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Background: Fragile X syndrome (FXS), the most common single-gene cause of
intellectual disability and autism spectrum disorder (ASD), is caused by a >200-
trinucleotide repeat expansion in the 5’ untranslated region of the fragile X mental
retardation 1 (FMR1) gene. Individuals with FXS can present with a range of
neurobehavioral impairments including, but not limited to: cognitive, language, and
adaptive deficits; ASD; anxiety; social withdrawal and avoidance; and aggression.
Decreased expression of the γ-aminobutyric acid type A (GABAA) receptor δ subunit
and deficient GABAergic tonic inhibition could be associated with symptoms of FXS.
Gaboxadol (OV101) is a δ-subunit–selective, extrasynaptic GABAA receptor agonist that
enhances GABAergic tonic inhibition, providing the rationale for assessment of OV101 as a
potential targeted treatment of FXS. No drug is approved in the United States for the
treatment of FXS.

Methods: This 12-weeks, randomized (1:1:1), double-blind, parallel-group, phase 2a
study was designed to assess the safety, tolerability, efficacy, and optimal daily dose of
OV101 5mg [once (QD), twice (BID), or three-times daily (TID)] when administered for
12 weeks to adolescent and adult men with FXS. Safety was the primary study objective,
with key assessments including treatment-emergent adverse events (TEAEs), treatment-
related adverse events leading to study discontinuation, and serious adverse events
(SAEs). The secondary study objective was to evaluate the effect of OV101 on a variety of
problem behaviors.

Results: A total of 23 participants with FXS (13 adolescents, 10 adults) with moderate-to-
severe neurobehavioral phenotypes (Full Scale Intelligence Quotient, 41.5 ± 3.29; ASD,
82.6%) were randomized to OV101 5mg QD (n � 8), 5 mg BID (n � 8), or 5 mg TID (n � 7)
for 12 weeks. OV101 was well tolerated across all 3 treatment regimens. The most
common TEAEs were upper respiratory tract infection (n � 4), headache (n � 3), diarrhea
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(n � 2), and irritability (n � 2). No SAEs were reported. Improvements from baseline to end-
of-treatment were observed on several efficacy endpoints, and 60% of participants were
identified as treatment responders based on Clinical Global Impressions-Improvement.

Conclusions:Overall, OV101 was safe and well tolerated. Efficacy results demonstrate an
initial signal for OV101 in individuals with FXS. These results need to be confirmed in a
larger, randomized, placebo-controlled study with optimal outcomes and in the most
appropriate age group.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03697161

Keywords: OV101, gaboxadol, fragile X syndrome, FMR1, GABAA, safety, efficacy, randomized study

INTRODUCTION

Fragile X syndrome (FXS) is an inherited neurodevelopmental
disorder caused by a full-mutation expansion [>200
trinucleotide (CGG) repeats] in the promoter region of the
fragile X mental retardation 1 (FMR1) gene. The resulting
epigenetic silencing of FMR1 causes a deficiency in or
absence of the gene’s encoded protein, fragile X mental
retardation protein (FMRP) (Bagni et al., 2012). With an
estimated prevalence of approximately 1 in 4,000 males and
1 in 6,000 females, FXS is the most common single-gene cause of
intellectual disability (ID) and autism spectrum disorder (ASD)
(Crawford et al., 2001; Tassone et al., 2012). Individuals with
FXS can present with a broad range of neurobehavioral
abnormalities, including cognitive deficits e.g., ID, 95% of
males, 35% of females (Rousseau et al., 1994; Wright-
Talamante et al., 1996); language disorders (non-verbal to
perseverative); ASD (51% of males); psychiatric and
behavioral impairments, such as anxiety, hyperarousal, and
other sensory processing difficulties; repetitive behaviors;
attentional network deficits; and irritability often
accompanied by aggressive and/or self-injurious behaviors
(Hagerman et al., 2009; Kaufmann et al., 2017; Raspa et al.,
2018; Budimirovic et al., 2020; Reisinger et al., 2020). Patients
with FXS also present with neurological abnormalities, such as
motor and coordination difficulties (Gabis et al., 2011) and a
higher incidence of epilepsy (Hagerman et al., 2009). As an
X-linked disorder, males with FXS have a more severe
phenotype than females, with evidence suggesting an inverse
relationship between FMRP deficiency and severity of FXS-
associated neurobehavioral phenotype (Kim et al., 2019;
Budimirovic et al., 2020). FXS phenotype severity can also be
affected by size mosaicism (premutation), X-chromosome
inactivation in females, and variation in the methylation
status of full mutations (Nolin et al., 1994; Budimirovic et al.,
2020).

Symptom-based, off-label treatments used in the management
of patients with FXS include psychostimulants for attention
deficit hyperactivity disorder (ADHD) symptoms; α2-
adrenergic receptor agonists for sensory overstimulation,
hyperarousal, hyperactivity, and sleep disturbances;
anticonvulsants for seizures and mood instability; selective
serotonin reuptake inhibitors for anxiety; and antipsychotics

and antidepressants for aggression, anxiety, and sleep
disturbances (Berry-Kravis et al., 2012; Eckert et al., 2019).
However, few randomized, controlled studies have been
conducted to formally evaluate these symptomatic
interventions in FXS (Berry-Kravis et al., 2018). Although safe
and effective treatments for FXS are needed, particularly for
targeted treatments that surpass symptom-based management,
no medication is approved in the United States (Lee et al., 2018).

Evidence suggests that GABAergic dysfunction and the
resulting excitatory and inhibitory imbalance can contribute to
the pathophysiology of FXS (Berry-Kravis et al., 2018). GABA
(γ-aminobutyric acid) is the primary inhibitory neurotransmitter
in the brain. Fmr1 knockout (KO) mice exhibit decreased GABA
type A (GABAA) receptor δ subunit expression, GABA synthesis,
and GABA levels, resulting in reduced tonic inhibition. Reduced
tonic inhibition may, in turn, lead to abnormal excitatory
signaling in the brain, culminating in a range of symptoms
(Olmos-Serrano et al., 2011; Zafarullah and Tassone, 2019).
Tonic inhibition, mediated by δ-subunit–containing GABAA

receptors, plays an important role in various functions of
different regions in the brain (Cope et al., 2005; Brickley and
Mody, 2012; Lee andMaguire, 2014; Whissell et al., 2015) and is a
potential treatment target for FXS.

Evidence from clinical studies of GABAergic therapies,
specifically arbaclofen (GABAB agonist), ganaxolone (GABAA

receptor modulator), and acamprosate (GABAB and GABAA

receptor modulator), suggests that GABA receptor modulation
may hold therapeutic potential for treating the core behavioral
problems associated with FXS (Zafarullah and Tassone, 2019).
For example, in 2 placebo-controlled, phase 3 studies of patients
with FXS aged 5–11 or 12–50 years, arbaclofen did not differ
statistically from placebo on the primary outcome measure of
social avoidance on the Aberrant Behavior Checklist-Community
Edition (ABC-C) refactored for FXS (ABC-CFXS) (Sansone et al.,
2012). However, improvements in irritable behavior and
parenting stress were observed for children who received the
highest drug dose [10 mg three-times daily (TID)] (Berry-Kravis
et al., 2017).

Gaboxadol (OV101) is a δ-subunit–selective extrasynaptic
GABAA receptor agonist that has been shown to be well
tolerated and to confer improvements in sleep induction in
2 double-blind, placebo-controlled studies of adults with
insomnia (Roth et al., 2010). Mechanistically, in Fmr1 KO
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mice, OV101 restored tonic inhibition in the amygdala, reduced
sensory hypersensitivity and motor hyperactivity, and improved
pre-pulse inhibition (Olmos-Serrano et al., 2011). In other Fmr1
KO mouse studies, OV101 also normalized hyperactivity and
repetitive, social, and anxiety-like behavior, which have been
associated with decreased expression of the GABAA receptor δ
subunit and deficient GABAergic tonic inhibition (Gantois et al.,
2006; Olmos-Serrano et al., 2010; Martin et al., 2014). Thus,
OV101 may be effective in treating humans with FXS.

Here, we report results from the first interventional clinical
study of OV101 in FXS. This 12-weeks, randomized, double-
blind, proof-of-concept, phase 2a study evaluated the safety and
efficacy profiles of multiple doses of OV101 in adolescent and
adult males with FXS.

MATERIALS AND METHODS

Study Participants
Adolescent and adult males aged 13–22 years inclusive who had a
clinically- and molecularly-confirmed full mutation of the FMR1
gene, were moderately-to-severely affected by FXS [score of ≥4 on
the Clinical Global Impressions–Severity (CGI-S) scale], and had
a Full Scale Intelligence Quotient score <75, were eligible to
participate. Antiepileptic and/or psychoactive medication use was
permitted if no more than 3 such medications were being used
and the dose-regimen for each medication was stable for at least
4 weeks before randomization and then maintained throughout
the study.

To ensure that the effects of OV101 were evaluated in a patient
population with minimal FMRP expression, females were
excluded from the study. Other exclusion criteria included a
history of uncontrolled seizure disorder or seizure episodes
within 6 months of screening, a change in anticonvulsant
pharmacotherapy within 3 months of screening, use of a
GABAergic agent on a regular schedule, use of a cannabinoid
derivative, a history of suicidal behavior, and any clinically
significant medical condition or laboratory finding at screening
that could interfere with study conduct/participation or pose an
unacceptable risk.

Study Design
This randomized, double-blind, parallel-group, phase 2a study
(ClinicalTrials.gov identifier: NCT03697161), conducted at 7 sites

in the United States and 1 site in Israel, was designed to assess the
safety, tolerability, and efficacy of 3 OV101 dose-regimens
administered over 12 weeks to patients with FXS (Figure 1).
Independent ethics review boards approved the trial protocol at
each trial site. Eligible participants were randomized (1:1:1) to
receive OV101 5 mg once daily (QD), twice daily (BID), or TID
for 12 weeks. Randomization was stratified by age group
(adolescent vs. adult). All patients received study medication
TID (morning, afternoon, and evening), with OV101
administered to all participants in the morning and either
OV101 or placebo administered in the afternoon and evening
throughout the treatment period (including baseline). Dose
adjustments were not permitted.

Clinic visits were scheduled at weeks 2, 6, and 12 [end of
treatment (EOT)], with an end-of-study (EOS) follow-up visit at
some time during weeks 16 and 18. In addition to the assessments
performed during every clinic visit, information on adverse
events, concomitant medication use, and suicidality were
collected during phone calls at the end of weeks 1, 4, 8, and
10. The caregiver or legally acceptable representative (LAR)
completed paper sleep diaries on behalf of participants, and
participants wore actigraphs (wrist-worn sleep monitors)
(Dueck et al., 2020) for 7 days immediately preceding the
baseline, week 2, week 6, EOT, and EOS visits.

The study was designed by the sponsor in collaboration with a
consortium of experts in FXS and approved by the internal review
board at each participating site. Informed consent was provided
by a caregiver or LAR, and, to the extent possible, participants
also assented to the protocol.

Objectives and Assessments
The primary objective was to assess the safety and tolerability
of OV101 during the 12-weeks treatment period. Safety
endpoints were treatment-emergent adverse events
(TEAEs), treatment-related adverse events, TEAEs leading
to study discontinuation, and serious adverse events
(SAEs). Rate of OV101 compliance was calculated as:
(actual dosage of OV101/expected dosage of OV101) ×
100%; patients achieving a rate of ≥80% based on a
medication diary maintained by the LAR was considered
compliant.

The secondary objective was to evaluate the efficacy of OV101
during the 12-weeks treatment period. Efficacy endpoints were
Clinical Global Impressions-Improvement (CGI-I) scale score

FIGURE 1 | Study design. R, randomization; OV101, gaboxadol; QD, once daily; BID, twice daily; TID, 3-times daily; EOT, end of treatment; EOS, end of study.
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and changes from baseline in CGI-S total and subscale scores,
ABC-C total and subscale scores (Aman et al., 1985), ABC-CFXS

total and subscale scores (Sansone et al., 2012), Anxiety,
Depression, and Mood Scales (ADAMS) total and subscale
scores (Esbensen et al., 2003), Repetitive Behavior
Scale–Revised (RBS-R) total and subscale scores (Lam and
Aman, 2007), Short Sensory Profile–2 total and subscale
scores, and Conners 3 subscale scores (Conners et al., 1998).
The ABC-C is a 58-item questionnaire completed by the LAR/
caregiver that assesses a range of behaviors, including irritability,
lethargy/social withdrawal, inappropriate speech, hyperactivity,
and stereotypic behavior (Aman et al., 1985). Each item is rated
on a scale of 0–3 (“not at all a problem” to “the problem is severe
in degree”). Compared with the ABC-C, ABC-CFXS includes a
new evaluation on social avoidance, modified evaluations of
irritability, hyperactivity, lethargy/withdrawal, and stereotypy,
and a similar evaluation of inappropriate speech (Sansone
et al., 2012). ADAMS, a LAR/caregiver-completed assessment
that screens comprehensively for anxiety and depression in
persons with ID, is a 28-item questionnaire grouped into 5
subscales that assesses the frequency and severity of manic/
hyperactive behavior, depressed mood, social avoidance,
general anxiety, and obsessive behavior that are rated on a
scale of 0–3 (“not a problem” to “severe problem”) (Esbensen
et al., 2003). Also completed by the LAR/caregiver, the RBS-R is a
43-item questionnaire assessing a variety of repetitive behaviors
with 6 behavior subscales: stereotyped, ritualistic, self-injurious,
compulsive, restricted, and sameness (Lam and Aman, 2007).
Behaviors are rated on a scale of 0–3 (“behavior does not occur”
to “behavior occurs and is a severe problem”). The Short Sensory
Profile-2 (PsychCorp, San Antonio, TX) is a LAR/caregiver-
completed, 34-item questionnaire that evaluates sensory
processing patterns in the context of home, school, and
community-based activities based on a scale of 1–5 (“almost
never” to “almost always”) (Simpson et al., 2019). The Conners
3rd Edition (North Tonawanda Multi-Health System, North
Tonawanda, NY) was used by a LAR/caregiver to rate ADHD;
subscales include Assessment of Validity (positive impression,
negative impression, inconsistency index), Content Scales
(inattention, hyperactivity/impulsivity, learning problems,
executive functioning, defiance/aggression, peer relations), and
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition, Text Revision (DSM-IV-TR) Symptom Scales
(i.e., ADHD predominantly inattention type, ADHD
predominantly hyperactive-impulsive) (Conners et al., 1998).

Exploratory efficacy endpoints included changes from
baseline in Parent Global Impressions–Severity (PGI–S)
and Parent Global Impressions–Improvement (PGI–I)
scores and clinician-rated changes from baseline in the top
3 concerns identified by caregivers [per a visual analog scale
(VAS)] (Adams et al., 2011). The concerns were identified on
a per-patient basis and could have derived from any symptom
domain related to FXS. The severity of each concern was
scored by caregivers using a 10-cm VAS and was based on the
number of centimeters from the left margin, with anchors of
“not at all severe” (left side of the line, 0 cm) and “very severe”
(right side of the line, 10 cm).

Statistical Methods
The safety analyses were performed on the safety population,
which comprised all patients receiving ≥1 dose of study drug.
The efficacy analyses were performed on the full-analysis set,
which comprised all patients receiving ≥1 dose of study drug
and having ≥1 post-baseline efficacy assessment. Participants
were analyzed according to the treatment to which they were
randomized.

Safety and efficacy outcomes were analyzed using descriptive
statistics. To investigate any trends visible in the descriptive analyses,
a mixed-effects model for repeated measures (MMRM), with dosing
regimen, visit, and age group as fixed effects; age and baseline as
covariates (if appropriate); and visit × dosing regimen as an
interaction, was used. With an assumed unstructured covariance
structure, the least squares mean change from baseline [and 95%
confidence interval (CI)] for each dosing regimen, as well as the
overall study population, at each post-baseline visit was estimated.
The least squares mean difference (and corresponding 95% CI) was
estimated for each pairwise comparison among the 3 dosing
regimens. In the case of a statistically significant age group main
effect (p < 0.05) in the MMRM or age effects in the descriptive
analyses, the mean change (and corresponding 95% CI) was
estimated for each age group separately, as well as the overall
study population, by including an additional interaction term
(age × week × dosing regimen) in the MMRM. Post-hoc
analyses of the changes or percent changes from baseline for
CGI-S total and subscale scores, ABC-CFXS total and subscale
scores, and ADAMS total and subscale scores, were performed
using the parametric Student’s t-test.

RESULTS

Patients
A total of 23 participants with FXS (13 adolescents, 10 adults)
were randomized to OV101 5 mg QD (n � 8), BID (n � 8), or TID
(n � 7) (Figure 2). One participant in each dosing group
discontinued the study due to withdrawn consent (QD, n � 1;
TID, n � 1) or TEAE (agitation; BID, n � 1).

Baseline demographic and clinical characteristics are
summarized in Tables 1, 2, respectively. The overall study
population (n � 23) exhibited mostly severe neurobehavioral
abnormalities, with a mean ± standard deviation (SD) Stanford
Binet-5 IQ score (derived according to standard methodology
and not z-deviation method) of 41.5 ± 3.29 and verbal IQ score of
44.5 ± 3.23 (Sansone et al., 2014). Of these 23 participants, 82.6%
met the Diagnostic and Statistical Manual of Mental Disorders
(5th edition) criteria for ASD. The mean rate of OV101
compliance was 95.4% (n � 22), with 21 patients considered
compliant (≥80% compliance rate) with assigned OV101
treatment.

Safety and Tolerability
Table 3 summarizes safety and tolerability measures for OV101.
The mean ± SD duration of exposure to OV101 was 73.1 ± 31.85,
77.1 ± 19.47, and 75.3 ± 25.64 days for the QD, BID, and TID
regimens, respectively. The majority of participants (n � 16,
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69.6%) reported ≥1 TEAE (QD, 28.6%; BID, 100.0%; TID,
75.0%). Across all dosing regimens, the only TEAEs occurring
in ≥2 patients were upper respiratory tract infection (n � 4,
17.4%), headache (n � 3, 13.0%), diarrhea (n � 2, 8.7%), and
irritability (n � 2, 8.7%).

All TEAEs were mild or moderate in severity, with most
affected patients experiencing an event of mild severity
[overall, 93.8% (15/16); QD, 100% (2/2); BID, 87.5% (7/8);
TID, 100% (6/6)]. One-third of all patients (8/23, 34.8%)
experienced ≥1 TEAE possibly or probably related to the
study medication, with 5/8 (62.5%) of those with any

treatment-related TEAE assigned to the OV101 5 mg BID
group. No SAE or death was reported. Overall, no trends were
observed for hematology, clinical chemistry, and urinalysis
laboratory evaluations. There were no notable differences
between OV101 treatment groups or discernable trends in
vital signs or physical examination changes.

Efficacy
Clinician-Rated Assessments
Figure 3 shows that the majority (60.0%) of all OV101-treated
participants were rated by clinicians as being CGI-I responders,

FIGURE 2 | Patient disposition. OV101, gaboxadol; QD, once daily; BID, twice daily; TID, 3-times daily.

TABLE 1 | Baseline demographic characteristics.

Characteristic OV101 5 mg QD
(n = 7)

OV101 5 mg BID
(n = 8)

OV101 5 mg TID
(n = 8)

Total
(n = 23)

Male, n (%) 7 (100) 8 (100) 8 (100) 23 (100)
Mean age, years (SD) 17.0 (3.46) 16.5 (2.93) 17.5 (3.34) 17.0 (3.12)
Adolescents, n (%)a 4 (57.1) 5 (62.5) 4 (50.0) 13 (56.5)
Adults, n (%)b 3 (42.9) 3 (37.5) 4 (50.0) 10 (43.5)

Not Hispanic or Latino, n (%) 7 (100) 8 (100) 7 (87.5) 22 (95.7)
Race, n (%)
White 7 (100) 7 (87.5) 6 (75.0) 20 (87.0)
Black or African-American 0 1 (12.5) 0 1 (4.3)
Native Hawaiian or other 0 0 1 (12.5) 1 (4.3)

Pacific Islander
Other 0 0 1 (12.5) 1 (4.3)

Weight, mean (SD), kg 85.10 (25.03) 76.89 (31.86) 84.16 (35.02) 81.92 (29.97)
Height, mean (SD), cm 171.77 (6.30) 170.39 (10.46) 168.43 (12.72) 170.05 (10.09)

aAges 13–17 years, inclusive.
bAges 18–22 years, inclusive.
OV101, gaboxadol; QD, once daily; BID, twice daily; TID, 3-times daily; SD, standard deviation.
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defined as a score of ≤3 (minimally improved), at week 12, with
40.0% considered “much improved” and 20.0% considered
“minimally improved.” The highest percentage of CGI-I
responders (71.5%) was observed in the OV101 5 mg BID
group, followed by 66.6% in the QD group and 42.9% in the
TID group; in the OV101 5 mg BID group, 42.9% of participants
were considered “much improved.” Clinician-rated secondary
endpoints, such as CGI-S total score (−0.4, p < 0.01) and subscale
scores related to communication and connectedness (−0.60, p <
0.001), anxiety (−0.50, p < 0.01), ADHD (−0.5, p < 0.05), and
VABS-III activities of daily living (ADLs; −0.3, p < 0.05), also
showed significant improvements from baseline to week 12
(Table 4). No meaningful differences between age groups in
clinician-rated assessments were noted (data not shown).

Caregiver/LAR Assessments
Changes from baseline to week 12 in secondary efficacy measures
are summarized in Table 4. There were significant improvements
from baseline to week 12 in caregiver-rated ABC-CFXS total score
(26%, p < 0.01), indicating improvements in common behavioral
problems associated with FXS, and secondary endpoints
[lethargy/social withdrawal (38%, p < 0.01), hyperactivity
(29%, p < 0.01), stereotypic behavior (21%, p < 0.05), and
irritability (20%, p < 0.05) subdomains]. Using the original
scoring method, ABC-C scores were similar to the ABC-CFXS

scoring method. There were significant improvements from
baseline to week 12 in caregiver-rated ADAMS total score
(−0.7, p < 0.01) and secondary endpoints [general anxiety
(−2.5, p < 0.01), social avoidance (−2.2, p < 0.05), and manic/

TABLE 2 | Baseline clinical characteristics.

Mean (SD) score OV101 5 mg QD
(n = 7)

OV101 5 mg BID
(n = 8)

OV101 5 mg TID
(n = 8)

Total
(n = 23)

FSIQ score (n � 7) (n � 8) (n � 8) (n � 23)
SB-5, full scale standarda 41.7 (4.11) 40.5 (0.93) 42.3 (4.10) 41.5 (3.29)
Nonverbal 42.8 (1.79)b 42.0 (0.00) 43.6 (3.11) 42.8 (2.14)
Verbal 43.2 (0.45)b 44.0 (1.85) 45.8 (4.80) 44.5 (3.23)
Abbreviated 47.6 (1.34)b 47.0 (0.00) 48.0 (1.93) 47.5 (1.36)

DSM-5 ASD criteria, n (%) 7 (100) 6 (75.0) 6 (75.0) 19 (82.6)
Alcohol use (current or previous), n (%) 0 (0) 0 (0) 0 (0) 0 (0)
ABC-CFXS (n � 4) (n � 6) (n � 7) (n � 17)
Total score 80.5 (24.93) 60.0 (34.26) 62.1 (18.91) 65.7 (26.26)
Irritability 21.3 (8.42) 20.8 (13.59) 17.1 (11.55) 19.4 (11.18)
Lethargy and social withdrawal 11.3 (9.64) 8.2 (2.86) 11.4 (5.38) 10.2 (5.77)
Inappropriate speech 10.0 (1.83) 6.0 (5.06) 7.4 (2.23) 7.5 (3.59)
Hyperactivity 16.8 (5.06) 12.5 (10.41) 11.1 (6.87) 12.9 (7.84)
Stereotypic behavior 15.0 (3.56) 8.8 (6.31) 10.0 (3.00) 10.8 (4.93)
Social avoidance 6.3 (3.30) 3.7 (3.33) 5.0 (4.12) 4.8 (3.59)

CGI-S (at baseline) (n � 7) (n � 8) (n � 8) (n � 23)
Total score 5.1 (0.90) 4.6 (0.74) 4.6 (0.74) 4.8 (0.80)
Anxiety 4.6 (1.72) 4.3 (0.46) 4.5 (0.76) 4.4 (1.04)
ADHD 3.9 (0.69) 4.4 (0.92) 4.5 (0.93) 4.3 (0.86)
Communication/connectedness 5.1 (0.69) 4.3 (0.71) 4.4 (0.92) 4.6 (0.84)
Repetitive and restrictive behavior 4.9 (1.35) 4.3 (0.89) 4.1 (1.13) 4.4 (1.12)
Disruptive behavior 4.0 (1.63) 4.0 (1.20) 3.8 (1.58) 3.9 (1.41)
Activities of daily living 4.7 (1.89) 4.5 (0.93) 4.6 (1.06) 4.6 (1.27)

ADAMS (n � 7) (n � 8) (n � 8) (n � 23)
Total score 28.4 (17.19) 20.1 (9.00) 26.1 (9.13) 24.7 (12.07)
Manic/hyperactive behavior 7.3 (4.50) 6.4 (4.31) 6.3 (3.65) 6.6 (3.99)
Depressed mood 1.6 (2.15) 2.3 (1.83) 2.3 (2.12) 2.0 (1.97)
Social avoidance 10.4 (5.47) 5.0 (4.00) 7.6 (4.96) 7.6 (5.11)
General anxiety 7.3 (5.06) 5.6 (3.38) 8.0 (3.21) 7.0 (3.87)
Obsessive/compulsive behavior 3.0 (3.92) 1.8 (2.19) 3.1 (1.96) 2.6 (2.71)

RBS-R (n � 7) (n � 8) (n � 8) (n � 23)
Total score 35.3 (31.38) 30.3 (24.14) 26.0 (12.24) 30.3 (22.72)

Conners 3 (n � 7) (n � 3) (n � 7) (n � 17)
Inattention 11.1 (3.98) 6.3 (0.58) 10.1 (3.08) 9.9 (3.55)
Hyperactivity/impulsivity 7.7 (5.41) 3.0 (1.00) 6.7 (4.46) 6.5 (4.64)

Short Sensory Profile–2 (n � 7) (n � 8) (n � 8) (n � 23)
Total score 83.9 (25.43) 83.1 (36.91) 91.1 (6.96) 86.1 (25.28)

PGI-S 5.1 (1.07) 5.0 (1.20) 5.1 (0.64) 5.1 (0.95)

aSince the SB-5 is not available in Hebrew, patients at the Israel study site used an alternative assessment to yield a full-scale IQ with nonverbal and verbal scores.
bn � 5.
SD, standard deviation; FSIQ, full-scale intelligence quotient; SB-5, Stanford-Binet Intelligence Scale, 5th edition; DSM-5, Diagnostic and Statistical Manual of Mental Disorders, 5th
edition; ASD, autism spectrum disorder; ABC-CFX, Aberrant Behavior Checklist–Community factor score for fragile X syndrome; CGI-S, Clinical Global Impressions–Severity; ADHD,
attention deficit hyperactivity disorder; ADAMS, Anxiety, Depression, and Mood Scales; PGI–S, Parent Global Impressions–Severity; OV101, gaboxadol; QD, once daily; BID, twice daily;
TID, 3-times daily.
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hyperactive (−1.7, p < 0.01) subscales]. Other secondary efficacy
endpoints, such as RBS-R, Short Sensory Profile-2, and Conners
3, did not show meaningful improvements from baseline.
Changes in exploratory measures from baseline to week 12 are
reported in Table 5. In an exploratory analysis, an improvement
in PGI-I, defined as a PGI-I score of ≤3 (modest improvement) at
week 12, was reported by 55.0% of caregivers (QD, 50.0%; BID,
71.4%; TID, 42.9%). The top 3 concerns identified by caregivers
via a VAS total score varied, but the most frequently cited were
related to anxiety, disruptive behavior, and ADLs. Based on a
preliminary analysis, there do not seem to be noteworthy
differences in sleep behavior based on the sleep CGI and
actigraphy (data not shown). No meaningful differences
between age groups in caregiver/LAR assessments were noted
(data not shown).

DISCUSSION

We conducted a 12-weeks, double-blind, parallel-group, phase 2a
study of 23 adolescent and adult males with FXS with moderate-
to-severe neurobehavioral phenotypes to assess the safety of
OV101 and its efficacy in targeting core behavioral symptoms

in FXS. By showing OV101 5 mg to be generally safe and well
tolerated when administered QD, BID, or TID, this first
interventional clinical study of OV101 in FXS achieved its
primary outcome. Clinical laboratory tests, electrocardiograms,
vital signs, and physical examinations showed no trends or
distinct safety signals. The majority of participants (16/23,
69.6%) reported ≥1 dose-dependent TEAE of mild severity
(15/16, 93.8%). One-third of participants (8/23, 34.8%)
experienced ≥1 TEAE possibly or probably related to the
study medication, with 62.5% (5/8) of those with any
treatment-related adverse event assigned to the OV101 5 mg
BID group. This same group also had mild TEAEs [diarrhea
and irritability, 2/23 (9%) each; headache, 3/23 (13%); upper
respiratory tract infection, 4/23 (17%)]; and 1 participant who
terminated treatment early (moderate agitation). No SAEs or
deaths were reported, and there was no evidence of withdrawal
effects after the study. Importantly, the favorable safety and
tolerability profile of OV101 in this FXS study is consistent
with that reported in previous OV101 clinical studies of other
conditions (Roth et al., 2010; Bird et al., 2021).

This study also demonstrated an initial efficacy signal for
OV101 in FXS based on secondary clinician- and caregiver-rated
endpoint outcomes, including CGI-I, CGI-S, ABC-CFXS, and

TABLE 3 | Summary of OV101 safety and tolerability.

Patients, n (%) OV101 5 mg QD
(n = 7)

OV101 5 mg BID
(n = 8)

OV101 5 mg TID
(n = 8)

Total
(n = 23)

Any TEAE 2 (28.6) 8 (100) 6 (75.0) 16 (69.6)
Severity of most severe TEAE
Mild 2 (28.6) 7 (87.5) 6 (75.0) 15 (65.2)
Moderate 0 1 (12.5) 0 1 (4.3)
Severe 0 0 0 0

TEAEs occurring in ≥2 participants
Diarrhea 0 0 2 (25.0) 2 (8.7)
Irritability 0 1 (12.5) 1 (12.5) 2 (8.7)
Headache 0 3 (37.5) 0 3 (13.0)
Upper respiratory tract infection 0 3 (37.5) 1 (12.5) 4 (17.4)

Any treatment-related TEAE 1 (14.3) 5 (62.5) 2 (25.0) 8 (34.8)
Any TRAE leading to early termination 0 1 (12.5) 0 1 (4.3)
Agitation 0 1 (12.5) 0 1 (4.3)

Any SAE 0 0 0 0

OV101, gaboxadol; TEAE, treatment-emergent adverse event, TRAE, treatment-related adverse event; SAE, serious adverse event; QD, once daily; BID, twice daily; TID, 3-times daily.

FIGURE 3 | CGI-I score at week 12. Among the 3 dosing regimens, the percentage of CGI-I responders was greatest with OV101 5 mg BID. CGI-I, Clinical Global
Impressions–Improvement; OV101, gaboxadol; QD, once daily; BID, twice daily; TID, 3-times daily.
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ADAMS scores. Using CGI-I as a clinician-rated, syndrome-
specific global measure of core features in patients with FXS, the
majority of participants treated with OV101 (60%, 12/2) were
considered CGI-I responders and 40% (8/20) were rated as
“much improved” at week 12. This efficacy signal appeared to

be stronger in OV101 5 mg BID and QD groups (71.5 and 66.6%
of participants considered CGI-I responders, respectively) versus
the TID group (42.9%). From the caregiver perspective, key
patient concerns (as captured via VAS) were related to
anxiety, disruptive behavior, and ADLs. A high rate of anxiety

TABLE 4 | Change in secondary efficacy measures from baseline to week 12.

Mean (SD) score OV101 5 mg QD
(n = 7)

OV101 5 mg BID
(n = 8)

OV101 5 mg TID
(n = 8)

Total
(n = 23)

CGI-S (n � 6) (n � 7) (n � 7) (n � 20)
Total score −0.7 (0.52) −0.3 (0.49) −0.3 (0.49) −0.4 (0.50)
Anxiety −0.3 (0.82) −0.6 (0.79) −0.6 (0.79) −0.5 (0.76)
ADHD −1.0 (1.10) −0.3 (0.76) −0.1 (0.38) −0.5 (0.83)
Communication/connectedness −1.0 (0.89) −0.6 (0.53) −0.3 (0.49) −0.6 (0.68)
Repetitive & restrictive behavior −0.3 (0.52) −0.1 (0.38) 0.0 (0.58) −0.2 (0.49)
Disruptive behavior −1.2 (2.64) −0.4 (0.79) −0.6 (1.13) −0.7 (1.59)
Activities of daily living −0.5 (0.84) −0.3 (0.49) −0.1 (0.38) −0.3 (0.57)

ABC-CFXS (n � 4) (n � 5) (n � 6) (n � 15)
Total score −20.0 (22.70) −8.8 (6.57) −18.2 (16.17) −15.5 (15.52)
Irritability −6.3 (10.21) −3.0 (4.90) −3.0 (5.06) −3.9 (6.37)
Lethargy and social withdrawal −6.0 (7.16) −3.2 (1.92) −5.7 (4.63) −4.9 (4.62)
Inappropriate speech −0.3 (2.06) 0.4 (2.61) −1.7 (1.97) −0.6 (2.26)
Hyperactivity −4.0 (4.55) −1.4 (3.44) −3.2 (1.94) −2.8 (3.21)
Stereotypic behavior −2.3 (3.20) −0.4 (1.52) −4.2 (3.54) −2.4 (3.18)
Social avoidance −1.3 (2.06) −1.2 (3.11) −0.5 (3.83) −0.9 (3.01)

ADAMS (n � 6) (n � 7) (n � 7) (n � 20)
Total score −10.5 (12.24) −4.1 (5.64) −6.9 (10.48) −7.0 (9.54)
Manic/hyperactive behavior −2.5 (2.17) −1.3 (1.89) −1.3 (1.89) −1.7 (1.95)
Depressed mood −0.2 (3.19) 0.1 (1.21) −0.3 (3.59) −0.1 (2.69)
Social Avoidance −4.5 (2.88) −0.9 (3.08) −1.4 (3.69) −2.2 (3.47)
General Anxiety −2.8 (4.07) −1.9 (1.86) −2.9 (2.85) −2.5 (2.87)
Obsessive/compulsive behavior −0.5 (3.15) −0.1 (1.35) −1.1 (1.35) −0.6 (1.98)

RBS-R (n � 6) (n � 7) (n � 7) (n � 20)
Total score −12.0 (15.89) −3.6 (12.16) −2.0 (9.18) −5.6 (12.61)

Conners 3 (n � 6) (n � 3) (n � 6) (n � 15)
Inattention −2.3 (2.94) −1.0 (2.00) −2.3 (2.50) −2.1 (2.49)
Hyperactivity/impulsivity −1.0 (3.95) −0.7 (1.15) −1.3 (2.16) −1.1 (2.74)

Short Sensory Profile–2 (n � 6) (n � 7) (n � 7) (n � 20)
Total score −8.5 (16.57) −3.0 (16.10) −10.0 (8.66) −7.1 (13.70)

SD, standard deviation; CGI-S, Clinical Global Impressions–Severity; ADHD, attention deficit hyperactivity disorder; ABC-CFX, Aberrant Behavior Checklist–Community factor score for
fragile X syndrome; ADAMS, Anxiety, Depression, and Mood Scales; RBS-R, Repetitive Behavior Scale–Revised; OV101, gaboxadol; QD, once daily; BID, twice daily; TID, 3-times daily.

TABLE 5 | Change in exploratory efficacy measures from baseline to week 12.

Mean
(SD) score

OV101 5 mg QD
(n = 7)

OV101 5 mg BID
(n = 8)

OV101 5 mg TID
(n = 8)

Total
(n = 23)

PGI-S total score −0.7 (0.52) −0.7 (0.95) −0.3 (0.76) −0.6 (0.76)
Caregiver top 3 concerns VASa

Top concern 1 −1.02 (4.56) 0.93 (1.71) 0.57 (2.40) 0.22 (2.99)
Top concern 2 −0.50 (5.13) 3.49 (2.71) 1.09 (2.46) 1.45 (3.73)
Top concern 3 −1.92 (4.96) 1.14 (1.91) 0.27 (1.27) 0.02 (2.96)
Anxiety −1.92 (4.96) 0.45 (0.78) 1.33 (2.41) −0.31 (3.76)
ADHD 0.00 (1.41) 2.27 (2.47) −0.70 (NA) 1.02 (2.19)
Repetitive/stereotypic behavior 2.00 (2.83) NA 0.25 (0.35) 1.13 (1.93)
Disruptive behavior −5.05 (7.00) 0.82 (1.46) 1.05 (4.19) −0.38 (4.50)
Communication 1.50 (2.12) 5.60 (NA) 0.63 (0.78) 1.59 (2.09)
Activities of daily living −5.00 (7.07) 0.60 (1.61) 0.23 (1.56) −0.77 (3.69)
Other 2.00 (2.83) 3.05 (2.81) 0.50 (NA) 2.53 (2.60)

aVAS scoring: 0 (worst behavior) to 10 (best behavior).
SD, standard deviation; PGI-S, Parent Global Impression-Severity; VAS, visual analog scale; ADHD, attention-deficit hyperactivity disorder; OV101, gaboxadol; QD, once daily; BID, twice
daily; NA, not available; TID, 3-times daily.
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associated with FXS has been previously reported in the literature
(Cordeiro et al., 2011; Weber et al., 2019; Budimirovic et al.,
2020), which together with social withdrawal (Budimirovic et al.,
2006; Kaufmann et al., 2008), can be present in FXS with and
without ASD (Cordeiro et al., 2011; Budimirovic and
Subramanian, 2016; Niu et al., 2017; Budimirovic et al., 2020).
Results of this study showed that OV101 treatment was associated
with converging improvements from baseline in maladaptive
behaviors at week 12 as assessed by ABC-CFXS (26.2%
improvement in total score and improvements in irritability
and social withdrawal subscales) and ADAMS (21.6%
improvement in total score and improvements in anxiety and
social avoidance subscales). Our results also showed an initial
signal of improvements in disruptive behavior/ADHD symptoms
and ADLs with OV101 as assessed by CGI-S and VABS-III,
respectively. Finally, caregiver-rated exploratory analyses of PGI-
I at week 12 showed a modest improvement of 55.0%, which
again showed the strongest signal in the 5 mg BID (71.4%) versus
QD (50.0%) and TID (42.9%) groups. Overall, the initial signal of
improvements across multiple domains of the core phenotype of
FXS is promising. However, given this is the first clinical study to
assess OV101 in FXS, these findings need to be replicated and
confirmed in a larger, placebo-controlled study with optimal
outcomes and in the most appropriate age group (Duy and
Budimirovic, 2017; Berry-Kravis et al., 2018).

The design on this OV101 study had both strengths and
limitations that should be considered for future FXS studies. A
strength of this study was that it had a sufficiently long
duration (12 weeks) to assess behavioral changes related to
any potential symptomatic effects of OV101; this is supported
by previous studies of autism and other psychiatric conditions
in which treatment-derived improvements in behavioral
symptoms could be observed within 4 weeks (Berry-Kravis
et al., 2018). It also allowed for preliminary evaluation of
safety and efficacy at 3 different doses. There were several
limitations in the design of this study, the first being the lack of
a placebo-control arm. FXS studies have been shown to have
large placebo effect for behavioral measures (Berry-Kravis
et al., 2018; Luu et al., 2020), with some reporting a placebo
effect size similar to the OV101 effect size observed in the
present study (Berry-Kravis et al., 2016; Youssef et al., 2018).
Another limitation was the small sample size (n � 23), which
may have been insufficient to assess behavioral efficacy, as
prior studies that enrolled more than 100 participants have
yielded ambiguous results (Berry-Kravis et al., 2016; Berry-
Kravis et al., 2018; Youssef et al., 2018; Berry-Kravis et al.,
2020). The size of each treatment arm was small making
evaluations of individual OV101 regimens difficult within
this study; additional evaluations will be needed to confirm
the optimal dose of OV101. Patient stratification is another
important factor to consider in FXS studies. Relationships
between anxiety and FMRP level and ASD status may help
to stratify patients with FXS in clinical studies (Budimirovic
et al., 2017; Budimirovic et al., 2020), with results of this study
showing that participants taking OV101 5 mg QD or BID
achieved greater improvements in problem behaviors then
those receiving the highest dosage (5 mg TID). Finally, a

separate study is needed to assess the safety, tolerability,
and effects of OV101 in female adolescents and adults
with FXS.

Given the inherent subjective nature and placebo effects
associated with caregiver-rated endpoints (Budimirovic et al.,
2017), future FXS studies should also include biomarker
endpoints since they can objectively evaluate the efficacy of
investigational treatments. The identification and evaluation of
valid, sensitive-to-treatment biomarkers is increasingly necessary
to reliably track treatment changes in the unfolding wave of
clinical studies in FXS (Budimirovic et al., 2017; Erickson et al.,
2018; Lee et al., 2018) and to substantially mitigate the large
placebo effect in FXS studies. Indeed, an effort to differentiate
objective from subjective improvements in individuals with FXS
is recommended by experts in the field of FXS (Luu et al., 2020).
For example, electroencephalography is a potential neural
biomarker sensitive to treatment (Erickson et al., 2018;
Ethridge et al., 2019), and molecular studies have shown a link
between FMR1 expansion, gene methylation, and FMRP deficit
and the overall severity of the neurobehavioral phenotype (Berry-
Kravis et al., 2018; Budimirovic et al., 2020). Newer performance-
rated measures, such as expressive language sampling and the
NIH Toolbox, may be able to capture real change and better
control the placebo effect. Quantification of key receptor
expression in the living human brain of men with FXS is also
needed to better understand the results of failed FXS clinical
studies and to continue to optimize FXS clinical study designs.
This measurement may constitute an effective tool to confirm
target engagement, for example of NAMs for mGluR5s, in both
FXS and ASD (Brašić et al., 2020; Brašić et al., 2021).

In conclusion, the safety, tolerability, and efficacy data from
this phase 2a study demonstrate an initial efficacy signal for
OV101 in individuals with FXS. The interpretation of the results
is confounded by lack of placebo control and small sample size.
These results need to be confirmed in a larger, randomized,
placebo-controlled study with optimal outcomes and in the
most appropriate age group.
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