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Abstract

A primary goal of longitudinal studies is to examine trends over time. Reported results

from these studies often depend on strong, unverifiable assumptions about the missing

data. Whereas the risk of substantial bias from missing data is widely known, analyses

exploring missing-data influences are commonly done either ad hoc or not at all. This ar-

ticle outlines one of the three primary recognized approaches for examining missing-

data effects that could be more widely used, i.e. the shared-parameter model (SPM), and

explains its purpose, use, limitations and extensions. We additionally provide synthetic

data and reproducible research code for running SPMs in SAS, Stata and R

programming languages to facilitate their use in practice and for teaching purposes in

epidemiology, biostatistics, data science and related fields. Our goals are to increase

understanding and use of these methods by providing introductions to the concepts and

access to helpful tools.

Key words: Missing data, joint models, shared-parameter models, sensitivity analyses, informative missingness,

missing not at random, censoring, dropout, longitudinal data, reproducible research

VC The Author(s) 2021. Published by Oxford University Press on behalf of the International Epidemiological Association. 1384
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

IEA
International Epidemiological Association

International Journal of Epidemiology, 2021, 1384–1393

doi: 10.1093/ije/dyab086

Advance Access Publication Date: 11 June 2021

Education Corner



Introduction

Missing outcome data occur frequently in longitudinal

studies1 and even moderate amounts can strongly bias

study results.2 Whereas significant progress has been made

in approaches for handling missing data,3–5 regular imple-

mentation has been slow to follow6 and improper handling

of missing data remains one of the biggest concerns in

peer-reviewed literature.7

Missing and ‘coarsened’ outcome data may arise from a

variety of mechanisms, some potentially innocuous such as

participants losing interest in the study, others potentially

serious such as sicker participants dropping out and some

particularly convoluted such as participant death.8,9 Every

statistical analysis makes underlying assumptions about

how the missing data may influence the estimated results.

Conducting examinations on how the missingness might

affect study conclusions is vital but often underperformed,

often due to unfamiliarity or a lack of readily available sta-

tistical code.

We briefly review longitudinal-study missing-data prob-

lems and methods to address them; describe a ‘shared-pa-

rameter model’ (SPM) approach;10,11 discuss its utility,

limitations and extensions; and provide reproducible ex-

ample data and code for SPM analyses in SAS, Stata and R

programming languages.

Motivating example: cognitive decline and

dementia in the Atherosclerosis Risk in

Communities (ARIC) study

We illustrate our approaches using an examination of

MRI-defined brain-atrophy associations with 20-year cog-

nitive decline in the ARIC study. Full details on the ARIC

study design are published elsewhere.12 Briefly, our subset

of ARIC participants had brain-atrophy measurements,

with atrophy defined as present/absent by brain MRI13 at

visit 3 (1993–1996) alongside a concurrent battery of

cognitive instruments (N¼1840; ages 50–73 years, 60%

female, 50% Caucasian). Up to four follow-up cognitive

assessments occurred over the next 20 years. The longitudi-

nal outcome of interest was a composite cognitive outcome

(‘z-score’) derived from the memory, language and execu-

tive-function assessments that were performed at each of

the visits.14 In addition, dementia status was ascertained

over time using neuropsychological testing, telephone calls

with participants or proxies, hospital dementia code sur-

veillance and death-certificate dementia codes.15 The ma-

jority (61%) of the original N¼1840 did not complete all

the follow-up exams, more participants with brain atrophy

dropped out (67%) vs participants without atrophy (58%)

and those with brain atrophy had higher rates of dementia

than those without brain atrophy (Table 1, Figure 1 and

Supplementary Tables S1 and S2, available as Supplemen-

tary data at IJE online). Given these amounts and patterns

of missingness, and clear connections between censoring

dementia events and missing cognitive-decline outcome

data, standard analysis methods may violate the assump-

tions that underlie their results.

Missing-data categories and related statistical

methods

The taxonomy for missing data has been well de-

tailed,4,16,17 with fairly accepted modelling approaches for

each (see Box 1, where missingness assumptions are

depicted as occurring over a continuum). Briefly, suppose

the full set of data planned to be collected is Yfull¼ (Yobs,

Ymiss), where Yobs is actually observed and Ymiss is unfortu-

nately missing, with M denoting missingness indicators

that separate Yfull into its observed and missing compo-

nents, and the joint distribution of outcomes and missing-

ness being P(Yfull, M). Under missing completely at

random (MCAR): P(MjYfull)¼ P(M) and MAR:

P(MjYfull)¼ P(MjYobs), the missing outcome values (Ymiss)

Key Messages

• Results from standard longitudinal modelling approaches such as generalized estimating equations (GEEs) and mixed

models can be biased when outcome data are informatively missing.

• Shared-parameter models (SPMs) provide a flexible framework for exploring potential missing-data effects and can

be particularly helpful when there are clear connections between longitudinal outcome measurements and related

censoring events.

• SPMs can be generalized into larger sensitivity-analysis frameworks for examining untestable assumptions of

informatively missing data. SPMs can be estimated using existing software (reproducible Stata, SAS & R code

provided).
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are assumed to be unrelated to M, whereupon missingness

would be ignorable. We include the additional description

of ‘extended-MAR’ (XMAR)18–20 and corresponding

partly ignorable missingness assumptions, which are

weaker than missing at random (MAR),21 where it

becomes reasonable to assume that part of the

missingness may be ignored by incorporating additional in-

formation, denoted by g(M, Ymiss); under XMAR:

PfMjYfullg¼ PfMjYobs, g(M, Ymiss)g. The XMAR designa-

tion helps to clarify distinctions between standard mixed

models, where missingness is ignorable under MAR, the

family of ‘conventional’ SPMs described here, which are

Box 1 Missing-data assumptions and statistical methods

• MCAR: missing completely at random; completely ignorable missingness; P(MjYfull) ¼ P(M)

• � Assumption: Missingness is completely random and not related to any observed or unobserved data.

• � Example: Unobserved cognitive-decline outcomes occur due to the study ending.

• � Analyses: Generalized estimating equations (GEEs),22 mixed models.23

• � Notes: MCAR is a strong assumption, often difficult to justify.

• MAR: missing at random; conditionally ignorable missingness; P(MjYfull)¼P(MjYobs)

• � Assumption: Missingness only depends on observed data and is unrelated to any unobserved data.

• � Example: Unobserved cognitive declines among participants dropping out of a study are expected to be similar to

the observed declines among participants remaining in the study.

• � Analyses: Mixed models,23 multiple imputation (MI),5 weighting (IPW)6 and EM-based.4

• � Notes: Rich sets of longitudinal outcomes and predictors are often used to support MAR assumptions.

• XMAR: extended missing at random; partly ignorable missingness; PfMjYfullg¼PfMjYobs, g(M, Ymiss)g
• � Assumption: Missingness depends on observed data and a function of the missing values, g(M, Ymiss).21

• � Example: Unobserved cognitive declines among participants with a censoring diagnosis of dementia are expected

to follow a latent trajectory that is associated with their dementia-censoring time.

• � Analyses: SPM (‘conventional-SPM’18–20) extended MI.24

• � Notes: Overall missingness is postulated into ignorable and non-ignorable structures, allowing more tractable

handling of potentially remaining informative effects. Additional external data sources containing information

related to the outcome and the reason(s) for the outcomes being missing can be essential.

• MNAR: missing not at random; non-ignorable missingness; P(MjYfull)¼P(MjYobs, Ymiss)

• � Assumption: Missingness depends on the unobserved data (‘informative missingness’).

• � Example: Participants drop out of a study because they experience steeper cognitive declines than otherwise

similar participants who remain in the study, potentially regardless of dementia ascertainment.

• � Analyses: pattern-mixture models (PMMs),4,16 selection models (SEMs)4,16 and generalized shared-parameter

models (GSPMs).19

• � Notes: MNAR situations can induce severe bias; analyses only succeed in eliminating bias under additional

unverifiable assumptions, making sensitivity analyses an important strategy.25,26

Assumption spectrum

Consideration MCAR MAR XMAR MNAR

General plausibility Generally improbable Often reasonable Commonly likely Frequently plausible

Likelihood of correct con-

clusions if informative

missingness is present

Negligible Depends, conceivable Depends, promising Favourable

Assumed information in

the missing data

Ignorable Ignorable Partly ignorable Non-ignorable

Additional data or other

information needed

None Additional covariates, la-

tent variables

External information re-

lated to dropout

Assumptions

Required modelling and

computational efforts

Simplistic Easy Moderate Difficult
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partly (latently) ignorable under XMAR, and a generalized

class of SPMs (GSPMs) that allow further non-ignorable,

missing not at random (MNAR) formations.18–20 The

GSPM uses multiple sets of non-identifiable random effects

to allow MNAR structures, whereas the conventional SPM

assumes a specific tractable set of random effects as the

sufficient information function g(M, Ymiss) (see Supple-

mentary Appendix 1, available as Supplementary data at

IJE online, for additional details).A primary goal of miss-

ingness examinations is to understand effects that assump-

tions about unobserved outcomes may have on results;

generally, this incurs additional computational and model-

ling costs. Understanding underlying missingness assump-

tions and being able to efficiently execute modern models

are paramount to advancing more robust conclusions.

Common analyses used for longitudinal studies include

GEEs,22 which operate under MCAR assumptions, and

mixed models,23 which operate under MAR assumptions;

both are easy to implement. In the ARIC example, though,

participants have no further cognitive assessments after de-

mentia is diagnosed. The unobserved cognitive data for the

dementia participants is likely far lower than the observed

cognitive data for the non-dementia participants who

remained in the study, even if these participants had other-

wise similar observed characteristics (age, sex, baseline

cognition, etc.). Basic MCAR or MAR structures are there-

fore unlikely, whereby standard GEE and mixed-model

analyses could yield biased results. We examine an SPM

approach in the next section.

Methods

Three main modelling approaches for informatively miss-

ing data have arisen: selection (SEM), pattern-mixture

(PMM) and shared-parameter (SPM) models.16,20,27 SEM

and PMM approaches are defined by alternative decompo-

sitions of the outcome and missingness processes; both

have been detailed extensively, are useful for examining

MNAR and have been recommended by statisticians often,

but neither is widely used. SPMs can be expressed in either

SEM or PMM forms20 but, in an SPM, the outcome and

missingness processes are both conditioned on latent varia-

bles, after which forms of independence are often as-

sumed.18,19 SPMs received less early attention due to both

higher computational demands and more uncertainty in

influences of the latent assumptions. Clarity in SPM

assumptions, generalizations that allow further sensitivity

analyses and advances in computation have allowed SPMs

to become more attractive. We focus here on SPM methods

given their rise in use, flexibility, extendibility and progress

in computational approaches.

The SPM

SPMs extend and connect two of the most widely used sta-

tistical models: mixed models for longitudinal data and

event/survival models for event-time data.

Mixed models23 are commonly used to study trends in

repeated outcomes measured over time, such as cognitive

decline. As discussed above, standard mixed models inher-

ently make a MAR assumption. Mixed models conceptual-

ize a person as having inherent, underlying, ‘latent

characteristics’ that account for the correlation in their re-

peated measurements. For example, one participant may

exhibit ‘worse cognition’ (e.g. a lower baseline cognitive

score and faster cognitive decline) than another partici-

pant, even when all measured predictors (age, gender, edu-

cation, etc.) are the same. These underlying, ‘latent

cognition’ characteristics are commonly included in the

mixed model as person-specific baseline cognitive scores

and cognitive declines (random intercepts and slopes).

Event/survival models,28 such as proportional-hazards

models (PHMs), are commonly used to study time-to-event

outcomes, such as incident dementia or death. Here, inter-

est is often in factors that predict faster rates of the event

occurring (‘hazards’) and event times are only known for

those participants who experienced the event. Participants

who have not yet experienced an event are ‘censored’ at

their last observed follow-up time.

SPMs10,11,18–21,29 are a type of statistical ‘joint

model’,30,31 where information is shared between two or

more analysis ‘sub-models’ as shown in Box 2. An SPM

uses a mixed model for longitudinal outcomes (e.g. cogni-

tion over time) and an event/survival model for an impor-

tant censoring event directly related to the outcome (e.g.

dementia). Information is shared between these longitudi-

nal and event sub-models through a set of latent character-

istics (e.g. ‘random effects’). The event sub-model uses

parameters called ‘loading factors’ to connect censoring

events to the longitudinal sub-model outcomes. When the

loading parameters are estimated to be non-zero, there is

evidence that the longitudinal and event subprocesses are

connected, and the SPM (XMAR) model may be preferred

over simpler GEE (MCAR) or GLMM (MAR) models.

Whereas the conventional SPM in Box 2 assumes the out-

comes and missingness are independent after conditioning

on a single set of random effects (an XMAR assumption),

the family of Generalized-SPM (GSPM) allows for further

MNAR specifications with the inclusion of additional sets

of random effects.18–21 In our brain-atrophy and cognitive-

decline example, dementia represents a potentially egre-

gious source of influential missingness. If the dementia

loading factor q0 in Box 2 is estimated as negative in the

SPM, this would translate into participants with ‘poorer
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underlying cognition’ developing dementia faster, leading

to additional missing cognitive data (XMAR at a mini-

mum). It is well known that the observed data cannot be

used to distinguish MNAR situations from MCAR/MAR/

XMAR (since the distinction depends inherently on the

data that are missing). However, in some cases, the ob-

served data help to examine whether the inclusion of addi-

tional covariates supports MAR assumptions over MCAR.

Analogously, one can use the observed data and conven-

tional metrics such as the Bayesian Information Criteria

(BIC) to examine whether the SPM inclusion of the addi-

tional censoring event sub-models supports potential

XMAR assumptions over the simple mixed-model MAR

assumptions.32 We demonstrate this in our motivating ex-

ample. Additional technical details on our GEE, mixed and

SPM formulations, as well as further explanations of

GSPM extensions and partly ignorable structures, are pro-

vided in Supplementary Appendix 1, available as

Supplementary data at IJE online.

Results

Participants who completed cognitive assessments were

more likely to have higher baseline cognitive function,

more education and younger age, and were generally in

better health (Table 1). Missingness mechanisms are likely

at least MAR (not MCAR), since missingness is related to

observed covariates. Importantly, brain atrophy was

heavily related to completion status; 42% of participants

without atrophy completed cognitive assessments vs 33%

completing among those with atrophy (Supplementary

Table S1, available as Supplementary data at IJE online).

Figure 1 shows cognitive trajectories from the observed

data (panel A) and Kaplan–Meier functions for censoring

dementia events (panel B), stratified by brain-atrophy sta-

tus. Are the cognitive declines different? Whereas the plot-

ted lines in panel A may appear fairly parallel, they are

based on the observed cognitive outcome data (MAR as-

sumption). Since participants with atrophy had lower base-

line cognitive scores, higher dementia hazards and more

missing data, the plotted MAR lines in panel A may be

misleading if XMAR or MNAR missingness is at play.

Table 2 compares estimates of brain-atrophy associa-

tions with 20-year cognitive decline across different miss-

ingness assumptions. Comparing participants with brain

atrophy vs those without, GEE estimates show an unsup-

ported additional cognitive decline of �0.081 standard

deviations (SDs) (95% confidence interval: �0.204, 0.042)

p¼ 0.199 (under exchangeable correlation; similar for in-

dependent, AR1 and unstructured). These estimates are

only valid under the strongest assumption (MCAR) which,

per above, is highly improbable. The standard mixed-

model estimates the additional cognitive decline with brain

atrophy to be a bit stronger at �0.111 SD (�0.235, 0.012)

p¼ 0.077. The mixed-model estimates are valid under the

MAR assumption that, although there may be differences

Table 1 Characteristics of participants at the index exam (visit 3) by completion status

Characteristic Total

(N¼1840)

Completers

(N¼710) (39%)

Lost to follow-up

(N¼1130) (61%)

p-value

Mean age (SD) (years) 62.84 (4.48) 61.35 (4.10) 63.82 (4.45) <0.001

Male [n (%)] 725 (39%) 254 (36%) 471 (42%) 0.012

Black [n (%)] 898 (49%) 342 (48%) 556 (49%) 0.666

Years of education [n (%)]

<High school 477 (26%) 108 (15%) 369 (33%) <0.001

High-school grad 631 (34%) 256 (36%) 375 (33%)

>High school 730 (40%) 345 (49%) 385 (34%)

Smoking status [n (%)]

Current 331 (18%) 97 (14%) 234 (21%) <0.001

Former 677 (37%) 267 (38%) 410 (36%)

Never 825 (45%) 344 (49%) 481 (43%)

Alcohol-drinking status [n (%)]

Current 694 (38%) 314 (44%) 380 (34%) <0.001

Former 426 (23%) 143 (20%) 283 (25%)

Never 714 (39%) 251 (35%) 463 (41%)

Diabetes [n (%)] 314 (17%) 79 (11%) 235 (21%) <0.001

Hypertension [n (%)] 874 (48%) 281 (40%) 593 (53%) <0.001

APOE4 allele [n (%)] 594 (32%) 190 (27%) 404 (36%) <0.001

Mean global z-score (SD) �0.23 (0.98) 0.03 (0.91) �0.40 (0.98) <0.001

Brain atrophy [N (%)] 628 (34%) 206 (29%) 422 (37%) <0.001
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between completers and non-completers, the differences

can be explained by what we have observed and is included

in the model. However, it is more likely that participants

lost to dementia would have had steeper cognitive declines,

rather than cognitive declines similar to the observed non-

dementia participants as assumed by MAR. The joint SPM

under an XMAR assumption estimates a statistically sup-

ported additional cognitive decline with brain atrophy of

�0.134 SD (�0.257, �0.010) p¼ 0.034, with diagnostic

BIC supporting the SPM over the standard mixed model

(lower is better). If one considers the SPM XMAR assump-

tions and results as likely being the closest to the truth (per

missingness patterns discussed above), then estimated ef-

fect sizes from standard mixed-model (MAR) and GEE

(MCAR) estimates are inappropriately attenuated at 17%

and 40%, respectively, due to less accurate missingness

assumptions. Whereas additional MNAR elements might

still remain, if effects are similar to those for dementia,

these patterns imply that, as one moves further down the

missingness spectrum towards MNAR, brain-atrophy asso-

ciations with cognitive decline may become stronger.

Supplementary Table S3, available as Supplementary

data at IJE online, additionally provides estimates and per-

cent changes for all parameters in the SPM (XMAR) vs

separate MAR models. The SPM results in Supplementary

Table S3, available as Supplementary data at IJE online,

additionally show that the connections (‘loading factors’)

between the informative dementia-censoring events and

cognitive trajectories were supported statistically. Loading-

factor estimates showed that both lower baseline cognition

(q0) HR¼ 2.57 (1.95, 3.39) per SD and steeper cognitive

declines (q1) HR¼ 1.08 (1.07, 1.10) per SD were associ-

ated with increases in the hazards of dementia-censoring

events.

Figure 2 shows the observed and predicted values for

eight participants with different atrophy, dementia and

Box 2: Anatomy of a shared-parameter model (SPM)

• Longitudinal sub-model: (e.g. mixed model)

• � Mixed model : outcome over time ¼ predictorsþ latent characteristics

• � Example: EðCognitionÞ ¼ b0 þ b1Timeþ b2Atrophyþ b3Time � Atrophyþ b0i

• Event sub-model: (e.g. PHM or other survival model)

• � PHM: logðEvent hazardðtÞÞ ¼ baseline hazardþ predictorsþ latent characteristics

• � Example: log
�

Dementia hazardðtÞÞ ¼ h0ðtÞ þ a1Atrophyþ q0 � b0i

• Shared latent effects:

• � Random effects: random intercepts, slopes, etc.

• � Example: random intercept, b0i � N(0,s2)

• Principal interpretations:

• � b3: difference in cognitive decline between those with brain atrophy compared with those without brain atrophy

• � b0i: subject-specific (latent) random intercept representing a person’s underlying difference in baseline cognition

from the baseline of otherwise similar people; often, but not always, assumed to be normally/Gaussian-distributed

• � exp(a1): dementia hazard ratio associated with brain atrophy

• � q0: loading factor describing association of subject-specific (latent) baseline cognitive scores with dementia

hazards

• � s: heterogeneity (standard deviation) of subject-specific (latent) baseline cognitive scores across individuals

• Conventional SPM specification:

• � For subjects i¼ 1..N, measured at time points j¼ 1..ni, with predictor sets Xij, Zij, X*ij, Z*ij, random-effects vector

bi, parameter vectors b, a, q, and covariance matrix s:

• � Sub-model 1: longitudinal outcome

� YijYij ¼ Xij bþ Zijbi þ eij

� eij � Nð0;r2Þ
• � Sub-model 2: event time Ti ¼ min(T�i ,Ci), where T�i is the true time to a censoring event with potential information

about Yij and Ci is an independent stochastic censoring mechanism. Letting h0(t) denote the baseline hazard

function and X�ij, Z�ij, being predictor sets potentially different from those in Sub-model 1:

� hiðtÞ ¼ h0ðtÞ � exp fX� ijaþ qZ� ijbig
• � Shared random effects: often assumed multivariate-normal (MVN)

� bi e MVNð0; sÞ:
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missingness status. Panels A and B show non-dementia par-

ticipants 1 (without atrophy) and 2 (with atrophy); both

have complete data and similar predicted values comparing

mixed-model results to SPM. Non-dementia participants 3

(without atrophy) and 4 (with), both having missing data,

show SPM predictions closer to their observed values than

the mixed model. Panels C and D show similarly structured

participants with dementia, three of whom (participants 6,

7 and 8) all show closer fits to their observed data with the

SPM. The fourth (participant 5) with complete data has

similar mixed and SPM predictions. These eight partici-

pants are indicative of overall results, where correlations

between SPM predictions and observed values were

slightly higher with SPM (Pearson’s¼ 0.954) vs mixed

models (Pearson’s¼0.945), with improvements in all eight

atrophy by dementia by completeness groups and the larg-

est improvements being in those with incomplete data

(Supplementary Figure S1, available as Supplementary

data at IJE online). Here, even when considering observed

data metrics (AIC/BIC, loading-factor 95% CIs, observed

vs predicted correlations), the XMAR assumptions of the

SPM are supported over the MAR assumptions of the stan-

dard mixed model.

Simulated data and reproducible code to run

SPMs

To facilitate the broader implementation of SPMs, simu-

lated data based on the ARIC cognitive-decline example

and reproducible programs are provided in the

Supplementary Materials, available as Supplementary data

at IJE online, and at github link https://github.com/

MichaelGriswold/SPM. The simulation approach and data

are found in Supplementary Appendix 2, available as

Supplementary data at IJE online. General ‘pseudo-code’

and tips to help convergence are provided (Supplementary

Appendix 3, available as Supplementary data at IJE on-

line), along with specific code for Stata, SAS and R pro-

gramming languages (Supplementary Appendices 4–6,

available as Supplementary data at IJE online) and corre-

sponding results (Supplementary Tables S5–S7, available

as Supplementary data at IJE online). Others have used

simulations to prove statistical properties of SPMs; our

simulated data are meant only to provide a starting place

for code implementation.

Discussion

Missing data in longitudinal studies can significantly bias

study results. Many techniques exist to explore the degree

of this potential bias, but routine implementation has been

slow, despite guidelines recommending inclusion. We have

described how an underutilized method, i.e. the SPM, can

be used to examine potentially important missing-data

Figure 1 (A) Cognitive decline and (B) incident dementia cases over

time by MRI-determined brain-atrophy status in the ARIC study. MRI,

magnetic resonance imaging; ARIC, Atherosclerosis Risk in

Communities.

Table 2 Brain-atrophy associations with 20-year cognitive decline across missing-data assumptions from GEE (MCAR), GLMM

(MAR) and SPM (extended-MAR: XMAR) models

Model

(assumption)

Decline without

brain atrophy

Decline with

brain atrophy

Additional decline

with brain atrophy

Effect

attenuation

AIC BIC

SPM (XMAR) �0.951, p<0.001 �1.084, p<0.001 �0.134, p¼0.034 -ref- 18 477 18 735

(�1.014, �0.887) (�1.192, �0.976) (�0.257, �0.010)

GLMM (MAR) �0.918, p<0.001 �1.030, p<0.001 �0.111, p¼0.077 17% 18 669 18 900

(�0.982, �0.855) (�1.136, �0.924) (�0.235, 0.012)

GEE (MCAR) �0.925, p<0.001 �1.006, p<0.001 �0.081, p¼0.199 40% – –

(�0.988, �0.862) (�1.112, �0.900) (�0.204, 0.042)

Adjusted for: age, male, site-race, education and APOE4 status. Decline: estimated absolute 20-year cognitive decline marginalized over adjustors.

Longitudinal outcomes were standardized general cognition (z-scores). Cells contain estimates, p-values and (95% CIs). SPM, shared-parameter model; GLMM,

generalized linear mixed model; GEE, generalized estimating equation; AIC, Akaike Information Criterion (lower is better); BIC, Bayesian Information Criterion

(lower is better); AIC/BIC not available for GEE (which is quasi-likelihood-based).
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effects, using a real-world example to demonstrate the ap-

proach. We have additionally provided reproducible data

and code to facilitate and broaden SPM use. In accordance

with other recommendations, we suggest the sensitivity

examinations to be included routinely at least in

Supplementary Materials, available as Supplementary data

at IJE online. When sensitivity analyses suggest that con-

clusions may depend on missing-data assumptions, discus-

sion of how primary results may be affected by important

missingness elements is prudent.

Another feature of joint models is their flexibility for

extensions. Here, we have focused on concepts to outline a

simple, conventional SPM specification (see Supplementary

Appendix 1, available as Supplementary data at IJE online,

for additional technical details). Extensions are vast and in-

clude useful aspects such as: adding multiple longitudinal

sub-models (e.g. simultaneously modelling declines in lan-

guage, memory and executive function, or even multiple

individual cognitive instruments, similar to factor analysis

or structural equation modelling); adding multiple-event

sub-models as competing risks (e.g. times to dementia,

nursing-home institutionalization, death); sharing time-de-

pendent predictions from the longitudinal sub-models (vs

only random effects); including flexible random-effect dis-

tributions (such as mixture models), including additional

random effects for MNAR examination, and many other

augmentations. The broader class of joint models is an ac-

tive area of statistical research.

Deciding how to deal with deaths deserves special atten-

tion in any longitudinal data analysis.8,9,16,33 Mixed mod-

els implicitly borrow information from the observed data

and attribute it to the missing data. This property extends

the missing-data assumptions from MCAR to MAR but

does not distinguish between missing data for those who

remain alive vs for those who have died. Others have de-

scribed mixed models as conveying inferences on an ‘im-

mortal cohort’. We used a simple SPM with a single

longitudinal outcome (global cognition) and a single cen-

soring event (dementia) in order to describe and illustrate

key SPM aspects. When we extended the SPM to incorpo-

rate competing risk sub-models for both dementia and

death events, associations between brain atrophy and cog-

nitive decline were even stronger and supported by BIC

and loading parameter estimates similar to those described

above (see Supplementary Appendix 7, available as

Supplementary data at IJE online, for description and

Figure 2 Predicted vs observed values for (A) participants without dementia using standard linear mixed-model (LMM) estimates, (B) participants

without dementia using shared-parameter model (SPM) estimates, (C) participants with dementia using standard LMM estimates and (D) participants

with dementia using SPM estimates. Participants 1 and 5 have complete data and brain atrophy; participants 2 and 6 have complete data and no atro-

phy; participants 3 and 7 have incomplete data with atrophy; and participants 4 and 8 have incomplete data without atrophy. LMM, linear mixed

model; SPM, shared-parameter model; MAR, missing at random; XMAR, extended missing at random.
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results). Additional GSPM formulations with assumptions

that admit ‘non-future dependence’19 could be used to ex-

plore death effects further. Accounting for death effects is

challenging by any method, particularly when informative

missingness is involved, and, although this has been an ac-

tive area of statistical research, a broader platform of ‘mor-

tal-inference’ methods that assess sensitivity to full MNAR

would be valuable.

We follow trends in stating that the conventional SPM

can be conceptualized as an ‘extended-MAR’ (XMAR) as-

sumption where, given the random effects, missingness is

assumed to no longer depend on the unobserved longitudi-

nal measurements or future times (events or censoring).19

Under this partly ignorable assumption, a conventional

SPM can constitute a valuable missingness examination as

shown in our example. However, we note that the partly

ignorable assumption is still an assumption and, although

it is more flexible than MAR, even more insidious MNAR

situations not addressed by a conventional SPM can exist,

where differences between observed and missing observa-

tions are uninformed by the observed data. Such situations

can only be addressed in an extended sensitivity analysis,

where one elicits a scientifically plausible range for differ-

ences in observed vs missing values and then examines how

findings vary within this plausible range.19,25,30 Recent

work for SPM approaches is based on ‘grounding’ the sensi-

tivity analyses on the conventional SPM that we have de-

tailed.26 Such analyses are more complex than those

illustrated in the present work and could indicate additional

sensitivities not identified here. However, assuming that ad-

ditional informative missingness effects would act in the

same direction as dementia (such as those shown by the ad-

ditional death model, Supplementary Appendix 7, available

as Supplementary data at IJE online), the stated SPM results

here would be conservative if additional effects above and

beyond those accounted for in the SPM remain.

Conclusion

Results from standard GEE (MCAR) and mixed models

(MAR) can be biased if the missing-data assumptions are in-

correct. It is difficult or impossible to tell whether an MNAR

situation is correct because the data needed to test the as-

sumption are, by definition, missing. However, just as ob-

served data may support an MAR assumption over an

MCAR one, an XMAR assumption may extend the utility of

other observed data related to the missing outcomes to show

utility over MAR. Recent national recommendations regard-

ing missing-data state: ‘Examining sensitivity to the assump-

tions about the missing data mechanism should be a

mandatory component of reporting.’2 Sensitivity analyses

should examine scientifically plausible situations with appro-

priate approaches rather than using single imputation strate-

gies that are known to bias both estimates and standard

errors such as best-case, worst-case or last-observation-car-

ried-forward (LOCF).2,25 Our suggested approach is to (i)

identify scientifically plausible informative censoring events

(like dementia for cognitive decline), then (ii) incorporate

these events in an SPM alongside a longitudinal mixed model,

(iii) compare the SPM (XMAR) results to estimates obtained

from separate GEE (MCAR) and mixed models (MAR), and

finally (iv) consider additional MNAR structures that may

still remain using GSPM, SEM or PMM methods. This ap-

proach uses multiple models, which are all now becoming

more and more computationally tractable, to provide a better

understanding of potential mechanisms and influences of

missing data. To place an addendum on the famous quote by

George Box: ‘All models are wrong, but some models are use-

ful’—and many useful models are illuminating.
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Supplementary data are available at IJE online.
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