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Resistance to PARP-inhibitors in cancer therapy
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The pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) family of proteins
have shown promising results in preclinical studies and clinical trials as a monotherapy or
in combination therapy for some cancers.Thus, usage of PARP-inhibitors (PARPi) in cancer
therapy is bound to increase with time, but resistance of cancer cells to PARPi is also
beginning to be observed. Here we review different known and potential mechanisms by
which: (i) PARPi kill cancer cells; and (ii) cancer cells develop resistance to PARPi. Under-
standing the lethality caused by PARPi and the countermeasures deployed by cancers cells
to survive PARPi will help us rationalize the use of this new class of drugs in cancer therapy.
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Recent clinical trials with poly(ADP-ribose) polymerase-inhibitors
as a monotherapy or in combination therapy have shown promis-
ing results against different cancers (Lord and Ashworth, 2012).
Therefore, their use in cancer therapy is likely to increase, resulting
in the inevitable appearance of PARPi-resistant cancers (Chiarugi,
2012). Here, we first discuss different mechanisms by which
PARPi can kill cancer cells and then review several known and
potential mechanisms by which cancers can become resistant to
PARPi.

MECHANISMS OF ACTION OF PARPi IN CANCER THERAPY
PARP-1 AS THE PRINCIPLE TARGET FOR THERAPEUTIC ACTIVITY OF
PARPi
There are 18 members of the PARP family of proteins, but
therapeutic effect of PARPi on cancer cells is observed only in
conjunction with DNA damage; hence DNA damage-responsive
PARPs are the most likely mediators of PARPi effect. Among
three such PARPs, PARP-1 is the principle responder to DNA
damage, as it rapidly reaches the damaged site and mounts a
robust catalytic activation response that influences different cellu-
lar responses to DNA damage (Javle and Curtin, 2011; Yélamos
et al., 2011; Gibson and Kraus, 2012). The activated PARP-1
splits the substrate nicotinamide adenine dinucleotide (NAD+) to
release ADP-ribose, nicotinamide, and protons (Affar et al., 2002;
Shah et al., 2011). PARP-1 then forms polymers of ADP-ribose
(PAR) that post-translationally modify (i.e., PARylate) PARP-1
itself and selected target proteins to control a wide array of cel-
lular processes, such as cell death, transcription, cell division, and
DNA repair (Krishnakumar and Kraus, 2010). Among the DNA
repair pathways, PARP-1 is widely recognized for its impact on
the base excision repair (BER) and single strand break (SSB)
repair pathways, but it also influences homologous recombination
(HR) and non-homologous end-joining (NHEJ) repair of double
strand breaks (DSB; Yélamos et al., 2011; De Vos et al., 2012). In

addition, it also plays a role in mismatch repair (Liu et al., 2012)
and more recently the nucleotide excision repair pathways (King
et al., 2012; Luijsterburg et al., 2012; Pines et al., 2012; Robu et al.,
2013).

In contrast to PARP-1, the other two DNA damage-responsive
PARPs play a limited role in DNA damage responses. For exam-
ple, PARP-2, in conjunction with PARP-1, has been shown to affect
BER (Schreiber et al., 2002) and restart the stalled replication forks
(Bryant et al., 2009). PARP-3 plays a role in NHEJ pathway in con-
junction with APLF (Rulten et al., 2011) or PARP-1 (Boehler et al.,
2011) and helps activation of PARP-1 (Loseva et al., 2010). In the
context of the role of PARPi in inhibiting PARylation activity of
PARPs, it is pertinent to note that PARP-2 has a very weak PARy-
lation activity as compared to PARP-1, and many functions of
PARP-2 and 3 are associated with PARP-1. Therefore, one could
argue that the main target for PARPi is on the role of PARP-1 in
DNA repair with possibly some effect on the roles of PARP-2 and
3. Finally, we should not exclude the possibility that the roles of
PARP-1 in cell death and transcription are also involved in the
therapeutic effect of PARPi.

COMPETITIVE PARPi HAVE CONSISTENT THERAPEUTIC ACTIVITY
Most consistent results in clinical trials have been obtained with
competitive PARPi, which are analogs of nicotinamide that com-
pete with the substrate NAD+ to bind to the enzyme. Unlike weak
inhibitory activity of nicotinamide, its derivatives ranging from the
first generation 3-aminobenzamide to the third generation Ola-
parib and Rucaparib are better inhibitors of PARP-1 and PARP-2
(Table 1). The Iniparib, originally developed as a non-competitive
inhibitor of PARP-1, showed early successes in clinical trials, but
it is a non-specific and weak inhibitor of PARP-1 (Patel et al.,
2012). Hence this review will focus on the results obtained with
competitive PARPi.
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Table 1 | Different PARPi currently in clinical trials and their relative inhibitory potential against PARP-1 and PARP-2 (adapted from Davar et al.,

2012).

Inhibitor Other

name(s)

IC50/Ki IC50/Ki for

PARP-1

IC50/Ki for

PARP-2

Trial status Type of cancer(s)

Olaparib AZD2281

KU0059436

IC50 5 nM 1 nM Phase I/II singly or

combination

Breast, ovarian, colorectal, solid tumors, pancreatic,

prostate, carcinoma of esophagus, head and neck

squamous cells carcinoma, gastric, NSCLC, brain,

CNS, Ewing’s sarcoma, uterine, fallopian tube, etc.

Veliparib ABT-888 Ki 5.2 nM 2.9 nM Phase I/II singly or

combination

Breast, colorectal, GBM, melanoma, solid tumors,

pancreatic, fallopian tube, peritoneal cavity,

pancreatic, brain, CNS, lymphoma, multiple

myeloma, etc.

Rucaparib AG014699

PF01367338

Ki 1.4 nM – Phase I combined with

chemotherapy/phase II singly

in BRCA associated status

Breast, ovarian, solid tumors (also diabetes

mellitus)

INO-1001 – IC50 50 nM – Phase I/II Cardiovascular disease/combination with TMZ in

melanoma

MK-4827 – IC50 3.8 nM 2.1 nM Phase I singly or with

chemotherapy/phase II

Ovarian, solid tumors, glioblastoma multiform,

melanoma, lymphoma, chronic lymphocytic

leukemia, T-cell-pro-lymphocytic leukemia

PARPi AS SYNTHETIC LETHAL MONOTHERAPY FOR DSB REPAIR
DEFECTIVE TUMORS
It was suggested that two mutations should be considered syn-
thetic lethal if cells with either mutation are viable but those
with both mutations are non-viable (Dobzhansky, 1946). The first
success of this approach was observed in 2005, when two groups
showed that PARPi, which is non-toxic to normal cells, is lethal to
BRCA1/2 cancer cells that are deficient in HR-mediated repair of
DSB (Bryant et al., 2005; Farmer et al., 2005; Helleday et al., 2005).
Several clinical trials for different cancers have since been launched
with PARPi, and a list of current trials is shown in Table 1.

There are different possible mechanisms by which PARPi kill
HR-deficient tumor cells (Helleday, 2011). It was initially sug-
gested that constant DNA damage induced by endogenous factors,
such as oxidants needs to be repaired by BER in which PARP-1 par-
ticipates either by binding to SSB or by collaborating with XRCC-1
(Figure 1, steps A and B). Thus, when PARPi block BER, the unre-
paired SSB would stall and collapse the replication fork to create
DSB (Figure 1, step C). The normal cells would survive by read-
ily repairing these DSB by error-free HR or error-prone NHEJ
(Figure 1, steps D or E). However, the DSB would be lethal to
HR-deficient BRCA1/2 tumors with an excessive reliance on the
error-prone NHEJ repair pathway (Aly and Ganesan, 2011). This
scenario is most plausible and is supported by significant evidence,
but it does not explain many things, such as lack of accumulation
of SSB in PARPi-treated cells or the absence of synthetic lethality
by targeting XRCC-1 in BRCA-deficient cells (Helleday, 2011).

Therefore, alternative explanations have been offered for syn-
thetic lethality of PARPi in HR-deficient cells. In brief, it has been
shown that PARP-1 binds to and is activated by SSB-intermediates
formed during BER, which results in release of PARylated PARP-1
from SSB, which are then repaired (Strom et al., 2011). Thus, it

is proposed that in the presence of PARPi, SSB bound to PARP-1
would collapse the replication fork and DSB-mediated lethality
will occur in HR-deficient cells (Helleday, 2011). It is also possible
that the role of PARP-1 in suppressing the error-prone NHEJ is the
target for PARPi-induced lethality in HR-deficient cells, because
inhibition or downregulation of multiple components of NHEJ,
such as Ku80, Artemis, and DNA-PK, made HR-deficient cells
resistant to PARPi (Patel et al., 2011). Finally, it has been sug-
gested that since PARP-1 plays a role in reactivating the stalled
replication forks, this step could be a target for PARPi-induced
lethality in HR-deficient cells (Helleday, 2011).

Cancer cells are known to carry other conditions that create
HR-deficiency or BRCAness, which can make them susceptible
to synthetic lethality by PARPi. Three such examples are listed
here (Figure 1, step D). (i) The protein kinase ataxia telangiec-
tasia mutated (ATM), a key regulator that senses DNA damage,
initiates the protein kinase cascade (Wang and Weaver, 2011) and
plays a role in HR, is frequently mutated in lymphoid malignan-
cies. Interestingly, PARPi is synthetic lethal to the ATM mutant
lymphoid tumor cells (Weston et al., 2010). (ii) Aurora-1 is fre-
quently amplified and overexpressed in breast cancers (Staff et al.,
2010). An overexpression of Aurora-1 induces BRCAness in an
otherwise HR-competent PIR12 pancreatic tumor cells by causing
an impaired recruitment of key HR-protein RAD51, and sensitizes
them to synthetic lethality by PARPi (Sourisseau et al., 2010). (iii)
PTEN (phosphatase and tensin homolog), which plays a crucial
role in regulating PI3K/Akt-1-mTOR signaling pathway, is fre-
quently mutated or decreased in a wide range of human tumors
(Salmena et al., 2008). The PTEN-null cancer cells, which are HR-
defective due to reduced expression and nuclear localization of
RAD51, are sensitive to PARPi (Mendes-Pereira et al., 2009; Dedes
et al., 2010; McEllin et al., 2010; Figure 1, step D). Although
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FIGURE 1 | Mechanisms of resistance to PARPi in cancer therapy. The
principle explanation for the efficacy of PARPi as synthetic lethal therapy in
DNA double strand break (DSB) repair defective cancer cells or as a
combination therapy with other agents for other cancers rests on the role of
PARP-1 in BER and SSBR. As shown in the series of A–E steps, the inefficient
repair of DNA single strand breaks by PARP-1-mediated BER in the presence
of PARPi would lead to DSB. An inefficient repair of DSB by HR-deficient
cancer cells will kill these cells, whereas normal cells with proper DSB repair

capacity will survive. The resistance to PARPi can occur in cancer cells by
alteration of various parameters, which influence different steps in this
pathway. The changes in these factors, i.e., upregulation or downregulation as
pointed by the direction of red arrows, is associated with resistance to PARPi.
The solid or dashed arrows indicate known or hypothesized mechanisms of
resistance to PARPi, respectively. The numbers within square bracket next to
the arrows refer to the explanation in the text for this mechanism of
PARPi-resistance.

another study reported that PTEN deficiency in prostate cancer
cells is not associated with BRCAness or sensitivity to PARPi
(Fraser et al., 2012), suggesting a need for more work in this
model.

Finally, PARPi sensitivity has also been reported under circum-
stances without BRCAness. For example, the depletion of NHEJ
components DNA-PK or Ku80 made HR-proficient cells more
sensitive to PARPi (Bryant and Helleday, 2006). PARPi sensitivity
is also observed in conditions with no apparent defect in any of
the DNA repair pathway. The sporadic breast cancer cells over-
expressing HER2 (human epidermal growth factor receptor 2)
are addicted to overexpression of NF-κB-mediated transcription
for survival. Since PARP-1 is a co-activator of NF-κB, the treat-
ment with PARPi abrogates NF-κB-mediated transcription and
kills these cancer cells (Nowsheen et al., 2012).

Overall, the ability of PARPi to cause synthetic lethality in can-
cer cells with BRCAness as well as many other conditions indicates
a potential for their use as monotherapy for a wide variety of
cancers.

PARPi IN COMBINATION THERAPY FOR DNA REPAIR PROFICIENT
TUMORS
All of the above studies dealing with synthetic lethal effect of
PARPi rely on the DNA damage induced by endogenous fac-
tors, such as oxidants created during metabolism. Therefore, it is
not surprising that PARPi also potentiates lethality of exogenous

DNA damaging agents, such as chemotherapeutic agents or ion-
ising radiations (Javle and Curtin, 2011). Such combination
therapy has the potential to kill cancer cells with no appar-
ent defect in DNA repair, because chemotherapy induced SSB
will be amplified by PARPi to make a large flux of DSB that
will overwhelm the normal DSB repair capacity of these tumors
and cause death (Figure 1, steps B–E). In the actual clinical
conditions for treatment of cancer patients, it is highly likely
that PARPi will be used most frequently in combination ther-
apy for DNA repair proficient and even for DNA repair deficient
tumors.

MECHANISMS OF RESISTANCE TO PARPi IN CANCER
THERAPY
There are four categories of known and potential mechanisms of
resistance to PARPi in cancer cells, which are described below: (i)
increased HR capacity; (ii) altered NHEJ capacity; (iii) decreased
levels or activity of PARP-1, and (iv) decreased intracellular
availability of PARPi.

INCREASED HR CAPACITY
Since pre-existing HR defect is the initial lesion that allows PARPi
to kill HR-deficient tumors, any of the following conditions that
restore HR could result in the resistance to PARPi (Figure 1, step
D, arrow #1).
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Reverse mutation of brca
The resistance of BRCA tumors or cells to PARPi was initially
identified to be due to reverse mutations in brca1/2 and restora-
tion of HR (Figure 1, step D, arrow #2; Ashworth, 2008; Edwards
et al., 2008; Sakai et al., 2008; Swisher et al., 2008; Norquist et al.,
2011; Barber et al., 2013). For BRCA2, reverse mutation was in
part due to intragenic deletion of the c.6174delT mutation and
restoration of the open reading frame (Ashworth, 2008). The
genomic instability associated with BRCA loss could be a cause
for reverse mutations of brca (Aly and Ganesan, 2011). Certain
BRCA1-deficient tumors carry hypomorphic BRCA1 mutations
within its population (Drost et al., 2011); hence a selection of cells
with restored BRCA function could confer resistance to PARPi.

Overexpression of BRCA via downregulation of miR-182 or PARP-1
BRCA1 expression is negatively regulated by the microRNA miR-
182; hence miR-182 overexpression sensitizes BRCA1-proficient
breast cancer cells to PARPi, whereas its downregulation made
them resistant to PARPi (Moskwa et al., 2011; Figure 1, step
D, arrow #3). PARP-1 and its activity is a negative modula-
tor of BRCA2, because PARP-1 binds to the silencer-binding
region of the brca2 promoter (Wang et al., 2008). Hence PARPi
mediated suppression of PARP-1 activity could lead to overex-
pression of BRCA2 and resistance to PARPi (Figure 1, step D,
arrow #4).

ATM-mediated HR during loss of 53BP1 in BRCA-deficient
background
53BP1 is a nuclear protein that plays a key role in DNA repair
responses and checkpoint control (Bunting et al., 2010). Together,
BRCA1 and 53BP1 determine the balance between NHEJ and
HR, because the loss of BRCA1 results in a profound defect in
HR and increased NHEJ repair, whereas loss of 53BP1 suppresses
NHEJ and promotes HR (Figure 1, steps D–E). While cells with
defect in BRCA1 alone were susceptible to PARPi, an additional
loss of 53BP1 allowed a partial ATM-dependent HR repair (Aly
and Ganesan, 2011), making these cells resistant to PARPi (Cao
et al., 2009; Bouwman et al., 2010; Bunting et al., 2010; Brandsma
and Gent, 2012; Oplustilova et al., 2012). Thus, increased ATM
alone could induce resistance to PARPi (Figure 1, steps D–E,
arrow #5).

Increased activity of RAD51
RAD51 is a key HR-protein; therefore any factor that increases
RAD51 levels or activity can potentially lead to a resistance to
PARPi (Figure 1, step D, arrow #6). The levels of RAD51 are
suppressed by miR-96 (Wang et al., 2012) and Aurora-1 (Souris-
seau et al., 2010) and increased by PTEN (Dedes et al., 2010).
Hence, we hypothesize that decreased miR-96 and Aurora-1 or
increased PTEN can increase RAD51 and HR activity leading to
the resistance to PARPi (Figure 1, step D, arrows #7). This is indi-
rectly supported by the observation that increased RAD51 levels
make colon carcinoma cells resistant to the combined treatment
of PARPi and temozolomide (Liu et al., 2009).

ALTERED NHEJ CAPACITY
One of the causes for synthetic lethality of PARPi in HR-deficient
cells is an upregulation of the error-prone NHEJ pathway that

is normally suppressed by PARP-1. Hence any decrease in NHEJ
capacity in these cells could increase their resistance to PARPi,
as shown in BRCA2-deficient cells by inhibition or downregula-
tion of Ku80, Artemis, or DNA-PK (Figure 1, step E, arrow #8;
Patel et al., 2011). On the flip side, it has been suggested that nor-
mal NHEJ function and the genomic instability mediated by NHEJ
could be one of the causes for reversion of the mutation of brca1/2,
restoration of partial HR capacities and development of resistance
to PARPi in HR-deficient tumors (Chiarugi, 2012; Figure 1, step
D, arrow #2). Thus, both increased and decreased NHEJ capacity
of cells could lead to resistance to PARPi in different contexts.

DECREASED LEVELS OR ACTIVITY OF PARP-1
The effectiveness of PARPi in anti-cancer therapy requires that
its target PARP-1 is available for inhibition; because in PARPi-
treated cells, PARP-1 will still bind to DNA strand breaks but
will not be activated to form PAR or facilitate DNA repair events.
Hence reduced levels of PARP-1 could result in resistance to PARPi
(Figure 1, step B, arrow #9). In fact, PARP-1 levels are significantly
decreased in the PARPi and temozolomide-resistant clones of col-
orectal carcinoma HCT116 cells (Liu et al., 2009). Therefore, it
will be interesting to see if alterations in PARP-1 levels during
different stages in tumor development are also associated with a
corresponding change in sensitivity to PARPi. For example, lev-
els of miR-210, which suppresses PARP-1 expression, are initially
decreased when normal breast cells are transformed to ductal car-
cinoma in situ, and they are increased during further transition
to the invasive ductal carcinoma stage (Volinia et al., 2012). It will
be interesting to test in such a series of samples, whether these
changes in miR-210 are inversely associated with alterations in
the levels of PARP-1 and directly correlated with the resistance
to PARPi (Figure 1, step B, arrow #10). There have been reports
of a correlation between the abundance of cytoplasmic PARP-1
and higher sensitivity to chemotherapy in breast cancer samples
(Domagala et al., 2011; von Minckwitz et al., 2011; Klauke et al.,
2012). However, cytoplasmic PARP-1 was detected at a very low
frequency in these tumors, and since we do not know any role for
cytoplasmic PARP-1 in DNA damage responses, it is difficult at
this moment to rationalize the link between cytoplasmic PARP-1
and resistance to PARPi.

The effectiveness of PARPi is also linked to the catalytic activity
of PARP-1. Hence any factor that decreases the activity of PARP-1
could influence the efficacy of PARPi. The cancer cells with nor-
mal levels of PARP-1 but decreased enzymatic activity as noted
by reduced level of endogenous PARylation are more resistant
to PARPi (Oplustilova et al., 2012; Figure 1, step B, arrow #9).
As a corollary, HR-deficient tumor cells with higher endogenous
PARylation activity are more sensitive to PARPi (Gottipati et al.,
2010).

Variant forms of PARP-1 with decreased catalytic activity, such
as those created by small nucleotide polymorphism (SNP), could
make cancer cells resistant to PARPi. In human cancers, some
SNP have indeed been found to some extent, such as V762/A
(Lockett et al., 2004; Wang et al., 2007; Zaremba et al., 2009) or
M129/T and E251/K (Ogino et al., 2010). However, there is no con-
sensus as to whether V762/A reduces enzyme activity and other
mutants do not have significant effect on enzyme function. Thus,
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it is difficult to predict the effect of SNP on the effectiveness of
PARPi.

DECREASED INTRACELLULAR AVAILABILITY OF PARPi
A cancer cell that can efficiently throw PARPi out of the cell can
become relatively resistant to this therapy. The p-glycoproteins
(P-gp) also called multi-drug resistance proteins are involved in
the efflux of PARPi (Figure 1, step A, arrow #11), because P-gp
inhibitors prevent the decrease of PARPi in HCT116 colon can-
cer cells (Oplustilova et al., 2012) and re-sensitize PARPi-resistant
BRCA-1 deficient cells to PARPi (Rottenberg et al., 2008). In the
mouse mammary tumor models, PARPi was more effective when
P-gp knockout condition was added to BRCA-1 deficient cells
(Jaspers et al., 2012). The P-gp belong to ABC transporter fam-
ily which is inhibited by ADP-ribose, a product of catalytic activity
of PARP-1 (Dumitriu et al., 2004). Therefore, it is feasible that
PARPi that would prevent formation of ADP-ribose can permit
full activity of P-gp to eliminate PARPi from the cells. Nonethe-
less, more work is needed in this domain because the resistance to
drug via upregulation of P-gp has not yet been shown in human
tumoral tissues (Borst, 2012).

CONCLUSION
In cancer treatment with PARPi, the personalization of ther-
apy is important because many factors can influence the effi-
ciency of PARPi, such as HR and NHEJ status, PARP-1 levels or
its activity and finally other factors that influence intracellular
concentrations of PARPi. Therefore, it would be necessary to
assess the status of these controlling factors before beginning
the treatment with PARPi (Lord and Ashworth, 2012; Ratner
et al., 2012). A thorough understanding of different mecha-
nisms for the resistance to PARPi will permit us to design
better PARPi monotherapy as well as combination therapy,
and will allow us to identify conditions that can re-sensitize
tumor cells to PARPi; and thus treat cancer patients more
efficiently.
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