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Background: Human milk contains both arachidonic acid (ARA) and docosahexaenoic

acid (DHA). Supplementation of infant formula with ARA and DHA results in fatty acid (FA)

profiles, neurodevelopmental outcomes, and immune responses in formula-fed infants

that are more like those observed in breastfed infants. Consequently, ARA and DHA have

been historically added together to infant formula. This study investigated the impact

of ARA or DHA supplementation alone or in combination on tissue FA incorporation,

immune responses, and neurodevelopment in the young pig.

Methods: Male pigs (N = 48 total) received one of four dietary treatments from

postnatal day (PND) 2–30. Treatments targeted the following ARA/DHA levels (% of total

FA): CON (0.00/0.00), ARA (0.80/0.00), DHA (0.00/0.80), and ARA+DHA (0.80/0.80).

Plasma, red blood cells (RBC), and prefrontal cortex (PFC) were collected for FA analysis.

Blood was collected for T cell immunophenotyping and to quantify a panel of immune

outcomes. Myelin thickness in the corpus callosum was measured by transmission

electron microscopy and pig movement was measured by actigraphy.

Results: There were no differences in formula intake or growth between dietary groups.

DHA supplementation increased brain DHA, but decreased ARA, compared with all other

groups. ARA supplementation increased brain ARA compared with all other groups but

did not affect brain DHA. Combined supplementation increased brain DHA levels but

did not affect brain ARA levels compared with the control. Pigs fed ARA or ARA+DHA

exhibited more activity than those fed CON or DHA. Diet-dependent differences in activity

suggested pigs fed ARA had the lowest percent time asleep, while those fed DHA had

the highest. No differences were observed for immune or myelination outcomes.

Conclusion: Supplementation with ARA and DHA did not differentially affect immune

responses, but ARA levels in RBC and PFC were reduced when DHA was provided

without ARA. Supplementation of either ARA or DHA alone induced differences in
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time spent asleep, and ARA inclusion increased general activity. Therefore, the current

data support the combined supplementation with both ARA and DHA in infant formula

and raise questions regarding the safety and nutritional suitability of ARA or DHA

supplementation individually.

Keywords: arachidonic acid (ARA), docosahexaenoic acid (DHA), pediatric nutrition, comparative nutrition, pig,

polyunsaturated fatty acid (PUFA), neural, immune

INTRODUCTION

Infants exhibit rapid growth and development during early
life and require adequate intake of critical nutrients for
optimal health outcomes. Arachidonic acid (ARA, 20:4n-6)
and docosahexaenoic acid (DHA, 22:6n-3) are long-chain
polyunsaturated fatty acids (LCPUFA) that are present in breast
milk and have important structural and physiological roles in
early development. Global average levels of ARA and DHA
in breast milk (% of total FA by weight) are estimated to
be 0.47 ± 0.13 and 0.32 ± 0.22%, respectively (1). While
infants can endogenously synthesize ARA and DHA from their
precursors, linoleic (LA; 18:2n-6) and alpha-linolenic (ALA;
18:3n-3) fatty acids, respectively, those receiving infant formula
(IF) supplemented with both ARA and DHA exhibit tissue FA
accretion, as well as cognitive, visual, and immune outcomes that
are more similar to those reported for breastfed infants (2–9).
Additionally, polymorphisms in the fatty acid desaturase (FADS)
genes influence ARA and DHA concentrations, and infants with
specific genotypes may require higher levels of these fatty acids
(FA) to maintain an adequate status. Depending on the infant’s
genotype, IF supplementation might not be sufficient for all
infants to narrow the gap of ARA and DHA concentrations
between breastfed and formula-fed infants (10).

As such, combined ARA and DHA supplementation in IF has
been generally implemented tomimic breast milk, as well as more
closely match outcomes in breastfed infants and manage FADS
genotypic differences among infants. While the need for DHA
supplementation in IF has been well-established due to positive
impacts on retinal and cognitive outcomes, the need for ARA
supplementation has been less well-documented. Nevertheless,
experts and regulatory bodies generally agree about the need
for combined ARA and DHA supplementation, with a need
for equal or greater amounts of ARA when DHA is provided
(4, 11–13). Although optimal ARA:DHA ratios are not fully
elucidated, global breast milk levels reflect the importance of
balancing both LCPUFA in the infant’s diet, due to possible
impacts on the immune response, the risk for atopic disease,

Abbreviations: ALA, Alpha-linolenic acid; ARA, Arachidonic acid; AC, Average

activity count; ADG, Average daily body weight gain; ADMI, Average daily milk

intake; CON, Control; DHA, Docosahexaenoic acid; FA, Fatty acid; FADS, Fatty

acid desaturase; Fib, Fibrinogen; IF, Infant formula; IQ, Intelligence quotient;

IL, Interleukin; KLH, Keyhole limpet hemocyanin; LA, linoleic acid; LCPUFA,

Long chain polyunsaturated fatty acid; MR, Milk replacer; PBMC, Peripheral

blood mononuclear cells; PNCL, Piglet Nutrition and Cognition Laboratory; PTT,

Partial Thromboplastin Time; PND, Postnatal day; PFC, Prefrontal cortex; PGE2,

Prostaglandin E2; PT, Prothrombin Time; PUFA, Polyunsaturated fatty acid; RBC,

Red blood cell; TXB2, Thromboxane-B2; TEM, Transmission electron microscopy.

cognitive and behavioral outcomes, and competition for tissue
incorporation (4, 14–18). Newly adopted regulatory standards
on IF for the European Union require that IF contain 20–50mg
DHA/100 kcal of milk, equivalent to about 0.5–1% of total fatty
acids and higher than worldwide breast milk averages, without a
requirement for ARA. This has incited considerable concern due
to the lack of evidence on the suitability and safety of this novel
IF composition in healthy infants. Indeed, a recently published
expert opinion raised several concerns regarding supplementing
formulas for infants with DHA but without ARA (12). These
concerns included the possibility of undesirable outcomes such as
decreased concentrations of ARA in the brain, as well as potential
negative impacts on neurodevelopment, growth, and immunity.

Much of the focus surrounding ARA and DHA in early
development has centered on functions within the neural and
immune systems. Both FA rapidly accumulate in the central
nervous system during the third trimester and the first years of
life, thereby representing the twomost abundant polyunsaturated
fatty acids (PUFA) in the retina and brain (19–21). The
connection between these PUFA and neural development
involves myelination trajectories, where structure and function
meet. DHA plays a particularly important role in the central
nervous system, where it is involved in neurotransmission,
neurogenesis, and protection from oxidative stress (22–24). In
clinical trials, the addition of ARA and DHA to IF has been
shown to improve measures of cognitive development and visual
acuity (25–28). Improvements in cognitive development and
visual acuity may involve myelination, which can be accurately
quantified usingmicroscopy techniques. Infants provided IF with
a combined supplementation of ARA and DHA during the first
17 weeks of life yielded comparable visual acuity and verbal
intelligence quotient (IQ) scores to that of breastfed infants at 4
years of age; however, DHA alone only achieved similar visual
acuity (6). Cognitive benefits from combined ARA and DHA
supplementation in early life have also been observed through
early and middle childhood (29, 30). The balance between these
LCPUFA is likely important for cognitive outcomes, as the
cognitive benefits observed in infants receiving supplemented
formula were shown to be reduced when DHA to ARA was
provided at a 1.5:1 ratio compared with that of infants receiving

a ratio of 1:1 or 1:2 (14). Intake of ARA and DHA has also been

shown to influence additional neural related outcomes including

sleep, myelination, and motor activity (31–38).

The need for dietary inclusion of both ARA and DHA is

also emphasized in regard to immune system response and

development. Inhuman peripheral blood mononuclear cells

(PBMC), ARA usually constitutes ∼19–23% of total FA, whereas
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highly unsaturated n-3 FA (primarily DHA) comprise only
∼2–3% (39). Diet-induced alterations in these concentrations
are believed to influence immune cell membrane structure
and functions. Supplemental ARA and DHA have been shown
to modulate T-cell functions, cytokine profiles, eicosanoid
synthesis, and possibly B cell activation (40–43). ARA serves
as a precursor for predominantly pro-inflammatory eicosanoids,
while DHA serves as a precursor for anti-inflammatory resolvins,
docosatrienes, and protectins (40, 41). Compared with an
unsupplemented IF, those supplemented with ARA and DHA
have been shown to elicit immune responses more comparable
to that of a breastfed infant (44). While reducing excessive
inflammation is often beneficial, the inflammatory response is
ultimately a protective mechanism, and over suppression may
be disadvantageous during early life when an infant is still
developing the ability to produce an appropriate and efficient
immune response (4, 15).

Anatomic, physiologic, immunologic, and metabolic
similarities make the young pig an ideal preclinical model for
studying aspects of infant development and growth (45–51).
The young pig has strikingly similar nutrient requirements to
humans during infancy and growth (52) and humans share more
immune-related genes and proteins with pigs than mice (53).
Rapid growth and similarities in gastrointestinal physiology
and metabolism also make the pig a particularly attractive
model for nutritional intervention studies (47). Additionally,
the morphology and peak brain growth of the pig more closely
resembles that of humans, in which the total brain volume
growth of a one-month-old human is equivalent to that of a
one-week-old pig (48, 54). While the conversion of essential
fatty acids to ARA and DHA are less clearly defined in the
pig compared with rodents, the pig model provides more
comparable essential FA metabolism to that of humans (55, 56).
Thus, the young pig model has been instrumental in advancing
preclinical research for infant nutrition and development.

The impact of independent ARA and DHA supplementation
is poorly understood. There is a dearth of literature evaluating
the impact of IF with DHA alone on immune response, and few
studies have assessed the impact of ARA alone on any outcome.
Against this and the above background, the primary objective of
this study was to use the young pig model to evaluate the impact
of individual or combined supplementation of ARA and DHA
on growth, tissue FA accretion, the development of appropriate
immune responses, and motor activity. We hypothesized that
providing both ARA and DHA would positively impact immune
functions, and result in a more robust immune response
compared with DHA alone. We also hypothesized that the
provision of DHA at this level, in the absence of dietary
ARA, would reduce endogenous concentrations of ARA in
pertinent tissues.

MATERIALS AND METHODS

Animal Care and Housing
Forty-eight naturally-farrowed intact male pigs were obtained
from a commercial swine farm (PIC 1050 genetics; Carthage
Veterinary Service, Ltd., Carthage, IL) and transported to the

Piglet Nutrition and Cognition Laboratory (PNCL) on postnatal
day (PND) 2. All pigs received a single prophylactic antibiotic
injection on PND 1 (Excede; Zoetis, Parsippany, NJ), and were
administered 5mL of Clostridium perfringens types C and
D antitoxin subcutaneously and orally upon entering PNCL
on PND 2 as a prophylactic measure to avoid enterotoxemia
that sometimes occurs in artificially-reared pigs. The study was
completed in two cohorts, with 12 pigs per treatment total (six
pigs per treatment per cohort). Pigs were selected across 12
litters to control for genetic variation, with pigs from each litter
distributed across dietary treatment groups. If pigs experienced
diarrhea lasting three or more days, they were administered an
oral electrolyte solution (Bounce Back; Manna Pro Products,
Chesterfield, MO) to maintain fluid and electrolyte balance.
Pigs were housed individually in cages constructed of clear
polycarbonate and stainless steel with flooring consisting of
vinyl-coated expanded metal designed for young pigs. These
caging units allow for urine and feces to pass through the
flooring and flow into septic lines. Cages were maintained in
a climate-controlled room kept between 28 and 30◦C. The
rearing environment was maintained on a 12 h light and dark
cycle from ∼0800 to 2000 h. Cage dividers were clear and
perforated, allowing pigs to see, hear, and smell each other, but
not directly touch. All pigs were provided with environmental
enrichment (e.g., toys) and a cotton towel for comfort. Pigs were
artificially reared until PND 30 then humanely euthanized via
CO2 asphyxiation. All animal care and experimental procedures
were in accordance with the National Research Council Guide
for the Care and Use of Laboratory Animals and approved by the
University of Illinois at Urbana-Champaign Institutional Animal
Care and Use Committee.

Dietary Treatments and Feeding
Custom milk replacer (MR) products (TestDiet; St. Louis, MO)
were formulated to be nutritionally-adequate for young pigs
(57). The MR formulas were based on soy protein isolate
to ensure no inherent contribution of either ARA or DHA;
internal FA analyses of commercial pig whey-based MR powders
revealed moderate levels of ARA (∼0.1–0.3% total FA; data not
shown). Powdered fat products included in experimental MR
were selected after internal analyses verified they were devoid of
ARA and DHA (data not shown). Pigs were randomly allotted
(n = 12 per treatment) to one of four isocaloric experimental
milk replacers (Table 1) by initial body weight and litter using
the Experimental Animal Allotment Program (58). Supplemental
ARA and DHA were provided in the form of single-cell oils
(ARASCOTM and DHASCOTM, respectively; DSM Nutritional
Products, Colombia, MD) at concentrations reflecting feasible
upper levels allowed via supplementation, albeit slightly higher
than what may typically be expected in breast milk (1, 59).
Both MR and fresh water were provided ad libitum throughout
the study. Each day, MR powder from each treatment was
reconstituted with 200 g of MR powder per 800 g water and
dispersed via an automated liquid feeding system for a 20 h cycle,
with the remaining 4 h period used to clean components of the
feeding system and introduce fresh MR.

Frontiers in Nutrition | www.frontiersin.org 3 October 2020 | Volume 7 | Article 592364

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Hahn et al. ARA and DHA Developmental Nutrition

TABLE 1 | Nutrient concentrations of dietary treatmentsa.

Dietary treatment

Item CON ARA DHA ARA+DHA

Ingredients, g/kg

Lactose 40.40 40.40 40.40 40.40

Soy protein isolateb 25.32 25.32 25.32 25.32

Died coconut oilc 15.30 15.06 15.06 14.82

Dried MCT oild 7.65 7.53 7.53 7.41

Dicalcium phosphate 2.00 2.00 2.00 2.00

Calcium carbonate 1.98 1.98 1.98 1.98

Potassium citrate tribasic monohydrate 1.88 1.88 1.88 1.88

Vitamin and mineral premixe 1.17 1.17 1.17 1.17

Salt 1.13 1.13 1.13 1.13

Potassium sorbate 1.00 1.00 1.00 1.00

Lecithin 0.90 0.90 0.90 0.90

L-Lysine 0.51 0.51 0.51 0.51

ARASCOf 0.00 0.36 0.00 0.36

DHASCOf 0.00 0.00 0.36 0.36

Choline chloride 0.24 0.24 0.24 0.24

L-Cystine 0.20 0.20 0.20 0.20

DL-Methionine 0.15 0.15 0.15 0.15

Powdered cellulose 0.09 0.09 0.09 0.09

Palatantg 0.08 0.08 0.08 0.08

Nutritional profileh

Energy, kcal/g 4.36 4.37 4.37 4.37

Carbohydrates, % 43.7 43.6 43.6 43.5

Protein, % 24.5 24.5 24.5 24.4

Fat, % 18.2 18.3 18.3 18.4

Linoleic acid, % 0.68 0.68 0.68 0.67

Linolenic acid, % 0.02 0.02 0.02 0.02

SFA, % 15.89 15.64 15.64 15.39

MUFA, % 0.73 0.72 0.72 0.70

PUFA, % 0.14 0.28 0.28 0.42

Analyzed Composition, % of Total FAi

ARA 0.00 (0.00) 1.15 (0.80) 0.00 (0.00) 0.79 (0.80)

DHA 0.00 (0.00) 0.00 (0.00) 0.89 (0.80) 0.78 (0.80)

aDiets were manufactured as custom blends formulated by TestDiet (St. Louis, MO). All pigs received allotted treatment from PND 2 to PND 30. ARA, arachidonic acid; DHA,

docosahexaenoic acid; CON, control; MCT, medium chain triglycerides; FA, fatty acid; MUFA, monounsaturated fatty acids; SFA, saturated fatty acids; PUFA, polyunsaturated fatty

acids; PND, postnatal day.
bArdex F, Archer Daniels Midland, Decatur, IL.
cCentennial 72 Coconut IP2, Sensory Effects, Defiance, OH.
dVital Blend MCT NG, Sensory Effects, Defiance, OH.
eCustom vitamin and mineral premix. Provided per gram of complete diet: Ca (12.8mg), P (7.8mg), K (10mg), Mg (1mg), Na (8.7mg), Cl (8.5mg), F (8.1 mcg), Fe (161 mcg), Zn (100

mcg), Mn (46 mcg), Cu (19.2 mcg), Co (0.6 mcg), I (1.18 mcg), Mo (1.02 mcg), Se (0.3 mcg), Vitamin B12 (0.11 mcg), Vitamin K (5 mcg), thiamin (2.7 mcg), riboflavin (13.5 mcg), niacin

(60 mcg), pantothenic acid (30 mcg), folic acid (1 mcg), pyridoxine (3 mcg), biotin (0.3 mcg), choline chloride (2.06mg), ascorbic acid (49.2 mcg), Vitamin A (2.8 IU), Vitamin D3 (6.7

IU), Vitamin E (0.33 IU).
fARASCO and DHASCO, DSM Nutritional Products, Heerlen, Netherlands.
gLuctarom Milky Vanilla, Lucta, Barcelona, Spain.
hBased on calculated values from latest ingredient analysis information provided by TestDiet. Nutrients expressed as percent of diet on an as-fed basis.
iTarget fatty acid concentrations are shown in brackets.

Immune Stimulation
Following a 1-week adaptation period to the facility, all pigs
received a two-dose series of keyhole limpet hemocyanin [KLH;
hemocyanin from Megathura crenulate (keyhole limpet), CAS:
9013-72-3; Sigma Aldrich, Saint Louis, MO] via intraperitoneal

injection (Becton Dickinson & Company Precision Glide
Needle 22 gauge × 2.54 cm, Cat No: 305155). The first
dose (1mL at 10mg of KLH/mL) was administered on
PND 9 and the second (1mL at 2mg of KLH/mL) on
PND 19.
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Growth Performance and Wellness
Individual pig and MR hopper weights were recorded daily to
calculate average daily body weight gain (ADG) and average
daily milk intake (ADMI; net disappearance of MR), respectively.
Health checks occurred twice daily, and stool consistency was
visually assessed and scored daily using the following scale:
1 = solid; 2 = semisolid; 3 = loose; 4 = watery. Rectal
temperatures were measured on PND 9, 12, 16, 19, 24, 26, and
30 using a digital thermometer (GLA Agricultural Electronics,
San Luis Obispo, CA). On days when KLH injections or blood
collections occurred, rectal temperatures were recorded before
those procedures.

Pig Activity
Twenty-one pigs from the first cohort (n = 5 or 6 per treatment)
were fitted with adjustable collars bearing actigraphy monitors
containing an accelerometer (Actiwatch 2; Philips Respironics,
Bend, OR) to quantify average movement and approximate
sleep and wake activity using previously validated and described
protocols (60).

Immune Analyses
Whole blood was collected on PND 16, 26, and 30 into 4-mL
evacuated K2EDTA blood tubes (Becton Dickinson & Company,
Cat No: 367835) using 21 gauge × 3.18 cm collection needles
(Becton Dickinson & Company, Cat No: 368607). Samples were
placed on ice until centrifuged to separate plasma and RBC (4◦C,
1,250 × g, 15min; Allegra 6R centrifuge, Beckman Coulter Life
Sciences, Indianapolis, IN). Both were aliquoted and stored at
−80◦C. Plasma from PND 16 and 26 was analyzed for anti-KLH
IgG antibodies [Porcine Keyhole Limpet Hemocyanin Antibody
IgG (KLH-IgG) ELISA kit, Cat. No: MBS9364989; MyBioSource,
San Diego, CA]. A preliminary anti-KLH IgG assessment was
conducted using samples of plasma (n= 17) and serum (n= 16)
collected from non-KLH-exposed pigs originating from the same
swine farm and raised under identical rearing conditions. This
revealed an average of 1.32 ng/mL of background anti-KLH IgG
in non-KLH-exposed pigs. Thus, KLH antibody values obtained
for this trial were corrected based on this value prior to statistical
analyses to account for baseline KLH antibody presence.

Plasma from PND 16 and 26 was analyzed for circulating
cytokines IL-1β, IL-10, IFN-α, IFN-γ, TNF-α, IL-4, and IL-8
(Invitrogen Swine Cytokine Magnetic 7-Plex Panel, Cat No:
LSC0001M, Novex R© by Life Technologies, Frederick, MD).
Plasma from PND 30 was used to quantify circulating interleukin
(IL)-17A (Porcine IL-17A ELISA Kit, catalog number ESIL17A;
Thermo Fisher Scientific, Frederick, MD), thromboxane-
B2 (Porcine TXB2 ELISA Kit, catalog number MBS036106;
MyBioSource, San Diego, CA), and prostaglandin E2 (PGE2
ELISA Kit, catalog number MBS2884477; MyBioSource, San
Diego, CA).

After plasma was removed from whole blood on PND 16 and
26, the remaining sample was used to isolate PBMC for T cell
immunophenotyping via flow cytometry. The sample was placed
over a density gradient (SepMate-15 [IVD] and Lymphoprep,
StemCell Technologies, Cambridge, MA, Cat. No: 85415 and
07851) and centrifuged (20◦C, 1,200 × g, 20min). Isolated

PBMC were separated and washed with phosphate buffer saline
containing 2% fetal bovine serum (Thermo Fisher Scientific,
Cat. No: 10082147). PBMC were rinsed once with Ammonium
Chloride Lysis Solution (StemCell Technologies, Cat. No: 07850).
Cells were counted (Moxi Z Mini Automated Cell Counter;
ORFLO Technologies, Ketchum, ID) and diluted to 1.0 ×

106 cells/mL. Samples were labeled with external fluorescent
antibodies against cell surface markers CD3 (FITC Mouse
Anti-Pig CD3ε, Cat 559582, Lot 8248740, Becton Dickinson
& Company Pharmingen, San Jose, CA), CD4 (Alexa Fluor R©

647 Mouse Anti-Pig CD4a, Cat 561472, Lot 8334871, Becton
Dickinson & Company Pharmingen, San Jose, CA), and CD8
(PE Mouse Anti-Pig CD8b, Cat 561484, Lot 9073659, Becton
Dickinson & Company Pharmingen, San Jose, CA). CD8 was
diluted using BD Brilliant Stain Buffer (Becton Dickinson &
Company Horizon, Cat No. 563794). Labeled cells were fixed
using 4% paraformaldehyde [PierceTM 16% Formaldehyde (w/v),
Methanol-free, Thermo Fisher Scientific, Cat No: 28908] and
analyzed at the University of Illinois Roy J. Carver Biotechnology
Center Flow Cytometry Facility using a BD LSR II Flow
Cytometry Analyzer (Becton Dickinson & Company Biosciences,
San Jose, CA). Outputs were analyzed using FCS Express 5 Plus
(De Novo Software, Glendale, CA). The number of CD3+ events
constituted the total number of T cells, while CD3+CD4+CD8−,
CD3+CD4−CD8+, and CD3+CD4+CD8+, were considered
helper, cytotoxic, and memory T cells, respectively.

Hematological Outcomes
Whole blood, plasma, and serum samples were collected on
PND 30 and submitted to the University of Illinois College of
Veterinary Medicine Clinical Pathology Laboratory for analysis
of blood coagulation factors (PT/PTT/Fib), complete blood
cell counts with differentials (CBC), and general health serum
chemistry. Whole blood for CBC and PT/PTT/Fib were collected
into 4-mL evacuated K2EDTA and 1.8-mL sodium citrate 3.2%
blood tubes, respectively, and stored on ice prior to submission
(Becton Dickinson & Company, Cat No: 367835 and 363080).
Serum samples were collected into 4-mL serum tubes (Becton
Dickinson & Company, Cat No: 367812) and left at room
temperature to clot for a least 30min. All samples were processed
and stored at−80◦C within 6 h of collection.

Tissue Collection
Organ weights and tissue samples were collected on PND
30, including liver, whole brain, spleen, thymus, duodenum,
jejunum, and ileum. Tissue aliquots were snap-frozen in liquid
nitrogen and stored at −80◦C. Total small intestine length and
individual section weights were also recorded. The first 10% of
the total length was considered duodenum, the last 15% ileum,
and the remainder jejunum.

Fatty Acid Analyses
Tissue FA (plasma, PFC, and RBC) were quantified by gas
chromatography. Briefly, plasma was dried under nitrogen,
PFC was lyophilized, homogenized and weighed, and RBC
were vortexed and aliquoted directly. Internal standard
(trinonadecanoic acid or pentadecanoic acid in toluene) was
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added to each sample, and 1.5N methanolic hydrochloric acid
was used for direct transesterification. Samples were heated for
2 h at 100◦C. Following methylation, saturated sodium chloride
was added, and lipids were extracted into toluene for direct
injection. Calibration curves were generated using GLC-502B
(Nu-Chek Prep, Elysian, MN) for FA reference standards.
Samples were analyzed on an Agilent 6890 gas chromatographer
(split injection) equipped with a name ionization detector. A
30m × 0.32mm × 0.2µm SP-2380 fused silica capillary column
(Supelco, Bellefonte, PA) was used with hydrogen as the carrier
gas. Oven temperature was programmed from 140 to 190◦C
at 5◦C/min, held for 1min at 190◦C, increased to 260◦C at a
rate of 17◦C/min, then held for 3min for a total run time of
18.12min. The name ionization detector was set at 285◦C. FA
concentrations are expressed as weight percent of total FA.

Brain for TEM
Left brain hemispheres from the second cohort of pigs (n =

3 per treatment group) were prepared for the measurement
of axonal myelination in the genu of the corpus callosum via
TEM. Immediately following euthanasia, whole hemispheres
were submerged in 4% PFA for 1 week, then transferred to 0.15M
cacodylate buffer (pH 7.4) containing 2.5% glutaraldehyde, 2%
PFA and 2mM CaCl2 at 5–8◦C. The corpus callosum was
chosen because of its proximity to the frontal lobe, its postnatal
myelination pattern, and the ability to achieve adequate fixation
without impacting primary outcomes. After initial fixation, the
genu was dissected away from the rest of the hemisphere,
rinsed with 3, 15-min washes in 0.1M sodium cacodylate and
post-fixed for 2 h in 2% osmium tetroxide in 0.1M sodium
cacodylate. The tissue was then rinsed again three times for
15min in 0.1M sodium cacodylate and placed in fresh 0.1M
sodium cacodylate overnight at 4◦C. The following day, the
tissue was washed three times for 15min in deionized water at
room temperature. It was then dehydrated at room temperature
through the following steps: 30min each in 25, 50, 75, 95, and
100% ethanol (EtOH) in water, 1 h in fresh 100% EtOH, 5min
in 50% propylene oxide/50% EtOH, 5min in 100% propylene
oxide. The tissue was then embedded in epoxy resin, incubated
for 48 h at 60◦C, oriented in a manner that resulted in the
majority of axons being sliced orthogonally in the sagittal plane,
and sliced with a Leica Ultracut UCT ultramicrotome set at
50 nm. The slices were mounted in imaging grids and stained
with 4% uranyl acetate in methanol and then with Reynold’s
lead citrate (61). Images were captured with a FEI Tecnai T12
Spirit electron microscope at 5,000×magnification. Images were
analyzed with Icy imaging software (http://icy.bioimageanalysis.
org/), and analysis consisted of tracing the circumferences of
both the axonal membrane and the outer bound of the myelin
sheath for 300–400 individual axons per animal. Axon diameter,
myelin thickness, and the G-ratio were then calculated from the
circumference values.

Intestinal Structure
Intestinal macrostructure (i.e., villus height, crypt depth,
and mucosal thickness) was evaluated by a board-certified
histopathologist (Veterinary Diagnostic Pathology, LLC, Fort

Valley, VA). Evaluations were made using 5-micron Hematoxylin
and Eosin stained sections prepared from formalized samples
of duodenum, jejunum, and ileum (formalin solution, neutral
buffered, 10%, Sigma-Aldrich, HT501128). Microscopic
examinations included semi-quantitative severity scoring of
both histopathology lesions and microscopic histologic features
using the following scoring system: 0 = absent; 1 = minimal;
2 = mild; 3 = moderate; 4 = marked; and 5 = severe. Half
values were given when uncertainty existed between scoring
groups in assigning a value. Villus/crypt ratios and total mucosal
thickness were calculated using five well-oriented villi and crypt
measurements per intestinal tissue sample.

Statistical Analysis
For single time-point outcomes, a 1-way ANOVA was conducted
using the MIXED procedure of SAS 9.4 (SAS Institute, Inc., Cary,
NC) with the fixed effect of diet and the random effect of cohort.
For repeated immune measures, a 2-way ANOVAwas conducted
using the MIXED procedure of SAS 9.4 with the fixed effects
of diet and PND, the 2-way interactive effect of diet and PND,
and the random effect of cohort. If the interactive effect of diet
and PND was not significant, data were analyzed using a 1-way
ANOVA to assess differences between dietary treatment groups
within individual PND. Activity data were analyzed using the
MIXED procedure SAS 9.4 with the fixed effects of diet, week,
and cycle, and interactive effects of diet by week, week by cycle,
and diet by cycle. All data were analyzed for outliers (i.e., defined
as having a Studentized residual with an absolute value ≥ 3), and
outliers were removed prior to final statistical analysis. Statistical
significance was accepted at P ≤ 0.05, and data are presented
as least-squares means (LSM) with pooled standard errors of
the mean (SEM). Significance values for histological outcomes
were obtained from Kruskal-Wallis test using the NPAR1WAY
procedure of SAS 9.4.

RESULTS

Growth and Tolerance
No differences in general pig well-being were noted during daily
checks. Diet had no effect (P > 0.05) on ADMI, ADG, G:F,
or organ growth (Table 2). Diet also had no effect on stool
consistency (data not shown).

Tissue Fatty Acid Analysis
Tissues concentrations of ARA and DHA are shown
in Figure 1 and detailed FA profiles are available in
Supplementary Tables 1–3. Overall differences (P < 0.001)
in both ARA and DHA concentrations (% of total FA by weight)
were observed in the PFC, RBC, and plasma samples.

PFC

In the PFC, pigs fed the ARA diet had higher (P < 0.001)
percentages of ARA than those fed any other diet. Pigs fed CON
andARA+DHAhad had similar percentages of ARA (P= 0.140),
both of which were higher than those fed DHA (P < 0.001
and P = 0.015, respectively). Pigs fed DHA alone had higher
percentages of DHA than those on any other diet (P ≤ 0.006).
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TABLE 2 | Growth performance of pigs receiving experimental milk replacers differing in ARA and DHA fatty acid concentrationsa.

Dietary treatment

Outcome CON ARA DHA ARA+DHA Pooled SEM Model P-value

Growth Performance

BW, kg

Initial 1.91 1.90 1.83 1.94 0.086 0.745

Final 4.56 4.72 4.67 5.64 0.705 0.411

PND 3 to PND 29

ADG, g/d 102 116 104 136 25.2 0.469

ADMI, g/d 839 898 899 977 115.2 0.758

G:F, g BWG:g liquid milk intake 114.2 122.8 109.2 135.0 13.65 0.202

Organ weights, g/kg BW

Duodenum 5.55 4.89 5.11 4.59 0.534 0.305

Jejunum 36.1 37.6 39.8 37.1 3.15 0.543

Ileum 9.09 9.70 9.54 9.15 0.984 0.714

Whole brain 10.8 10.0 10.1 9.1 1.13 0.573

Liver 37.4 38.1 39.0 37.4 2.54 0.825

Spleen 1.94 2.01 1.87 2.00 0.116 0.823

Thymus 1.64 1.75 1.57 1.72 0.143 0.800

SI total lengthb, cm/kg BW 183 178 192 160 12.1 0.286

Duodenum 18.3 17.8 19.2 16.0 1.21 0.287

Jejunum 137 133 144 120 9.1 0.286

Ileum 27.5 26.7 28.8 24.0 1.82 0.286

Crown to rump length, cm/kg BW 9.02 8.50 8.88 7.68 0.727 0.490

aValues represent least square means of 10–12 pigs per diet. Measured on PND 30. ARA, arachidonic acid; DHA, docosahexaenoic acid; PND, postnatal day; SEM, standard error of

the mean; BW, body weight; BWG, body weight gain; ADG, average daily body weight gain; ADMI, average daily milk intake; G:F, feed efficiency; SI, small intestine.
bFirst 10% of total small intestine length was considered duodenum and the last 15% was considered the ileum.

FIGURE 1 | Tissue ARA and DHA concentrations (% of total FA) of pigs receiving experimental milk replacers differing in ARA and DHA fatty acid concentrations.
a−dSuperscript letters denote treatment means differ (P < 0.05). Values represent least square means of 11–12 pigs per treatment. ARA, arachidonic acid; DHA,

docosahexaenoic acid; FA, fatty acid; PFC, prefrontal cortex; RBC, red blood cell.

Those fed ARA+DHA also had a higher percentage of DHA than
those fed CON and ARA (P < 0.001), while those fed CON and
ARA had comparable levels (P = 0.742).

Linoleic acid (18:2n-6) and dihomo-γ-linolenic (20:3n-6)
percentages were lower (P < 0.01) in pigs fed ARA and
ARA+DHA than those fed CON and DHA. Adrenic acid
(22:4n-6) percentages were different between all treatment
groups (P < 0.01); pigs fed ARA had the highest percentages,
followed by CON, ARA+DHA, and DHA. Percentages of n-
6 docosapentaenoic acid (22:5n-6) were higher in pigs fed
CON and ARA than those fed DHA and ARA+DHA (P <

0.001). Eicosapentaenoic acid (EPA; 20:5n-3) was only present

at very low levels, and no differences were observed between
treatment groups. Percentage of n-3 docosapentaenoic (22:5n-
3) was highest (P < 0.001) in pigs fed CON, followed by pigs
fed ARA, who had higher (P < 0.001) levels than those fed
DHA and ARA+DHA; pigs fed DHA and ARA+DHA had
comparable percentages.

RBC

In RBC, pigs fed the ARA diet had a higher percentage of
ARA than those fed any other diet (P ≤ 0.012). Pigs fed the
ARA+DHA diet also had a higher percentage of ARA than those
fed CON and DHA (P < 0.001), and those fed CON had a higher
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percentage than those fed DHA (P = 0.029). Pigs fed DHA and
ARA+DHA did not differ in their RBC DHA levels (P = 0.163),
as well as those fed CON and ARA (P = 0.865), but those on
the two former had higher percentages than the two latter (P
< 0.001).

Percentage of 18:2n-6 was lower (P < 0.001) in pigs fed ARA
and ARA+DHA than those fed CON and DHA. Percentage
of 18:3n-6 was lower (P < 0.03) in pigs fed DHA alone than
those fed CON and ARA; pigs fed ARA+DHA had comparable
percentages to all other treatment groups. Pigs fed ARA had the
highest (P < 0.01) percentage of 22:4n-6, pigs fed DHA had
the lowest (P < 0.01), and pigs fed CON and ARA+DHA had
comparable intermediary percentages. Percentage of 22:5n-6 was
highest in those fed ARA (P < 0.02), followed by those fed CON
who had a higher percentage of 22:5n-6 than those fed either
DHA or ARA+DHA (P < 0.04); pigs fed DHA and ARA+DHA
had similar percentages of 22:5n-6. Pigs fed DHA had a higher
(P < 0.02) percentage of 20:5n-3 than those fed any other diets
and those fed ARA had lower (P= 0.04) percentage 20:5n-3 than
those fed CON. Pigs fed CON and ARA had a higher (P < 0.05)
percentage of 22:5n-3 than those fed DHA and ARA+DHA.

Plasma

In plasma, pigs on the ARA diet had a higher (P ≤ 0.009)
percentage of ARA than those in any other group, followed by
pigs on the ARA+DHA diet, whose percentages were higher than
those on both CON and DHA diets (P < 0.001). Pigs fed CON
and DHA diets had comparable ARA levels (P = 0.109). Pigs
on the DHA diet had higher percentages of plasma DHA than
those on any other diet (P ≤ 0.007), followed by the pigs on the
ARA+DHA diet, whose levels were higher than those on CON
and ARA diets (P < 0.001). Pigs on CON and ARA diets had
similar percentages of plasma DHA (P = 0.751).

Percentage of 18:2n-6 was lower in pigs receiving ARA
and ARA+DHA than those fed CON and ARA+DHA (P <

0.001). Pigs fed ARA had the highest (P < 0.01) percentage of
22:4n-6, pigs fed DHA had the lowest (P < 0.01), and CON
and ARA+DHA had similar intermediary 22:4n-6 percentage.
Percentage of 22:5n-6 were different between all treatment
groups (P < 0.05); pigs fed ARA had the highest percentages,
followed by CON, ARA+DHA, and DHA. Pigs fed ARA alone
had 18:3n-3 percentages higher (P = 0.007) than those fed DHA
alone. Pigs fed DHA had the highest (P < 0.03) percentages of
20:5n-3, those fed ARA had lowest (P< 0.05), and those fed CON
and ARA+DHA comparable intermediary percentages.

Activity Data
Activity outcomes are presented inTable 3, with results displayed
by week and cycle (i.e., day or night). Pigs fed the ARA and
ARA+DHA diets exhibited higher activity, measured as average
activity counts per min, week-to-week than those on the CON
and DHA diets (P < 0.05), with the exception of week 4 where
only pigs on the ARA diet had higher activity than those on
CON andDHA diets. Differences in activity between groups were
only significant (P < 0.05) during the day cycle. While there
were differences in percent time asleep during weeks 2–4, no
consistent trends were apparent week-to-week. In the day cycle,

where significant differences in activity were observed, pigs fed
the ARA diet exhibited the lowest percent time asleep, while those
on the DHA diet had the highest.

Hematological Outcomes
Results from CBC and serum chemistry panels are displayed in
Table 4. There were no differences between the dietary treatment
groups for any parameter on the CBC panel (P > 0.05), and
all values fell within the corresponding reference intervals for
the pig. From the serum chemistry, a difference in creatine
phosphokinase (CPK) level was observed (P= 0.028), where pigs
fed ARA+DHA exhibited somewhat elevated CPK compared
with those on the other three diets (P ≤ 0.02), although these
values were well within the estimated reference range for pigs
of similar age. All hematological outcomes were within or just
outside of available reference intervals (62, 63).

Immune Analyses
Outcomes from immune parameters are displayed in Table 5.
There were no differences (P > 0.05) in anti-KLH IgG antibody
production between the dietary treatment groups. Additionally,
immunophenotyping results suggested that dietary treatment
had no effect on the total lymphocyte population size or T
cell subpopulations of interest at either time-point (PND 16
or 23). There were also no differences observed in coagulation
parameters, TXB2, or PGE2. No differences were observed in
rectal temperatures (data not shown). Results from cytokine
analyses are displayed in Figure 2. Nearly all cytokine values
fell below the detectable limit. Only those at quantifiable
concentrations are displayed, and no differences were observed
between dietary treatment groups.

Small Intestine Histology
No differences (P > 0.05) in intestinal structure were observed
except for a slight reduction (P = 0.040) in the size score
for Peyer’s patches in pigs fed DHA alone compared with
other dietary treatment groups. Detailed results from histological
analyses are provided in Supplementary Table 4.

Myelination
Results from corpus callosum TEM analysis are displayed in
Table 6. No differences (P > 0.05) were observed in total, axon,
or myelin thickness.

DISCUSSION

Overview
The effect of dietary DHA in the absence of ARA was of
primary interest due to the new IF regulations in the European
Union. According to these recommendations, IF must contain
DHA at levels higher than worldwide breast milk averages,
without a requirement for ARA inclusion. This decision
has received some resistance, as experts generally agree
that ARA should be provided in at least equal or greater
concentrations than that of supplemental DHA to mimic the
composition of breastmilk (4, 12, 13). Due to the influence
of supplemental ARA and DHA on tissue FA incorporation,
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TABLE 3 | General activity of pigs receiving experimental milk replacers differing in ARA and DHA fatty acid concentrationse.

Dietary treatment P-value

Pooled Overall Sliced

Outcome CON ARA DHA ARA+DHA SEM Diet Week effects effects

AC/min

Week 1 131.7c 189.3a 139.6c 163.2b 8.88 < 0.001 < 0.001 0.184 < 0.001

Week 2 132.7c 222.7a 160.3b 194.6a 10.55 < 0.001

Week 3 154.3c 246.0a 179.2b 224.2a 9.65 < 0.001

Week 4 215.6b 289.3a 208.8b 233.6b 10.69 < 0.001

Day 229.2c 369.9a 240.6c 302.2b 7.03 < 0.001 < 0.001 < 0.001 < 0.001

Night 88.0 103.8 103.3 105.6 6.64 0.197

% Sleep

Week 1 46.8 46.1 46.0 45.9 1.37 0.012 < 0.001 0.002 0.928

Week 2 45.0c 45.9cb 51.5a 49.7ba 1.61 0.018

Week 3 54.1a 47.9a 50.6a 43.2b 1.48 0.004

Week 4 36.0c 42.7a 41.8ab 37.7bc 1.64 0.016

Day 32.3ab 27.7c 34.9a 30.8bc 1.06 0.012 < 0.001 < 0.001 < 0.001

Night 57.4c 63.7a 60.0b 57.5bc 1.02 0.001

a,b,c,dWithin a week (row), means lacking a common superscript letter differ (P < 0.05).
eValues represent least square means of 3–6 pigs per treatment per week. ARA, arachidonic acid; DHA, docosahexaenoic acid; SEM, standard error of the mean; AC, activity count.

neural development, and their generally opposing physiological
effects on the immune response, we sought to investigate the
impact this type of formula could have on developmental
outcomes. Diets with no background ARA or DHA were
formulated to allow for clear identification of independent and
dual impact of ARA and DHA supplementation. Ultimately,
our results support several of the concerns raised by the
recently published expert opinion regarding IF supplemented
with DHA in the absence of supplemental ARA (12). The
concerns raised by this group included possible decreases
in brain ARA concentrations, as well as potential negative
impacts on neurodevelopment, growth, and immunity.
Here we validate concerns regarding reduced brain ARA
accretion, specifically in the PFC, and highlight potential
neurodevelopmental differences that may raise concern and
warrant further investigation.

Fatty Acid Accretion
Both clinical and animal work has demonstrated that plasma,
RBC, and cerebral cortex FA concentrations are sensitive to
dietary ARA and DHA levels (3, 14, 64, 65). Our results
generally align with previous work on ARA and DHA tissue
accretion. However, while cerebral cortex ARA concentrations
are reportedly more resistant to diet-induced fluctuations, here
we observed a decrease in endogenous ARA concentrations in
the PFC when DHA was provided in the absence of dietary
ARA—thus providing direct evidence to support the view that
dietary ARA is required when DHA is included to support
tissue accretion in this region. The provision of DHA alone
also decreased endogenous ARA concentrations in RBC, whereas
ARA alone did not impact endogenous levels of DHA in PFC,
plasma, or RBC. Previous work in young pigs has similarly
shown that when dietary DHA was provided at 1.0% of total

FA, differing dietary ARA concentrations had little to no impact
on DHA levels in tissues including the heart, liver, brain, and
retina (66). We observed that the combined supplementation
lessened the accretion of either ARA or DHA when compared
with individual FA supplementation, the only exception being
RBC DHA. Similar to infant RBC data report by Colombo
et al. ARA levels were reduced when the level of dietary
DHA exceeded that of ARA (14). While combined ARA+DHA
supplementation reduced DHA accretion in the PFC compared
with DHA alone, the inclusion of ARA may be necessary
to ensure endogenous ARA concentrations are maintained in
this region.

Expectedly, ARA and DHA supplementation also influenced
tissue concentrations of several other n-6 and n-3 series PUFA. In
young pigs, increasing the dietary ARA andDHAhas been shown
to reduce 18:2n-6 incorporation in the brain, RBC, and plasma
(67). Similarly, here we observed reduced 18:2n-6 concentrations
in all three tissue types in pigs receiving ARA or ARA+DHA
treatments, suggesting the reduction was primarily driven by
dietary ARA content. The inclusion of ARA in the present study

also drove down PFC percentages of 20:3n-6, the immediate

precursor to ARA in the n-6 desaturation and elongation scheme.

Subsequent elongation of ARA yields adrenic acid (22:4n-6),

which serves as the third most abundant PUFA inthe brain

(68). In each tissue type, the highest percentages of 22:4n-6

were observed in pigs fed ARA alone and lowest in those fed
DHA alone. The inclusion of both ARA and DHA attenuated
the increase observed with ARA alone and resulted in 22:4n-

6 percentage like that of pigs fed CON in both plasma and

RBC. Outcomes in 22:5n-6 percentages align with findings from
previous piglet work that showed increasing ARA and DHA
prompt decreases in 22:5n-6 incorporation in tissues including
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TABLE 4 | Hematological outcomes pigs receiving experimental milk replacers differing in ARA and DHA fatty acid concentrationsc.

Dietary Treatment

Outcome CON ARA DHA ARA+DHA Pooled SEM Model P-value Reference

intervalb

Total and differential cell counts

RBC count, ×106 cells/µL 5.24 5.46 5.21 5.41 0.214 0.711 4.08–8.17

Hemoglobin, g/dL 8.98 9.46 8.87 9.36 0.386 0.517 4.32–13.3

Packed cell volume, % 31.3 32.9 31.5 32.6 1.495 0.691 16–41

MCV, fl 61.6 62.2 61.0 62.0 1.097 0.879 34.2–61.3

MCH, pg 17.1 17.4 17.0 17.4 0.305 0.696 9.4–19.8

MCHC, g/dL 27.8 28.3 28.1 28.8 0.645 0.666 26.5–33.6

Platelets, ×103 platelets/µL 658 578 656 625 40.638 0.471 192–832

WBC count, × 103 cells/µL 13.3 11.3 12.2 10.7 1.629 0.576 5.6–18.5

Segmented neutrophils, % 41.8 39.5 38.5 38.4 5.325 0.903 10.8–70.6

Band neutrophils, % 0.18 0.00 0.100 0.167 0.110 0.554 –

Lymphocytes, % 53.2 54.8 56.6 57.2 5.257 0.869 26.2–82.9

Monocytes, % 3.67 4.91 4.00 4.00 0.747 0.668 1.4–8.3

Eosinophils, % 0.67 0.73 0.54 0.25 0.248 0.502 0–1.9

Basophils, % 0.17 0.00 0.18 0.00 0.107 0.439 0–0.90

Serum chemistry

Creatine, mg/mL 0.600 0.555 0.573 0.625 0.040 0.570 0.51–1.39

BUN, mg/dL 10.6 10.4 12.0 11.5 1.34 0.611 4.0–39

Total protein, g/dL 3.52 3.45 3.61 3.57 0.150 0.875 2.5–6.6

Albumin, g/dL 1.72 1.72 1.81 1.82 0.122 0.898 1.9–4.0

Globulin, g/dL 1.80 1.73 1.83 1.64 0.106 0.543 0.3–1.7e

Albumin:globulin ratio 0.992 1.055 1.078 1.220 0.116 0.489 0.7–2.2

Calcium, mg/dL 9.96 10.12 10.08 10.19 0.192 0.260 9.9–12.5e

Phosphorus, mg/dL 10.9 12.0 11.3 11.9 0.389 0.131 6.3–11.5e

Sodium, mmol/L 146 146 146 148 1.036 0.101 125–147

Potassium, mmol/L 6.82 6.55 6.76 6.94 0.205 0.752 2.9–4.6

Sodium:potassium ratio 21.4 22.5 21.7 21.7 0.582 0.648 –

Chloride, mmol/L 110 109 109 110 0.821 0.781 93–108e

Glucose, mg/dL 104 109 108 112 7.325 0.833 34–159

ALP, U/L 497 545 499 498 76.93 0.879 110–1,292

AST, U/L 31.8 34.9 28.3 34.8 3.302 0.431 13–65

GGT, U/L 32.8 34.6 33.8 35.2 2.771 0.925 33–94e

Total bilirubin, mg/dL 0.209 0.200 0.146 0.225 0.039 0.508 0–0.2e

CPK, U/L 476a 410a 410a 643b 52.0 0.020 153–5,427e

Cholesterol total, mg/dL 108 108 103 109 10.5 0.866 –

GLDH, U/L 0.600 0.727 0.564 0.536 0.119 0.682 –

Magnesium, mg/dL 3.22 3.18 3.21 3.20 0.131 0.997 –

Triglycerides, mg/dL 55.5 69.9 52.6 60.2 7.461 0.337 –

Anion gap 16.5 16.27 15.82 17.50 1.257 0.798 14–29e

a,bMeans lacking a common superscript letter differ (P < 0.05).
cValues represent least square means of 9–12 pigs per diet. Measured on PND 30. ARA, arachidonic acid; DHA, docosahexaenoic acid; PND, postnatal day; SEM, standard error of

the mean; RBC, red blood cell; MCV, mean cell volume; MCH, mean cell hemoglobin; MCHC, mean corpuscular hemoglobin concentration; WBC, white blood cell; BUN, blood urea

nitrogen; ALP, total alkaline phosphatase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; CPK, creatine phosphokinase; GLDH, glutamate dehydrogenase.
dEstimated reference intervals for hematological outcomes for 30 day old pigs, retrieved from Ventrella et al. (62), applies to all values unless otherwise indicated.
eEstimated reference intervals for hematological outcomes for 42 day old pigs, retrieved from Cooper et al. (63).

brain, retina, liver, and RBC (67). Their study reported plasma
22:5n-6 was not as strongly impacted by increasing total ARA
and DHA, however, each diet contained similar ARA:DHA ratio.
Here, the provision of both ARA and DHA did cause slightly

lower 22:5n-6 percentages in plasma, but the largest difference
in 22:5n-6 concentrations was observed in pigs fed ARA alone,
where the percentage of 22:5n-6 was nearly twice that of the
control. Deficiency in n-3 FA and depletion of tissue DHA has
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TABLE 5 | Immune parameter outcomes of pigs receiving experimental milk replacers differing in ARA and DHA fatty acid concentrationsa.

Dietary treatment

Outcome CON ARA DHA ARA+DHA Pooled SEM Model P-value

PND 16

Total lymphocytes, % 56.6 55.3 46.4 53.0 3.84 0.179

CD3b, % 58.5 61.5 53.5 59.6 7.65 0.388

CD3/CD4c, % 24.9 27.3 25.8 23.2 3.64 0.466

CD3/CD8c, % 15.6 14.2 15.4 15.4 6.10 0.955

CD3/CD4/CD8c, % 1.02 1.32 1.30 1.26 0.332 0.725

KLH IgG Ab, ng/mL 2.40 2.38 2.68 2.31 0.191 0.316

PND 26

Total lymphocytes, % 62.2 60.6 51.6 55.0 4.82 0.380

CD3b, % 45.8 47.7 41.3 43.9 4.04 0.605

CD3/CD4c, % 20.1 19.9 19.0 17.1 2.00 0.698

CD3/CD8c, % 20.8 22.6 17.7 25.4 2.66 0.219

CD3/CD4/CD8c, % 0.73 1.17 1.07 1.13 0.304 0.247

KLH IgG Ab, ng/mL 2.42 2.80 2.54 2.83 0.209 0.385

PND 30

Fibrinogen, mg/mL 123 116 124 125 8.028 0.760

PT, sec 14.2 14.8 14.4 14.3 0.250 0.082

PTT, sec 13.7 13.9 13.0 13.3 0.494 0.055

TBX2, pg/mL 373.6 340.3 389.5 360.3 36.85 0.280

PGE2, pg/mL 1410.9 1518.8 1420.4 1256.0 172.45 0.733

aValues represent least square means of 9-12 pigs per diet. To stimulant an immune response, all pigs received a two-dose series of KLH via intraperitoneal injection. The first dose (1mL

at 10mg of KLH/mL) was administered on PND 9 and the second (1mL at 2mg of KLH/mL) on PND 19. ARA, arachidonic acid; DHA, docosahexaenoic acid; PND, postnatal day; SEM,

standard error of the mean; KLH, keyhole limpet hemocyanin; Ab, antibody; PT, prothrombin time; PTT, partial thromboplastin time; TXB2, thromboxane-B2; PGE2, prostaglandin E2.
bPercent of total lymphocytes that are positive for cell-surface marker CD3.
cPercent of CD3-positive lymphocytes that are also positive for cell-surface markers CD4, CD8, or CD4/CD8.

FIGURE 2 | Circulating cytokine levels (pg/mL) of pigs receiving experimental milk replacers differing in ARA and DHA fatty acid concentrations. To stimulant an

immune response, all pigs received a two-dose series of KLH via intraperitoneal injection. The first dose (1mL at 10mg of KLH/mL) was administered on PND 9 and

the second (1mL at 2mg of KLH/mL) on PND 19. Plasma from PND 16 and 26 was analyzed for circulating IL-1β, IL-10, IFN-α, IFN-γ, TNF-α, IL-4, and IL-8. Plasma

from PND 30 was used to quantify circulating IL-17A. Only those with detectable values are shown. Values represent least square means of 2–4 pigs per treatment for

PND 16 and 26, and 7–9 pigs per diet for PND 30. KLH, keyhole limpet hemocyanin; PND, postnatal day; IL, interleukin; ARA, arachidonic acid; DHA,

docosahexaenoic acid.

been shown to bring about reciprocal replacement with 22:5n-
6 (67, 69, 70). Alpha-linolenic acid (18:3n-3) was not detectable
in the PFC, nor were differences observed between treatment
groups in RBC, but pigs fed ARA alone did exhibit higher plasma
18:3n-3 than those fed DHA alone. EPA (20:5n-3), a precursor
to DHA, was only present at very low levels in the PFC of all

pigs. Differences in EPA between treatment groups were only
observed in the plasma and RBC, where inclusion of DHA alone
unsurprisingly drove percentages of EPA up, while ARA alone
drove percentages down.

Polymorphisms in the FADS genes influence endogenous
ARA and DHA synthesis, and infants with specific genotypes
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TABLE 6 | Corpus callosum genu myelination in pigs receiving experimental milk replacers differing in ARA and DHA fatty acid concentrationsa.

Dietary treatment

Outcome CON ARA DHA ARA+DHA Pooled SEM Model P-value

Total diameter, µm 1.315 1.136 1.099 1.085 0.112 0.482

Axon diameter, µm 0.943 0.815 0.790 0.754 0.094 0.540

Myelin thickness, µm 0.186 0.160 0.155 0.165 0.013 0.391

G-ratio 0.716 0.712 0.719 0.695 0.016 0.723

aMeasures made by transmission electron microscopy. Values represent least square means of 3 pigs per treatment, 300+ axons per sample. Measured on PND 30. ARA, arachidonic

acid; DHA, docosahexaenoic acid; PND, postnatal day; SEM, standard error of the mean.

may require different levels of supplementation to maintain
adequate status (10, 71, 72). Consequently, the need for dietary
ARA inclusion may be more important for infants with certain
polymorphisms. Variations in expression of FADS-related genes
and the subsequent impact on elongation and desaturation of
LA and tissue FA content has also been implicated in the pig
(73, 74). While we did not explore specific genetic variations
here, this may have contributed to why we observed reductions
in ARA concentrations in the PFC, which was in contrast
to previous studies that found ARA in the brain was largely
impervious to dietary influences. It is important to highlight,
however, that observed reductions in ARA concentrations are
also likely region-specific.

Motor Activity
ARA and DHA are present in substantial quantities in regions
of the brain involved with motor function. In neonatal baboon
brains, the highest DHA concentrations are reported in the
globus pallidus, superior colliculus, putamen, and precentralis
regions, all of which are implicated in motor functions (24).
In neonatal baboons provided moderate or high levels of DHA
(0.3 vs. 1.0% of total FA), with constant ARA (0.67% of total
FA), ARA concentrations in most neural tissues (cerebral cortex,
retina, putamen, caudate, and amygdala) were not impacted by
dietary treatment (75). However, differences were observed in
the superior colliculus and the globus pallidus. The superior
colliculus is a structure involved in visual-motor integration,
while the globus pallidus is related to voluntary movement
regulation. Animals receiving 1.0% DHA had reduced ARA
concentrations in the superior colliculus compared with the 0.3%
DHA group and control (no ARA/DHA). Those receiving 1.0%
DHA also had reducedARA in the globus pallidus comparedwith
the 0.3% DHA group, but control ARA levels fell intermediary.
Concentrations of ARA in these regions may be particularly
sensitive to the diet. DHA at 0.3% of total FA reflects worldwide
breast milk concentrations, which range from 0.06 to 1.4% (1).
In the present study, DHA was provided at a similar, albeit
slightly lower, concentration to that of the high DHA diet in
the aforementioned study. We speculate that the provision of
DHA at 0.8% of total FA without dietary ARA, as done here,
could have caused similar reductions in ARA concentrations in
these regions. Alterations in FA concentrations in these regions
may have, in part, contributed to the differences observed in
activity levels.

Pigs receiving ARA-supplemented diets exhibited higher
average activity counts per minute than those not receiving
dietary ARA. These patterns of increased activity were consistent
with those observed in spontaneous movement measures in
rodents supplemented with ARA (31, 32). Harauma et al.
reported that mice fed n-3-adequate diets supplemented with
an ARA oil (240 mg/kg/day) for 13 weeks exhibited increased
spontaneous motor activity compared with those not receiving
ARA supplementation (31). In another study by this group
using artificially reared delta-6-desaturase knock out mice (D6D-
KO), mice unable to endogenously synthesize ARA and DHA
from their LA and ALA precursors, mice exhibited the highest
spontaneous motor activity levels when they were provided milk
supplemented with ARA alone, followed by ARA+DHA, then by
DHA alone. As such, only the provision of combined ARA and
DHA supplementation in D6D-KO mice diets achieved activity
levels comparable to that of wild type control mice (32). In the
current study, DHA alone did not trigger changes in activity
counts, but the addition of DHA did attenuate the increase
observed when ARA was provided. Hence, we believe that the
differences in gross motor activity were primarily driven by the
increase in dietary ARA.

Differences in activity levels may be due to altered
dopaminergic function, as animals on n-3-deficient diets are
known to exhibit both increased locomotor activity and
alterations in dopaminergic and serotonergic systems (76–78).
Dysregulation of the dopamine system is thought to contribute to
hyperactivity observed in animals on n-3 deficient diets (78). In
newborn rodent brains, Innis and de la Presa Owens reported an
inverse relationship between dopamine and phosphatidylserine
DHA and phosphatidylethanolamine DHA, whereas a positive
relationship was identified between phosphatidylcholine ARA
and dopamine levels (79). de la Presa Owens et al. also
showed ARA and DHA supplementation to 18:2n-6/18:3n-3-
deficient diets normalized concentrations of dopamine, 3,4-
dihydroxyphenylacetic (DPOAC), homovanillic acid (HVA),
serotonin, and 5-hydroxyindoleacetic acid (5-HIAA) in the pig
frontal cortex to that of pigs fed an 18:2n-6/18:3n-3-adequate
diet; however, no differences were observed between 18:2n-
6/18:3n-3-adequate diets without or with ARA and DHA (80).
Conversely, in another study by this group using the pig,
ARA and DHA inclusion in 18:2n-6/18:3n-3-adequate diets
reduced serotonin in the striatum and elevated dopamine and
5-HIAA in the superior and inferior colliculus (81). Thus, ARA-
and DHA-induced alterations in monoamine neurotransmitter
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concentrations are likely region-specific. Reduced DHA, or
rather, an increased ARA:DHA ratio, may have altered FA
concentrations in motor regions and contributed to altered
dopaminergic and serotonergic function, ultimately influencing
gross motor activity as observed in the current study. Further
research is warranted to elucidate this response.

Sleep
Infant sleep and wake patterning can be used in clinical studies
to assess central nervous system development and function,
and outcomes have been linked to prenatal DHA levels (82–
84). Infants born to mothers who were provided a cereal-based
DHA food intervention exhibited fewer arousals in quiet and
active sleep states during the first day of life than those of
mothers who received a placebo (82). During the first 2 days
of life, maternal plasma phospholipid DHA levels were also
associated with less active sleep and a lower ratio of active sleep
to quiet sleep; on day two, infants of mothers with high DHA
phospholipids exhibited less sleep-wake transitions and more
wakefulness (83). In the present study, actigraphy was used as
a proxy measure to quantify movement of pigs during the day
and night cycles. While no differences in percent time asleep (i.e.,
periods lacking in movement) were observed between CON and
ARA+DHA during either cycle, the provision of ARA or DHA
alone prompted differences during both day and night cycles,
highlighting opposing actions and the potential importance of
balance between these LCPUFA. During the day, pigs fed DHA
exhibited higher percent time asleep, and those fed ARA lower
percent time asleep, while the inverse was true for the night cycle.
The reduced time spent asleep during the day by pigs fed ARA
partially helps explain the markedly higher AC observed during
the day cycle.

Prostaglandin D2 (PGD2) and PGE2 are both derived from
ARA and are involved in sleep cycle regulation, promoting
and suppressing sleep, respectively (33). The present study
did not observe any differences in circulating PGE2 and did
not quantify PGD2 levels. Additionally, both ARA and DHA
are found in the pineal gland, the brain structure responsible
for the production of melatonin, a sleep cycle regulating
hormone (34). Lavialle et al. found that compared with controls,
hamsters receiving n-3 deficient diets exhibited increased
ARA:DHA in the pineal gland, hyperlocomotion associated with
striatal hyperdopaminergic, andmarkedly lower nocturnal pineal
melatonin (34). These findings align with the earlier discussion
regarding n-3 deficient diets, increased locomotor activity, and
alterations in the dopaminergic system. Earlier rodent studies
have also demonstrated that the pineal gland composition and
function are sensitive to dietary DHA intake (35, 36). Zaouali-
Ajina et al. reported that the provision of dietary DHA increased
pineal DHA concentrations in rats provided either n-3 sufficient
or deficient diets; they also showed that providing DHA to
n-3 deficient rats increased levels of nighttime urinary 6-
sulfatoxymelatonin, a metabolite of melatonin, to levels similar
to n-3 sufficient rodents (35). Neither Zaouali-Ajina et al. nor
Lavialle et al. observed a difference in daytime/light cycle pineal
melatonin or urinary metabolite concentrations. Conversely,
Zhang et al. reported elevated daytime pineal melatonin in

rodents on n-3 deficient diets (36). In the present study,
alternations in melatonin release and circadian rhythms may
have contributed to differences in total sleep quantified during
day and night cycles. Differences in measured sleep time could be
influenced by sleep patterns or quality, but the present study did
not evaluate these specifically. Nonetheless, these results continue
to support the need for optimal dietary ARA:DHA ratios as they
relate to functional early life outcomes such as sleep quality,
quantity, and regulation.

Myelin
Measures of myelin thickness were explored as a potential
mechanism by which dietary ARA and DHA may influence
functional outcomes. While no differences in myelin thickness
were observed, measures were only made within the corpus
callosum and at a single time-point due to protocol constraints.
If present, alterations in myelination are likely region-specific,
similar to what has been observed with ARA and DHA accretion
in the brain. Thus, the timing and location of measurements
here may not have been appropriate to detect differences in
myelin thickness. Neuroimaging procedures can help provide
insight into regions where myelin may be sensitive to diet
alterations. Diffusor tensor imaging (DTI) provides indirect
measures associated with degree of myelination, including
fractional anisotropy, radial diffusivity, and axial diffusivity. In
adolescent humans, McNamara et al. utilized DTI to demonstrate
a positive linear correlation between RBC DHA and axial
diffusivity in the corpus callosum (37). Later, in rats, McNamara
et al. showed that reducing dietary DHA and n-3 FA reduced
forebrain DHA accretion, which corresponded to reduced adult
brain white matter integrity in regions including the right and
left external capsules and the corpus callosum genu, as measured
by DTI (38). Our lab has previously employed DTI techniques
to evaluate brain development in the young pig in response
to various dietary interventions. For example, perinatal choline
deficiency altered fractional anisotropy in the thalamus and right
hippocampus, as well as cerebellar radial diffusivity and mean
diffusivity (85). Pigs supplemented with high concentrations
of alpha lipoic acid exhibited decreased fractional anisotropy
and axial diffusivity in the internal capsule, and iron deficiency
resulted in decreased fractional anisotropy values in the caudate,
cerebellum, and internal capsule when compared with iron
sufficient pigs (86, 87). Assessment of alternate brain regions,
such as those described, may prove more successful in detecting
differences in myelin characteristics in response to altered ARA
and DHA intake.

Immune Outcomes
The impact of diet on immune function is particularly important
during the postnatal period, as newborns have immature adaptive
immune systems, limited pathogen exposure, and impaired
immunological memory, leaving them especially vulnerable to
infections (88). The postnatal period is also an important
developmental window for establishing oral tolerance, failure of
which may contribute to the development of food allergy (4,
89). ARA and DHA have opposing immunomodulatory effects,
and the provision of IF with both ARA and DHA generates
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a more comparable immune response to that of a breast fed
infant (4). Dietary ARA and DHA have been shown to influence
immunoregulatory eicosanoid and docosanoid production, T
cell function, cytokine production, and B cell activation (3, 43,
90–92). Because of potential modulatory action on immune
development and function, the inclusion of high levels of
supplemental DHA in IF, relative to average levels currently
included in IF and present in breast milk, without the addition
of ARA has raised concerns. There is a limited number of studies
evaluating the impact of high DHA supplementation levels on
early immune development when provided without ARA (3, 4).
Tyburczy et al. previously reported on the effects of varying
concentrations of dietary ARA and DHA on pig growth and
immune response to M. hyopneumoniae vaccination (16). They
found no differences in intake, growth, clinical chemistry, or
hematology parameters. Measures of serum total IgA, IgG, IgM,
and M. hyopneumoniae antibodies were also not affected, nor
were the acute phase proteins, high sensitivity C-reactive protein,
haptoglobin, or serum amyloid A. In our study, we utilized an
alternative immune stimulant and employed a diet supplemented
with DHA in the absence of dietary ARA. Similar to Tyburczy
et al. (16), we did not observe differences in antibody production,
thus suggesting no alteration of the immune response. We
also did not observe any differences in levels of ARA-derived
eicosanoids, PGE2 and TXB2, rectal temperatures, or T cell
distributions. Additionally, the only cytokines present at a
detectable concentration were IFN-α and IL-17A.

The present study focused on the immune response to an
injected stimulant, but additional markers of early immune
development could also be explored. Researchers have previously
utilized ex vivo immune cell stimulation techniques to assess
cytokine excretion and characterize T helper (Th) cell subsets
(e.g., Th1, Th2, Th17, and Treg) as a factor of immune
development (93). Newborns have been shown to exhibit T cell
responses that favor Th2 polarization (IL-4, IL-5, IL-10, and IL-
13) over Th1 (IFN-γ, IL-2, and TNF-α), but exhibit increasing
capacity to produce Th1 cytokines during the first year of life
(88, 94). The pig model could also be used to evaluate B cell
development, which can be explored using immunophenotyping
procedures and various surface cell markers (95). Richard et al.
reported that suckling rodent pups consuming maternal milk
with higher levels of DHA resulted in higher proportions of
activated B cells in splenocyte immune cells (96). Miklavcic et al.
found that increasing the dietary ARA in IF from 0.00 to 0.64% of
total FA, in the presence of 0.32% DHA, resulted in both reduced
proportion of B cells and expression of activation markers (43),
again indicating the importance of the dietary ARA to DHA ratio
in relation to functional development outcomes.

The immune stimulant, KLH, was selected to help prevent
interference from maternal antibodies and has been shown to
be safe and effective, eliciting a robust humoral and adaptive
response (97). The injection series was chosen to mimic a routine
vaccination schedule, and a similar dosing series was effective
in eliciting an immune response in the Göttingen minipig (98).
While the injection series did elicit a response, as evidenced by
antibody production above the estimated baseline, it is possible
that KLH administration in the present study did not generate a

robust enough immune response to allow measurable differences
in antibody production or immune phenotypes. Adjuvants have
been included in some previous studies utilizing KLH in the pig
to elicit stronger responses, but there is an increased risk for
adverse effects with adjuvant inclusion (97, 99, 100). It may be
advantageous for future studies to explore alternative, possibly
more robust, immune stimulants.

Hematological Outcomes
The only dietary treatment effect observed in hematological
outcomes was for serum creatine phosphokinase (CPK), in which
pigs fed ARA+DHA exhibited somewhat elevated levels of CPK
compared with those fed other diets. While elevated CPK could
be used as a marker of tissue damage, it is fairly non-specific
and may be related to the muscle (skeletal or cardiac) or kidney
damage. Elevated CPK levels are often recorded after physical
exercises (101). The levels observed in pigs fed ARA+DHA
were well within the estimated reference range for similarly
aged pigs (63). Moreover, we did not observe any indications of
tissue damage. This, paired with the lack of any other clinical
findings, leads us to believe the elevated CPK levels are not
clinically relevant.

Independent Inclusion of ARA and DHA
There is limited literature on the safety and physiological
response to an IF supplemented with ARA in the absence of
dietary DHA. Using the young pig model, de la Presa Owens
et al. observed similar body and organ growth between pigs
consuming a formula with 0.8% ARA alone, a formula with 0.3%
DHA alone, an unsupplemented formula, and those receiving
a sow’s milk control containing both ARA and DHA (102).
Using an in vitro assay, they also found that formula-fed
pigs receiving ARA exhibited similar FADS2 activity toward
18:2n-6 or 18:3n-3 compared with unsupplemented pigs or
those receiving DHA. Additionally, ARA inclusion resulted
in higher FADS1 activity toward both 18:2n-6 and 18:3n-
3 compared with unsupplemented pigs. Huang and Craig-
Schmidt demonstrated that the provision of ARA and DHA
alone in young pigs resulted in higher and lower ex vivo lung
eicosanoid production, respectively, than that of pigs fed a
combined supplementation, which fell intermediary (103). To
our knowledge, the present study is one of the first to assess
the impact of ARA supplementation in the absence of dietary
DHA with safety and immune response as pivotal outcomes.
Here, we did not observe any negative impacts on immune
parameters, growth, hematological outcomes, serum chemistry,
or small intestine histology when ARA was provided at this level
to a diet devoid of dietary DHA. Nor did ARA at this level reduce
endogenous DHA concentrations in plasma, RBC, or PFC, but
it did appear that provision of ARA may have altered activity
patterns. Thus, we conclude that while not likely to be used in
practice, no immediate safety concerns were identified with the
dietary provision of ARA alone at this concentration.

Similarly, few studies have looked at the safety of
supplementing DHA in the absence of dietary ARA on
immune response and brain accretion. In the present study, we
did not observe any negative impacts on the immune parameters,
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growth, hematological outcomes, serum chemistry, or small
intestine histology when DHA was provided at this level in a diet
devoid of dietary ARA. However, supplementation with DHA
alone reduced endogenous ARA concentrations in RBC and PFC
compared with the control levels.

Limitations
While the use of a soy-based diet was necessary to achieve a
formulation devoid of backgroundARA orDHA, it is a limitation
of the present study. One concern regarding a soy-based diet
is its relatively high content of 18:2n-6. Dietary essential FA
18:3n-3 and 18:2n-6 compete for the same desaturation and
elongation enzymes to produce DHA and ARA, respectively.
Consequently, an excessive 18:2n-6 intake, or an increased
ratio of 18:2n-6 to 18:3n-3, may reduce the conversion of
18:3n-3 to DHA (21). However, our study utilized soy protein
isolate, which did not contribute a substantial amount of fat
to the overall diet. Moreover, all diets contained similar 18:2n-
6 concentrations, constituting ∼5% of total FA. In addition,
18:3n-3 was provided at ∼0.5% of total FA, resulting in 18:2n-
6 to 18:3n-3 ratios comparable to those reported in previous
studies investigating ARA and DHA supplementation in young
pigs (66, 67). The use of the young pig model provided the
benefit of more comparable essential FA metabolism to that of
a human infant than rodents, but the conversion of essential
fatty acids to ARA and DHA are less clearly defined in the
pig (55, 56, 104). Another concern may be immunogenicity
or estrogen-like activity of dietary soy ingredients, but both of
these potential confounds were addressed through the use of
soy protein isolate that afforded low allergenicity and contained
extremely low isoflavone concentrations compared with other
soy-based ingredients.

CONCLUSION

The aim of this trial was to evaluate the effect of individual or
combined ARA and DHA supplementation on developmental
outcomes in the young pig, including body and organ growth,
gastrointestinal structure, immune function, general activity,
myelin thickness, and fatty acid composition of pertinent tissues.
We did not observe any differences in growth outcomes, diet
tolerance, or immune parameters. Concentrations of ARA and
DHA in the PFC, RBC, and plasma were sensitive to dietary
intake when compared with diets devoid of these fatty acids.
Results demonstrate that endogenous ARA levels in the PFC
and RBC are reduced when only DHA supplementation is
provided in the absence of dietary ARA. The provision of
ARA supplementation when DHA was provided was necessary
to maintain endogenous ARA concentrations in the PFC.
Differences in activity levels were noteworthy and demonstrate

that dietary ARA and DHA have a functional impact on gross
motor activity levels. Based on ARA tissue incorporation, these
results support the case for ARA inclusion when supplemental
DHA is provided.
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