells

against Merb-induced DSBs with a concomitant signifi-

cant increase in cell survival (Fig. 5A–D).

We have previously demonstrated that human sub-

telomeres are highly sensitive to inhibition of DNA

replication triggered by the ribonucleotide reductase

inhibitor HU, TOP1 poisoning by irinotecan (SN38),

and the drug TMPyP4; the latter is thought to induce

replication fork stalling by stabilizing so-called G-

quadruplex DNA secondary structures. We proposed
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that subtelomeric regions were highly vulnerable to

these genotoxic challenges due, at least in part, to strong

DNA topological barriers located at human telomeres

(Ahmed et al., 2019). We therefore investigated whether

targeting TOP2 with Etop and Merb also triggers DSBs

at human subtelomeres. Southern blot analysis using

telomeric DNA-specific probes revealed similar frag-

ment profiles that range from 30 to 100 kb (Fig. 6A–B).
Based on our previous detailed analysis of the genomic

DNA breakpoints leading to 30–100 kb subtelomeric

DNA fragments (Ahmed et al., 2019), these data

strongly suggest that human subtelomeres are also cellu-

lar targets of TOP2 poisons and catalytic TOP2 inhibi-

tors. Furthermore, these data corroborate our model

that implicates a critical protective function for

HMGA2 in regulating chromatin topological stress at

these fragile genomic regions (Ahmed et al., 2019).

Our recent studies showed that HMGA2 formed

unique higher order complexes with scDNA in vitro

and that within these ternary complexes, HMGA2 jux-

taposes DNA segments into closer proximity to each

other (Peter et al., 2016; Zhao et al., 2017). These

results, in conjunction with the observed protective

effect of HMGA2 against the catalytic inhibitor Merb,

led us to investigate whether HMGA2 could catalyti-

cally activate TOP2A leading to more efficient super-

coil relaxation. Because there is currently no reliable

assay available that can directly determine DNA

supercoil relaxation rates by TOPs inside cells, we

employed standard TOP activity in vitro assays to

address this question quantitatively.

We found that during 30 min incubation with

scDNA, HMGA2 greatly enhanced the relaxation

activity of TOP2A, probably by promoting more

productive TOP2A-scDNA interactions at DNA cross-

ings via DNA segment scrunching (Zechiedrich and

Osheroff, 1990; Zhao et al., 2017) (Fig. 7). This con-

clusion was strongly supported by results obtained

with the 2,3M HMGA2 variant that harbored one

instead of three functional AT-hooks (Fig. 7). By

employing this HMGA2 variant, we have previously

shown that at least two functional AT-hooks are

required for efficient supercoil scrunching (Zhao et al.,

2017). Taken together, these data reveal that HMGA2

can attenuate the DNA damaging and cytotoxic effects

of TOP2A poisons as well as of catalytic inhibitors in

various cancer cells, and suggest that these protective

effects may be triggered by DNA supercoil scrunching,

and catalytic activation of TOP2A in the chromatin of

cancer cells that express HMGA2.

4. Discussion

Topoisomerases 1/2 resolve topological ramifications

in chromatin through controlled changes in the DNA

linking number employing two distinct catalytic mech-

anisms. Interestingly, several chromatin/DNA architec-

tural proteins have recently been implicated in TOP

functions by stimulating DNA supercoil relaxation

activity of TOPs (Guo et al., 2018; Stros et al., 2007;

Stros et al., 2009). In addition, several tumor-associ-

ated proteins such as YB-1 (Wu et al., 2014), p53

(Gobert et al., 1996) (Kwon et al., 2000) and ARF

(Karayan et al., 2001) have been shown to enhance

TOP activity either through direct protein–protein
interactions or by enhancing TOP2 ATPase activity.

Such findings could aid in our understanding of cellu-

lar chemoresistance that is often observed in cancer
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cells targeted with TOP poisons (Bansal et al., 2017;

Ganapathi and Ganapathi, 2013). In this context, our

current study uncovered that HMGA2 is a crucial fac-

tor that can affect TOP2A function.

TOP2A plays a particularly important role during

DNA replication in fast proliferating cells (Heck and

Earnshaw, 1986; Hsiang et al., 1988; Marinello et al.,

2018; Yan et al., 2016), and while TOP2 poisons, such

as Etop, are extensively utilized in clinical practice

either as single agents or in combination therapy, the

development of secondary tumors is still a major com-

plication. Additionally, treatment efficacy depends on

TOP2 expression and drug efflux pumps in cancer

cells, thereby hampering their effectiveness as anti-

cancer agents (Felix et al., 2006; Nitiss, 2009; Ratain

and Rowley, 1992; Vassetzky et al., 1995).

Our ex vivo results presented in this study provide

novel mechanistic insights into the regulation of

TOP2-mediated DNA damage and point at HMGA2

as a crucial factor in chemotherapeutic responses fol-

lowing exposure to TOP2 antagonists. Importantly, an

extensive recent clinical study that included samples

from more than 350 human de novo AML patients

treated with TOP2 poisons alone or in combination

with DNA synthesis inhibitors implicated HMGA2

expression in leukemic cells to poor clinical outcomes

(Marquis et al., 2018). These results were further vali-

dated in more than 250 patients, thus highlighting its

clinical significance (Marquis et al., 2018). Impor-

tantly, these clinical data directly correlate with our

ex vivo findings clearly revealing a protective role for

HMGA2 against TOP2A targeting drugs and, taken

together, illustrates their importance for clinical strate-

gies in particular for HMGA2-positive AML patients.

With more than 60% of AML patients succumbing

to leukemia-related issues, and with high HMGA2

expression correlating to poor survival in both the

experimental and validation groups (Marquis et al.,

2018), we postulate here that resistance to treatment

is, at least in part, due to both HMGA2’s ability to

catalytically activate TOP2A and to serve as replica-

tion fork chaperone during induced replication stress
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using DNA synthesis inhibitors; the latter role for

HMGA2 has been demonstrated previously in other

cancer cell models (Ahmed et al., 2019; Yu et al.,

2014). More than 70% of AML patients with elevated

HMGA2 expression levels experienced relapse after

complete remission. Bone marrow-derived mononu-

clear cells that were tested positive for high HMGA2

expression (Marquis et al., 2018) comprise of a myriad

of cells at different stages of maturation, with

hematopoietic stem (HPS) cells playing a central role

in the development of AML (Corces et al., 2017;

Cuende et al., 2012; Sanchez-Aguilera and Mendez-

Ferrer, 2017). Importantly, HMGA2 is found to be

expressed in human HPS and progenitor cells and

serves an important function in proliferation and

maintenance of cellular multipotency (Copley et al.,

2013; Kumar et al., 2019). A protective function

against TOP2-targeting drugs in transformed HPS

cells, as exemplified in our current study with various

other cancer cell models, as well as the HMGA2-medi-

ated protection against DNA synthesis inhibitors such

as HU (Ahmed et al., 2019; Yu et al., 2014), could

therefore be critical factors for the increased occur-

rence of AML relapse.

We identified that fragile sites such as subtelomeres

(Sfeir et al., 2009) are susceptible to DNA topological

challenges generated by TOP2 inhibition and found

that subtelomere instability is also influenced by

HMGA2, hence corroborating our previous study

which investigated TOP1 poisons and HU (Ahmed

et al., 2019). Interestingly, the recently discovered bac-

terial chromosome factor GapR contributes to genome

stability especially during fast replication cycles

through DNA supercoil constrainment and activation

of gyrase (a bacterial TOP2) within transient DNA–
protein ternary complexes (Guo et al., 2018). We pro-

pose here a very similar role for HMGA2 and TOP2A

which protects subtelomeric and other human genomic

regions against induced, unscheduled fork stalling/col-

lapse and chromosomal breakage. In cells lacking

HMGA2, treatment with Etop will enhance the occur-

rence of TOP2cc formation downstream of replication

forks and results in frequent replication runoff events

and genotoxic DNA damage that releases telomeric

DNA fragments (Fig. 8A). This model is supported by

the results from a recent study that demonstrated

human TOP2 facilitates telomere replication and that

TOP2 poisoning leads to excised telomeric DNA cir-

cles as a result of replication fork runoff/collapse

(Zhang et al., 2017). Treatment with the catalytic inhi-

bitor Merb, on the other hand, will primarily lead to

excess of (+) supercoiling downstream of progressing

forks, which, in turn, promotes fork stalling and

collapse into genotoxic DSBs following nucleolytic

attack (Fig. 8A). Interestingly, a recent study showed

that inhibition of the catalytic activity of TOP2A leads

to telomere fragility during mitosis, most likely

through the formation of unresolved catenated DNA

between sister chromatids (d’Alcontres et al., 2014). In

cancer cells expressing HMGA2, we propose that the

protein mitigates the effects of both TOP2 targeting

drugs by a combination of DNA supercoil constrain-

ment and TOP2A catalytic activation, hence acting as

a DNA supercoil ‘sink’ (Fig. 8B).

Our in vitro results obtained with the HMGA2 vari-

ant that carries substitutions in AT-hooks 2 and 3

imply that the supercoil constrainment could directly

lead to the catalytic activation of TOP2. However, this

does not exclude that this catalytic activation function

may also be mediated by direct HMGA2-TOP2 physi-

cal interactions, as identified through a HMGA2 inter-

actome study using mouse cells (Singh et al., 2015).

Such protein–protein interaction would aid TOP2 to

more efficiently recognize and associate with relevant

regions in supercoiled substrates such as AT-rich

nuclear matrix attachment sites within a highly com-

pacted and entangled chromatin. This scenario is also

supported by studies that demonstrated chromatin

colocalization between HMGA proteins and TOP2

(Martelli et al., 1998; Reeves, 2010; Saitoh and

Laemmli, 1994).

Our study revealed that the catalytic inhibitor Merb

that does not lead to the formation of TOP2cc generates

DNA damage profiles similar to those observed with

TOP2 poisons, implying that excess topological stress

alone due to an overall reduced intracellular TOP2

activity can cause genotoxic DNA damage. Based on

the very similar DNA damage profiles that we observed

after inhibiting DNA synthesis by HU (Ahmed et al.,

2019; Yu et al., 2014), we think that the collapse of

stalled replication forks triggered by unresolved DNA

topological stress could be a more frequent cause for the

genotoxic effects of these different and clinically rele-

vant drugs. This contests the widely accepted notion

that the formation of protein–DNA adducts (TOP2cc)

on the parental strands and subsequent collision with

replisomes is solely responsible for fork collapse and a

major contributor to DSBs and genome instability (Lar-

sen et al., 2003; Nadas and Sun, 2006).

Our current study investigated a role of HMGA2 in

the induction of DNA lesions during the course of

genotoxic drug treatment. However, HMGA2 has

recently also been implicated in DNA damage repair

signaling pathways, thus hinting at important func-

tions in genome stability that act downstream of the

formation of DNA lesions (Hombach-Klonisch et al.,
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2019; Natarajan et al., 2013; Palmieri et al., 2011). In

the context of AML, it will be interesting to investi-

gate in the future whether these functions cooperate in

leukemic cells to counteract chemotherapy. Further-

more, it will be interesting to determine whether treat-

ment with the TOP1 poison irinotecan/SN38 instead

of the TOP2 poison Etop leads to improved outcomes

in AML patients expressing low-to-moderate HMGA2

levels in leukemic cells, as implied by the results of our

previous work (Ahmed et al., 2019).

5. Conclusions

In conclusion, the attenuation of genotoxic DSBs dur-

ing Etop or Merb treatment in the presence of HMGA2

highlights its role in regulating DNA/chromatin topo-

logical stress genomewide and especially at fragile sub-

telomeric regions. The latter are prone to replication

fork stalling due to their heterochromatic nature, termi-

nal position, and the potential formation of DNA topo-

logical barriers in form of T-loops (Cubiles et al., 2018;

Martinez and Blasco, 2015). This suggests a novel mech-

anism of chemoresistance toward combination therapies

involving TOP2 poisons/inhibitors and strongly argues

for HMGA2 expression profiling to aid therapy decision

making, in particular in AML patients.
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Fig. S1. HMGA2 protects against DNA damage

induced by Etop. (A) HeLa cells were treated with

increasing concentrations of Etop for 24 h and their

DNA was analyzed by PFGE. (B) H1299 cells (paren-

tal and HMGA2 KO cells) were treated with increas-

ing concentrations of Etop for 24 h and their DNA

was analyzed by PFGE. (C) HT1080 C1 cells with

Dox-regulated HMGA2 expression were treated with

10 lM Etop for 24 h and their DNA was analyzed by

PFGE (left panel). Quantification of Etop-induced

DNA fragments (> 1 Mb and 30–100 kb fractions)

(right panel) after normalization with total DNA

(n = 3 independent experiments). See section 2.8 for

statistical analysis.

Fig. S2. HMGA2 protects against DNA damage

induced by Merb. (A) H1299 cells (parental and

HMGA2 KO cells) treated with decreasing concentra-

tions of Merb for 48 h and their DNA was analyzed

by PFGE.
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