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Abstract: Information about limb movements can be used for monitoring physical activities or for
human-machine-interface applications. In recent years, a technique called Force Myography (FMG)
has gained ever-increasing traction among researchers to extract such information. FMG uses force
sensors to register the variation of muscle stiffness patterns around a limb during different movements.
Using machine learning algorithms, researchers are able to predict many different limb activities.
This review paper presents state-of-art research and development on FMG technology in the past
20 years. It summarizes the research progress in both the hardware design and the signal processing
techniques. It also discusses the challenges that need to be solved before FMG can be used in an
everyday scenario. This paper aims to provide new insight into FMG technology and contribute to
its advancement.

Keywords: force myography; FMG; muscle; wearable; motions; human-computer interface;
signal processing

1. Introduction

Information about the position or movement of a user’s limb can be used to monitor physical
activities or for human-machine-interface applications. Such information can be extracted externally
from the user using camera technology or through a wearable approach using sensors worn by the user.
Compared to the camera approach, the wearable approach is not constrained to a fixed environment
and it offers greater freedom to the user in terms of mobility. Among many wearable approaches, the
one that relies on force myography (FMG) has gained ever-increasing traction among researchers over
the past 20 years.

FMG is a non-invasive technique to decipher the position or movement of a limb based on
changes in the stiffness of the corresponding musculotendinous complex (MC) against a default state.
The changes in stiffness of the targeted MC is often monitored by placing a force transducer on the
targeted location with a preload force. This preload force corresponds to the default state, which
is usually chosen as a state where the limb is in a relaxed position. However, depending on the
application, the default state can be arbitrarily chosen. The basic principle of FMG is similar to the
palpation technique that a clinician uses for identifying different muscles of a limb. For example, while
we are squeezing one of our hands, we can feel some of the extensor muscles become stiffer by placing
fingers on the bulk of the forearm. For FMG, we replace the fingers with force transducers. The stiffer
the MC is, the higher the pressure the transducers will detect.

The term force myography, a.k.a. FMG, was first introduced in the work of Wininger et al. [1], but
such a technique has been exploited as early as the 1950s [2]. Specifically, a device named “French
Electric Hand” could be controlled by a pneumatic force transducer located within a transcranial
amputee socket. A user could control the opening or closing of the gripper by contracting the residual
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limb muscles against the transducer. However, such an approach did not gain momentum due to the
limitation of the sensor and computer technologies in those days.

Fast forward to the late 1990s, researchers once again reignited the interest of using such an
approach for controlling prosthetic devices. For example, Abboudi et al. developed a soft socket that
was embedded with three pneumatic pressure transducers for controlling a multi-finger prosthesis [3].
The input signals from the transducers were mapped to different commands based on signal energy.
Instead of just opening and closing a gripper, this multi-sensor setup demonstrated the feasibility of
controlling complex hand prosthesis through the FMG approach. Subsequently, the same research
group was able to increase the number of transducers within the socket to allow more sophisticated
control of the prosthetic devices [4–6].

Other than using pneumatic pressure sensors to detect the changes in muscle stiffness, researchers
also proposed to use the resistive polymer thick film (RPTF) sensor as the main sensing element due to
its miniature size and high affordability. For instance, in 2006, Lukowicz’s group demonstrated the
potential use of the RPTF sensors to identify different limb movements, including both upper and
lower limb actions [7,8]. The same group also demonstrated the potential use of such a technique
to identify different activities of daily living [9]. Many of the early works between the late 1990s
and 2000s focused on exploring the potential use of FMG by examining the signal morphology in a
few limited scenarios. These works opened many untapped research opportunities in the fields of
human-machine-interface and activity monitoring applications.

Starting in the late 2010s, there was an increasing interest in the development of FMG technology,
as shown by the number of academic publications depicted in Figure 1. A total of 76 papers were
found between 1999 and mid-2019 (the list shown in Table A1 of the Appendix A).

Figure 1. Number of FMG related publications from 1999 to mid-2019 (n = 76). The grey bar shows the
number of journal publications and the blue bar shows the total number of FMG related publications
which includes the journal, conference, and workshop proceeding articles.

This collection of FMG-related publications were obtained from the authors’ literature database
and by searching the keywords “FMG”, “force myography”, “peripheral machine interface”, “muscle
pressure”, and “force sensor” in Google Scholar. Among this collection, two papers are review articles
that discuss topics related to the use of FMG for prosthesis control [10] and sensor fusion in hand
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rehabilitation [11]. it is important to note that FMG is only a popular term that describes such an
approach and other researchers have used names such as residual kinetic image [4], muscle pressure
map [12], pressure distribution map [13], tactile myography [14], etc., to describe the same technique.
To avoid confusion for the readers, the term FMG is used throughout this paper to describe the various
techniques that use force sensors to detect the changes in stiffness of a musculotendinous complex
(MC) against a default state. It is also important to distinguish between the FMG approach and an
approach that detects the change in forearm shape for gesture prediction. FMG uses sensors that detect
the change in normal force due the change in stiffness of the MC, while the other approaches use
camera [15], stretch sensors [16], strain gauges [17], capacitive sensors [18], or other types of transducers
to detect the cross-sectional or overall displacement of the muscles during different limb actions [19].
The change in arm shape is also a result of the change in different muscles during contraction, but is
not the same as changes in muscle stiffness. In an isometric scenario, the change in muscle stiffness
does not necessarily translates to a change in the shape of the arm. Some researchers see the pattern in
the change in arm shape as the same as the one for the FMG approach, but due to their fundamental
difference, the two approaches should be analyzed separately. In this paper, we focus on the works
that use force transducers as the main FMG sensing elements, not including the ones that only measure
the deformation of the arm.

The objective of this review paper is to present the state-of-art research and development on FMG
technology in the past 20 years. In the subsequent sections, we present the FMG signal acquisition and
processing methods, followed by a discussion on the challenges that exist in FMG research, and its
future direction.

2. FMG Signal Acquisition

One key aspect of FMG research is how to convert the variation in the stiffness of MC to digital
data for processing. To do that, we first need to select or develop force transducers to register the signals
in their analog form, then convert these signals into digital data. The percentages of the different types
of FMG sensors found in the literature are presented in Figure 2. The majority of the FMG sensors
are based on resistive polymer-thick-film (RPTF) technology, which includes force sensing resistors
(FSR), Flexiforce® sensors, and other customized RPTF sensor arrays and matrixes. The rest include
pneumatic-, piezoelectric-, capacitive-optical fiber-, and textile-based sensors.
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In this section, we first focus on the different configurations of the RPFT sensors and the signal
acquisition methods. We then review the different sensor placements for various applications. We
subsequently present an example of FMG signals and compare the differences among the FMG
signals and the signals of two well-established techniques that detect muscle activities, i.e., surface
electromyography (sEMG) and mechanomyography (MMG). Finally, we discuss other types of novel
FMG sensors.

2.1. Resistive Polymer Thick Film Sensor (RPTF) for FMG Application

2.1.1. Element-Wise RPTF Sensor

FSR and Flexiforce® sensors, as seen in Figure 3, are the most popular single element RPTF
sensors used in FMG applications. In total, they account for 55% of the sensors found in FMG
publications. They are both based on resistive polymer thick film technology, but with different
configurations. The FSR sensor uses a shunt mode configuration in which two interdigitating electrodes
are placed on top of a semi-conductive polymer layer. When a force is applied to the electrodes and the
semi-conductive layer, the overall output resistance decreases, the thick film device acting as a force
sensor. The Flexiforce® sensor utilizes a thru mode configuration in which the semi-conductive layer
is sandwiched between two flat electrodes. Similar to the FSR sensor, the resistance changes based on
the total pressure applied to the sensing region on the electrodes.
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A specification comparison chart between the two RPTF sensors primarily used in FMG research
in the last 20 years is shown in Table 1. This information is based on the datasheets provided by
Interlink Technology [20] and Tekscan [21]. There is no study that compares the actual performance of
the two sensors for FMG applications, but based on the provided information, the FSR sensor is better
on force repeatability and response time, while the Flexiforce® sensor has a better hysteresis response.
However, their test conditions are different, therefore, this information is for reference only.

The most commonly used circuitry to extract the signal of the RPTF sensor is the voltage divider
because of its simplicity. As shown in Figure 4a, the voltage divider setup only requires one bias
resistor (RB) to condition the output voltage of the RPTF sensor. The bias resistor can be “pull-down”
to the ground as shown in Figure 4a or “pull-up” to the Vref with one sensor terminal connecting to
the ground. The output of the voltage divider can then be buffered using an op-amp with a unity gain
configuration, before being digitized with a signal acquisition device such as a microcontroller with
an analog-to-digital converter interface. However, the main drawback of using such circuitry is the
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non-linear response of the voltage output, which adds an unknown layer between the muscle stiffness
and the sensor reading. This non-linearity also complicates the sensor drift characteristic as pointed out
by Esposite et al. [22]. To reduce the non-linearity of the output response of the sensor, the manufacturer
of the sensor has suggested using a current-to-voltage setup, as shown in Figure 4b. This setup
has been adapted in some FMG papers, with slight variations [9,22–24]. In such a setup, an op-amp
and a resistor (RG) for controlling the output gain have to be used. The voltage across the sensor is
constant and the output voltage is proportional to the current passing through the sensor. This setup
produces a more linear response across the full force range of the sensor. However, such circuit is
not strictly needed if the desired characteristic is predetermined based on the targeted application.
For example, the force range for FMG is typically under 2 N for the FSR402, which has a sensing area
of 1.8 cm2. By selecting a proper value of the bias resistor, e.g., <10 kOhm for the FSR402, a voltage
output response that has strong linear characteristics can be obtained within the functional range [25].
In some applications such as gesture prediction, the linearity characteristic of the signal plays a less
important role, as long as the signal patterns are different among gestures.

Table 1. Comparison chart between FSR and Flexiforce® sensor.

FSR (FSR402) [20] Flexiforce® (FLX-A201-F) [21]

Minimum actuation force
(Newtons) 0.1 N/A

Force sensitivity range (Newtons) 0.1–10 0 to 4.4, 0 to 111, 0 to 445
Single part force repeatability ±2% ±2.5%
Part to part force repeatability +/−6% ±40%

Hysteresis +10% <4.5%
Drift <5% per log10 (time) <5% per log10 (time)

Response time (micro seconds) <3 <5
Linearity error N/A <±3%
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converter setup.

For most FMG applications, more than one sensor is needed to extract the stiffness pattern from
different muscles. Researchers often insert the elementwise sensors into a strap or a socket to capture
the pattern for gesture identification or to predict limb motion. The number of sensors can range
from two to 32, or even more. Depending on the number of sensors, a customized signal acquisition
device is needed. For a device with less than eight channels, researchers often directly replicate
the voltage divider setup for each sensor and feed those signals directly to the ADC terminal of
the signal acquisition device [26–28]. The reason for only eight channels is because many low-cost
microcontrollers or signal acquisition devices are already equipped with eight independent analog
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input terminals, which simplifies the overall signal acquisition process. For more than eight inputs, the
line scanning method is often adopted. Simply speaking, the line scanning method turns the sensors
on-and-off sequentially and only allows the signal from one sensor at a time to be fed to the input
terminal. Using such a method, the maximum sampling rate is lower compared to the parallel input
setup because of the delay due to sensor switching and the fact that only one sensor at a time can
be read. Two examples of the line scanning circuitries are shown in Figure 5a,b. For the circuity in
Figure 5a, one of the sensor terminals is connected to a common line, which is injunction with a bias
resistor (RB) and the analog input terminal (Ain). The other terminal of each sensor is connected to a
tri-state digital pin. At any time, only one sensor is in the “on” state by setting the corresponding digital
pin “High” and the rest in a high-impedance state. The reason for setting the rest in a high-impedance
state instead of the “Low” state is to reduce cross-talk among the sensors [29]. Figure 5b shows a more
commonly seen line scanning circuitry, which uses a multiplexor to control which sensor output can be
read through the analog input terminal [30]. This multiplexor approach can be used for the voltage
divider circuitry as well as for the current-to-voltage converter setup.
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2.1.2. High-Density Polymer Thick Film Sensor Array and Matrix

In recent years, researchers started to develop customized force-sensing arrays and matrices for
FMG applications. Figure 6 shows two examples of such devices that are based on RPTF technology.
The device in Figure 6a is a force sensing array developed by the MENRVA group at Simon Fraser
University, which was utilized in the Cybathlon 2016 competition for controlling an upper limb
prosthesis [31]. This array consists of 16 sensing elements, each element covers an area of 127 mm2

and has a gap of 6.6 mm between the adjacent elements. The device in Figure 6b is a high-density
force-sensing matrix developed by the Institute for Biomedical Engineering at the University of New
Brunswick, which debuted in 2014 [12].

This device consists of 14 × 9 sensing elements in a single matrix, each element covers an area
of 10 mm × 10 mm. The recent work presented by Castellini et al., [14] also utilized the high-density
force-sensing matrix approach to predict wrist and finger movement. Different from the one from
the University of New Brunswick, the device presented in this work consisted of 10 separate rigid
matrixes to cover the entire forearm circumference. Each matrix has 4 × 8 sensing elements, and each
element covers an area of 5 mm × 5 mm. The working principles of the array and matrix are the same
as their elementwise counterpart, but they allow researchers to capture more information relating to
the activities of muscles with denser sensor configurations.
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2.1.3. Sampling Rate

The sampling rate of FMG varies among different publications. Depending on the objective of
the work, the sampling rate ranges from 6 Hz to 1000 Hz. For static gesture prediction, 6 Hz may be
sufficient, as we don’t expect the FMG signal to change drastically. However, for dynamic actions, low
sampling rates may suffer from the aliasing effect and introduce error and loss of signal information.
One of our recent publications suggests the minimum sample rate should be above 84 Hz based on
empirical data [25]. In this study, two FMG straps with eight sensing elements were donned on the
wrist and the forearm of 12 volunteers. The volunteers performed different hand actions as fast as
possible while FMG was sampled at 1000 Hz. The results of this study showed that the signal extracted
above 84 Hz had low discrepancy against the 1000 Hz signal.

2.1.4. Sensor Placement and Applications

As shown in Figure 7a, the majority of FMG related works are targeting the detection of upper
limb movements from the musculotendinous complex (MC) of the forearm. For applications that target
users with intact limbs, researchers often place an array of FMG sensors around the bulk of the forearm,
near the wrist, or both as depicted in Figure 7b. The signals extracted from these two regions were
shown to predict many hand gestures and continuous actions. For example, the work by Jiang et al.
showed that 48 gestures could be predicted from either the bulk of the forearm or near the wrist, with an
average of 90% cross-trial validations accuracy (n = 12) [32]. These 48 gestures included 16 grasp types,
16 sign language gestures, and 16 finger and hand movements. For continuous actions, Sadeghi et al.
showed that the angle between index-and-thumb and the one between the middle finger-and-thumb
could be accurately predicted using signals extracted near the wrist [33]. In this study, the authors also
accounted for different wrist positions while predicting the angles. A correlation of determination (R2)
of 0.871 was obtained for the index-and-thumb angle, and an R2 of 0.941 was obtained for the middle
finger-and-thumb angle (n = 10). Also, when the term “FMG” was first introduced in 2008, it was
already shown that continuous gripping force could be predicted using FSR sensors in a sleeve that
covered the whole forearm [1]. Later in 2012, Yunger et al. used the same setup to predict grip force in
a stroke rehab experiment aimed at improving fine motor function [34]. Not only was the gripping
force predicted, but the pressing force for each finger could also be regressed with a high degree of
accuracies, as demonstrated by Ravindra et al. [35]. With the ability to predict hand actions from the
forearm muscles, it was shown that FMG could be used in monitoring functional activity of the upper
limbs [28,29,36], controlling electromechanical devices [37,38], and even playing a virtual piano [39].
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While most of the works related to human-machine-interface were aiming at applications that utilized
an open-loop control strategy, researchers also started to investigate FMG in scenarios that involved
dynamic interaction between the user’s hand and external robotic devices. For instance, an exploratory
study by Sakr et al. showed that FMG could be used for admittance control applications [40]. In this
study, a handler connected to a linear actuator could react to the applied force predicted from FMG
sensors located on both the distal and proximal ends of the forearm. Although it was an exploratory
investigation, it demonstrated the feasibility of using FMG for robotic interaction.Sensors 2019, 18, x FOR PEER REVIEW  8 of 24 
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Figure 7. Information and depiction about the FMG sensor placement. (a) Percentage of sensor
placement found in the literature (n = 73). (b) Depiction of FMG sensor placement.

While the majority of FMG investigations use participants with intact limbs, a significant
portion of these works actually targeted prosthesis control applications. In recent years, researchers
successfully tested the FMG approach for predicting the intended actions of participants with
trans-radial amputations [14,31,41–44]. For prosthesis control, the number of intended predicted
actions is much less than the one for participants with intact limbs. In one of our works by Cho et al.,
we were able to predict up to 11 grips with various degrees of accuracies from four participants with
trans-radial amputation. Within the 11 grips, five of them were primary grips used very often in
activities of daily living. Including the default state, we were able to achieve above 70% averaged
accuracies for the five primary grips. In order to increase the accuracy for practical use, we sub-divided
the 11 grips based on the opposed thumb and non-opposed thumb modes and were able to achieve
89% accuracies for both settings. Using such a strategy, we were able to adopt the FMG approach to
control a robotic prosthesis in a practical scenario, i.e., the 2016 Cybathlon competition [31].

For upper extremity action prediction (including participants with fully intact or amputated
limbs), researchers often place the sensors around the proximal and mid-portion of the forearm, as the
mass of the main extrinsic forearm muscles is most prominent in this region. However, FMG pattern
on such a location is significantly influenced by the movements of the elbow [45]. In many scenarios,
the movements of the elbow are not needed, and the FMG patterns associated with these movements
become a confounding factor that needs to be filtered out. This problem is especially true in prosthesis
applications since the control of the hand is the focus, not elbow action. Researchers have proposed
different methods to filter such information. For gesture prediction, Radmand et al. suggested to collect
hand gesture data with different upper arm and elbow locations, and then generate a prediction model
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that could account for the various scenarios [46]. On the other hand, Ferigo et al., used an additional
sensor, i.e., an inertial measurement unit (IMU) to measure the elbow angle to compensate for the
variation of the FMG signal and to improve grasping detection during dynamic arm movements [42].
There are very few works that discuss how the FMG pattern changes based on the elbow and shoulder
positions, but it is an essential problem to be solved in order to use FMG in practical scenarios.

Researchers have shown that the FMG approach can be used to detect lower limb actions such as
walking, as early as 2006. Specifically, Lukowicz et al. placed two pairs of FSR sensors at the front and
the back of the thighs and studied the signal patterns during four types of locomotion which included
normal walking, walking with an extra-long strike, as well as walking upstairs and downstairs [7].
The authors calculated the ratio of “back-to-front-leg” activity and the relative time delay of “back-leg”
activity as features. Using the two features, it was shown that the four types of locomotion were
separable. Despite the successful demonstration of using FMG for lower limb applications, there
were little follow-up publications until 2011, in which Yungher et al. compared FMG signals and
surface electromyography signals for gait cycle analysis [47]. The results showed that FMG signals
were highly correlated to sEMG signals, and exhibited a more consistent pattern from stride to stride.
Apart from walking, Belasis et al. used a similar FMG approach to study cycling activity and also
compared the signal patterns against the one obtained through sEMG [48]. The study found that
the two signals were highly correlated, but the FMG signal could reveal the overall level of fatigue
better than the sEMG signal. Along with studying lower limb gross activity levels, researchers also
investigated the possibility of using FMG to detect gait events by placing the sensors around the
thigh or the ankle. For example, Godiyal et al. were able to predict different walking modes and gait
events from the thigh [26,49]. The obtained accuracies for gait event detection were comparable to
other technologies such as pressure insoles, inertial measurement units, and electromyography [49].
Besides the thigh, FMG signals extracted from the region near the ankle can also be used for gait event
detection. Specifically, one of our works showed that seven ankle positions could be predicted with
above 85% cross-trial accuracy [50]. We also investigated the factors influencing prediction accuracy.
Among the many factors, the variation in stride length had the most influence on accuracy [51].

2.2. Example of FMG, MMG, and sEMG Signals from the Forearm for Squeezing Action

FMG is a relatively new technique to decipher activities related to muscle movements. Before that,
researchers used techniques like surface electromyography (sEMG) and mechanomyography (MMG)
for the same purpose. sEMG is a technique that registers electrical potentials resulting from muscle
contraction caused by motor neuron firing [52], while MMG is a technique that captures vibrational
characteristics during muscle contraction using an accelerometer or microphone [53,54]. We can
consider that sEMG signals are the electrical manifestation of muscle movement, while MMG and
FMG signals are their mechanical counterparts. MMG captures high-frequency information related to
muscle vibration, while FMG captures movement information in the lower frequency range.

In order to understand FMG signal morphology and how different is FMG from MMG and
sEMG, we built two custom signal acquisition devices to capture those signals simultaneously in close
proximity (see Figure 8a). Each device in the figure consists of one RPTF sensor (FSR402), one analog
accelerometer (ADXL335), and a pair of sEMG electrodes from the Noraxon Myosystem 1400L sEMG
amplifier. The FSR signal was extracted using a voltage divider circuitry with a 10 kOhm bias resistor.
All signals were fed to a NI USB-6289 data acquisition device (DAQ) from National Instruments (city,
state abbrev if USA, country) with a sampling rate of 2000 Hz. The two devices, i.e., Sensor 1 and
Sensor 2, were placed on the extensor and flexor muscles of the forearm as shown in Figure 8b. The two
sensors were secured to the forearm by a tight sleeve during data acquisition.

An example of FMG, MMG, and sEMG signals from the forearm during an isometric squeezing
action is shown in Figure 9. The blue lines show the signals captured from Sensor 1 while the
orange lines show the signals captured from Sensor 2. The left column shows the captured signals in
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the time domain and the right shows the corresponding power density spectrum (PDS) using Fast
Fourier Transform.Sensors 2019, 18, x FOR PEER REVIEW  10 of 24 
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Figure 9. An example of FMG, MMG, and sEMG during a squeezing action (a,c,e). The blue lines show
the signals that were captured from Sensor 1, the orange lines show the signals that were captured
from Sensor 2. The x-axes of plot (b,d,f) are using the log scale.
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From the time domain plots, we can see that the squeezing action started after the 2-s mark
and lasted about 3.5 s. During the squeezing action, the magnitude of the FMG signals remains
constant, while the MMG and sEMG signals oscillate asymmetrically and symmetrically, respectively.
In addition, we can see that the FMG signal energy mainly resides in the low-frequency range (<10 Hz),
while that of the MMG has noticeable energy content before the 100 Hz mark. The majority of the
sEMG signal energy is below 1000 Hz. This example illustrates the morphology of the three closely
related signals. Since they reveal different aspects of muscle activity, we should not treat them as
alternative techniques, but as complementary approaches. A comparison study of the different types
of sensing techniques is valid only if it is for a specific scenario, not for general applications.

A recent study investigated the signals extracted from an FSR sensor at 10 kHz for FMG
applications [22]. The authors captured the signal from the forearm with one single sensor and showed
that it resembled the MMG signals after applying a high pass filter with a cutoff frequency of 2 Hz.
They also compared the high-frequency FMG to sEMG and discussed the correlation. However, in
order to show that the high-frequency signals can be used for FMG applications, we should capture
signals from at least two different muscles to see if they are related to the targeted muscle activity
and whether the captured patterns are separable among the different limb actions. Therefore, further
investigation is needed to demonstrate the applicability of high-frequency FMG signals.

Other Force Sensors

Other than resistive based RPTF force sensors, researchers have developed different types of sensors
for FMG applications. These sensors include the pneumatic-, resistive fabric-, piezoelectric-, capacitive-,
and optical fiber-based force sensors. The soft socket presented in the work of Abboudi et al. was one
of the early examples that used pneumatic principles to register the change in muscle stiffness [3]. This
socket was made with silicon material with multiple air chambers connecting to electromechanical
pressure transducers to obtain FMG patterns. The soft socket was custom-molded for each user, which
allowed proper contact between the muscles and the chambers. The same research group later named
such approach residual kinetic imaging (RKI) and studied the signal patterns obtained from individuals
with amputated limbs, with the help of magnetic resonance imaging (MRI) technology [4]. However,
the pressure within the chambers was difficult to maintain due potential leakage and changes in socket
temperature. Also, the socket required sophisticated hardware to support the operation and therefore
was cumbersome to use in practical everyday scenarios.

A highly flexible tactile sensor matrix for predicting gestures was developed by Rasouli et al., [55].
This sensor matrix was constructed with two pieces of stretchable fabric as the outer layers, two pieces
of fabric with multiple conductive paths as the electrode pair layers, and one piece of piezoresistive
fabric as the main sensing element. This matrix has a total of 16 × 8 sensing elements that fully
cover an adult’s forearm. Its working principle was the same as the RPTF sensor with the thru mode
configuration. The authors demonstrated that such a sensor could be used to predict hand opening
and closing with different arm orientations.

Besides using resistive-based sensor technology, researchers have used and developed
piezoelectric-based force sensors for FMG applications. Unlike the resistive-based sensor, which
is a passive component, the piezoelectric transducer is able to generate electricity when a force-induced
movement occurs within the piezoelectric elements that are sandwiched between two electrodes.
The level of electricity generated is proportional to the speed of the deformation of the element,
which is manifested as a voltage across the two electrodes. As a result, the piezoelectric sensor is
only able to detect the movement; it cannot be used to predict static limb position without capturing
the transitional pattern. Some examples of using piezoelectric sensors for FMG applications are
summarized here. For instance, Li et al. used five flexible piezoelectric film sensors around the thigh
to predict four leg movements, and they were able to achieve an accuracy as high as 92% across four
participants [56]. Ha et al. used three piezoelectric sensors on the flexor carpi radialis, flexor carpi
ulnaris, and brachioradialis muscles to predict four upper limb gestures [57]. They were able to achieve
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an average accuracy of about 80% across three participants. Booth et al. placed six sensors under the
flexor tendons located near the wrist and they were able to predict five types of finger tapping with a
96% accuracy across 10 participants. Fang et al., fabricated their own custom piezoelectric force sensors
for upper limb gesture prediction [58]. They characterized the sensor response and analyzed the signal
morphology for seven upper limb gestures. An averaged accuracy of 96% across 8 participants was
obtained for the gesture prediction.

Another novel force sensor used for FMG applications is the capacitive force sensor. This sensor
measures the capacitance between two conductive plates when a normal force is applied to them.
The capacitance is inversely proportional to the distance between the two plates, which is separated
by a compressible layer made of a dielectric material. Based on such principle, Truong et al. developed
a wrist band with 15 capacitive sensors for gesture control applications [59]. Their device was aimed at
optimizing power consumption for the application. Using this device, they were able to predict 15
hand gestures with an averaged accuracy of 95% on 20 participants.

One more novel sensor used for FMG applications is based on the level of attenuation of light
passing through an optic fiber. Specifically, Fujiwara et al. developed a force sensor that measures the
change of light intensity from an LED light source within an optic fiber [60]. This sensor has an area of
60 × 10 mm2 with a total thickness of about 3 mm. It consists of two deforming plates, an optical fiber
guider made with multiple graphite rods, and a 2 m long silica multimode optical fiber. The fiber is
fitted inside a wavy space within the guider that is sandwiched between the two deforming plates.
When a normal force is exerted on the deforming plate, the rods within the guider move closer and
deform the optical fiber. The more deformation the fiber experiences, the harder it is for the light to
pass through. By placing three of these sensors around the forearm, the authors were able to predict
nine gestures with a 98% accuracy across six participants.

3. FMG Processing Methods

The goal for the majority of FMG applications is to predict limb actions or gestures from changes
in the stiffness of the musculotendinous complex (MC). For a simple two state problem, such as
distinguishing between a squeezing action versus a relaxed state while the arm is in a fixed position, a
threshold value can be manually calibrated based on a single FMG reading to separate the two states.
However, if we want to detect a squeezing action versus a relaxed state for various arm positions, a
single threshold value will be difficult to obtain manually and may not be sufficient to obtain high
prediction accuracy. Instead, most researchers rely on machine learning approaches to decipher the
different limb actions from FMG signals. This approach requires collecting sample data and generating
a decision model to link the collected FMG signal patterns to the targeted actions. Before a model is
generated, researchers often condition the signal and extract useful information as the model input.
Once the model is generated, it is used on the untrained data to predict the actions. Machine learning
is a vast topic to discuss, in this paper, we only focus on the machine learning techniques that have
been used for FMG applications. In this section, we will discuss the processing techniques used for
pre-conditioning the input features and the model generation.

3.1. FMG Signal Conditioning and Feature Extraction

More than one FMG signals are usually recorded for limb action prediction applications. This set
of signals forms the unique patterns that can be associated with different targeted actions. The raw
FMG signals are usually represented in volt units or a digitized value that is associated with the
resolution of the analog-to-digital converter. For ease of computing, the set of signals is scaled down
to have a maximum range of 0 to 1 based on the largest reading recorded within the entire data set.
This range is used because the FMG signal reading is always positive and it is not a bipolar signal that
centers around zero. Such a step only changes the numeric representation of the signals and does not
alter the signal pattern. Using these signals alone without additional signal conditioning or feature
extraction steps, researchers were able to predict 48 static gestures with an averaged 90% cross-trial
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validations accuracy [51]. However, depending on the application, the prediction accuracy may have
benefited from additional signal processing steps. These steps include signal filtering, normalization,
and feature extraction.

FMG signals extracted from RPTF sensors usually have a high signal-to-noise ratio, as shown
in Figure 9a. However, noise may be introduced to the electrical circuit due to instrument artifacts.
Therefore, some researchers apply a low-pass filter with a cut-off frequency range from 4–20 Hz to
further smooth out the signals [1,13].

The FMG signal pattern is highly dependent on the preloaded force, which is difficult to control
during the donning of the sensors. In order to reduce this discrepancy, researchers usually normalize
each signal by subtracting the signal from its mean value then dividing it by its standard deviation.
Such a process is often referred to as auto-scaling. The auto-scaling step balances the significance of
each input signal before the model generation process. However, it is important to ensure that each
input signal has a non-zero standard deviation; otherwise, this process will fail as the centralized signal
would be divided by zero. To avoid this problem, a channel selection step can be used to remove
channels that do not capture meaningful information throughout the process.

Once the FMG signals are scaled or normalized, different signal features can be extracted.
In general, there are two types of features, the instance feature, and window-based feature. The instance
feature is extracted from a single instance in a set of multi-channel FMG signals. The mean, the
standard deviation, the median, and the different percentiles of the set are some examples of instance
features [61]. The window-based feature is extracted from the signals over a time window. Such a
window consists of at least two data points and often more. There are many features that can be
extracted from the time-based window. The mean magnitude, the average slope of a signal, the
spectrum magnitude of a selected frequency band, and the coefficients of a polynomial approximation
of a signal segment are some of the examples. Depending on the selected features, some of them can
be computed from a single channel and some of them can be computed from the signal set. The value
of a window-based feature depends on the selected window size; therefore, it is important to optimize
the feature window for the targeted application [29]. Currently, only a limited number of publications
extracted features from the FMG signals for targeted applications [14,29,45,51,58,61,62]. The optimal
feature set is highly dependent on the application and it is difficult to identify a universal feature set
for FMG signals. However, researchers can start with a set of features borrowed from other fields, such
as the features used in sEMG, and then use optimization techniques to select useful features for the
custom application. Researchers can also use feature selection toolbox such as “tsfresh” or “hctsa” to
systematically select the features [63,64]. A study on FMG feature extraction is warranted.

3.2. Predict Limb Action Using Machine Learning Techniques

To generate a machine learning model to predict limb action, the supervised machine learning
technique is often used. The supervised approach requires a training set, which is associated with
known actions. Using the collected dataset, a machine learning algorithm is then used to generate a
model, which minimizes the discrepancy between prediction results and the true value. There are
two categories of machine learning algorithms, one called classification used to predict discrete states
such as hand gestures, and another one called regression to predict continuous parameters, such as
finger movements. In this section, we discuss the algorithms used for FMG applications based on these
two categories.

3.2.1. Classification

The percentages of different classification algorithms used in FMG literature is shown in Figure 10.
The percentages shown in the figure include some of the work that used multiple classifications
algorithms for performance comparison; the percentage is based on the total instance that each method
was used and not on the number of publications. As shown in the figure, 37% of the publications use
linear discriminant analysis (LDA), 23% use support vector machine (SVM), 15% use artificial neural
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network (ANN), and the rest use k-nearest neighbor (KNN) [9,31,37], decision tree (DT) [9], deep
neural network (DNN) [59,60], extreme learning machine (ELM) [28,55], Gaussian process regression
(GPR) [65], hidden Markov model (HMM) [9], random forest (RF) [33,66], and tree bagging (TB) [67].Sensors 2019, 18, x FOR PEER REVIEW  14 of 24 
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Figure 10. Percentages of the different classification algorithms reported in FMG literature (n = 63).

LDA is a relatively straightforward and efficient learning algorithm that exists in the machine
learning realm, making it suitable for implementation in low-power computation platforms for real-time
control applications. Also, some FMG publications found that LDA had superior or comparable
performance compared to the more complex algorithms. For example, Fang et al. reported that
LDA had 5% higher accuracy than ANN for predicting six gestures using piezoelectric-based FMG
sensors [58]. Ahmadizadeh et al. reported that LDA was comparable to SVM with no statistical
difference when used for FMG-based prosthesis control [31]. Similar results were also obtained
from one of our works for predicting wrist, forearm, and elbow positions [45] and from the work
of Sadarangani et al., for detecting grasping in individuals with mild to moderate upper extremity
impairment due to stroke [36]. When combining FMG signals with Leap motion controller for virtual
grasp detection, LDA also had accuracy performance that was comparable to SVM, ANN, and tree
bagger [67].

SVM is another efficient algorithm to classify input data once it is trained. For FMG applications, it
was often reported to have superior performance when compared to the others [31,36,45,67]. However,
in order to achieve high performance, some of the hyperparameters need to be fine-tuned using the
cross-validation method, which is a computationally-intensive process.

ANN is the third most popular approach among FMG researchers. In general, it contains three
layers, which are the input, hidden, and output layers. Each layer has a certain number of nodes that
link between the adjacent layers. The associated weight for each node needs to be learned iteratively
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using back-propagation with gradient descent techniques. The iterative learning process allows for
batch learning instead of feeding the entire learning data at once, making ANN highly adaptable.
Furthermore, new data can be added to tune the model parameters at any time. However, no FMG
related publications reported the use of such property. The configuration and the number of the hidden
layers of ANN are highly configurable. When there multiple hidden layers, we often refer to such
a type of network as the deep neural network (DNN). DNN is most suitable when there is a large
amount of data to be trained, and it was used in FMG applications [59,60].

Many other classification algorithms have been used in FMG applications, each with its unique
property. There is no consistent winner among these classifiers, thus researchers need to decide which
one to use based on the applicational constraints and rely on expert intuition.

3.2.2. Regression

The percentages of different regression algorithms used in FMG literature is shown in Figure 11.
Compared to classification, there is less variety in the regression algorithms found in the FMG literature.
A total of 19 instances for using the regression method was found in 14 publications, 37% of them used
support vector regression (SVR), 26% of them used linear regression (LR), 16% of them used ridge
regression (RR), another 16% of them used general regression neural network (GRNN), and 5% of
them use random forest regression (RFR).

Sensors 2019, 18, x FOR PEER REVIEW  15 of 24 

 

such a type of network as the deep neural network (DNN). DNN is most suitable when there is a 
large amount of data to be trained, and it was used in FMG applications [59,60]. 

Many other classification algorithms have been used in FMG applications, each with its unique 
property. There is no consistent winner among these classifiers, thus researchers need to decide 
which one to use based on the applicational constraints and rely on expert intuition. 

3.2.2. Regression 

The percentages of different regression algorithms used in FMG literature is shown in Figure 11. 
Compared to classification, there is less variety in the regression algorithms found in the FMG 
literature. A total of 19 instances for using the regression method was found in 14 publications, 37% 
of them used support vector regression (SVR), 26% of them used linear regression (LR), 16% of them 
used ridge regression (RR), another 16% of them used general regression neural network (GRNN), 
and 5% of them use random forest regression (RFR). 

 
Figure 11. Percentages of the different regression algorithms reported in FMG literature (n = 19). 

SVR is the counterpart of SVM in the regression domain and both SVR and SVM are based on 
the same core principle, which is to identify the supported vector from the input data and form the 
model. SVR was used in the work of Castellini’s group to predict force exerted by the fingers [35,68], 
the work of Menon’s group to predict force exertion from the hand and dynamic finger  
movements [33,69,70], and in the work of Englehard’s group to predict upper limb movements with 
a high-density force-sensing matrix [48,71]. 

LR is a basic method to associate input signals and continuous output signals. The LR model is 
learned based on the least square method, which utilizes the pseudo-inverse technique. LR can be 
used as a filter to combine different input signals into one vector for further processing. For example, 
Curcie et al. used LR to filter FMG signals in order to distinguish different finger commands [6]. The 
same research group later used LR to predict grip force in the publication which first mentioned the 
term FMG [1]. Recently, the ability to predict grip force with LR using FMG signals was further 
studied by Stefanou et al. [72]. 

RR is an improved version of LR for regression applications. For RR, the input signals are first 
mapped into higher dimension features using an explicit transfer function or a kernel method. Then, 
the regression model is computed by using the least square method, which is the same as in the LR 
algorithm. RR has also been extensively used in FMG regression applications [35,40,68]. 

GRNN is the counterpart of ANN in the regression domain. It’s architecture and training 
method are almost identical to ANN, with the exception of the output layer, which does not have an 
activation function. GRNN was used in the work of Sakr et al., [40,69] and Kadkhodayan et al. [70]. 

SVR
37%

LR
26%

GRNN
16%

RR
16%

RFR
5%

SVR LR GRNN RR RFR

Figure 11. Percentages of the different regression algorithms reported in FMG literature (n = 19).

SVR is the counterpart of SVM in the regression domain and both SVR and SVM are based on the
same core principle, which is to identify the supported vector from the input data and form the model.
SVR was used in the work of Castellini’s group to predict force exerted by the fingers [35,68], the work of
Menon’s group to predict force exertion from the hand and dynamic finger movements [33,69,70], and
in the work of Englehard’s group to predict upper limb movements with a high-density force-sensing
matrix [48,71].

LR is a basic method to associate input signals and continuous output signals. The LR model is
learned based on the least square method, which utilizes the pseudo-inverse technique. LR can be used
as a filter to combine different input signals into one vector for further processing. For example, Curcie
et al. used LR to filter FMG signals in order to distinguish different finger commands [6]. The same
research group later used LR to predict grip force in the publication which first mentioned the term
FMG [1]. Recently, the ability to predict grip force with LR using FMG signals was further studied by
Stefanou et al. [72].
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RR is an improved version of LR for regression applications. For RR, the input signals are first
mapped into higher dimension features using an explicit transfer function or a kernel method. Then,
the regression model is computed by using the least square method, which is the same as in the LR
algorithm. RR has also been extensively used in FMG regression applications [35,40,68].

GRNN is the counterpart of ANN in the regression domain. It’s architecture and training method
are almost identical to ANN, with the exception of the output layer, which does not have an activation
function. GRNN was used in the work of Sakr et al., [40,69] and Kadkhodayan et al. [70].

RFR is a decision tree-based method for regression applications. Sadeghi et al. used it to predict
dynamic finger movements, the results showing that RFR performs similarly than SVR, but requires
much less time to train the model [33].

In order to improve regression performance for the targeted application, some researchers
attempted to solve the problem with a two-step approach that utilized both the classification and
regression methods. Specifically, Belyea et al. designed an experiment that allowed a participant
to control the rotation and vertical movements of a virtual target based on wrist rotation and hand
opening/closing actions, respectively [48,71]. The degrees of wrist rotation and hand opening/closing
were predicted using FMG signals extracted from the forearm. For the one-step approach, the two
parameters were regressed using SVR directly. In the two-step approach, the authors first used SVM
to predict the intended action from one of the five possible movements, i.e., wrist pronation, wrist
supination, hand open, hand closed, and no movement. Then, they selected a regression model to
predict the degree of movement based on the predicted action. The results showed that such a two-step
approach significantly outperformed the one-step approach. However, the two-step approach does not
always guarantee better performance. For instance, Sadeghi et al. used FMG near the wrist to predict
the dynamic movements of the index and middle finger when the wrist was in five different positions,
i.e., neutral, extended, flexed, abducted and adducted [33]. The author used both the one-step and
two-step approaches to predict the movements of the two fingers. In the one-step approach, the
movement angles of the fingers were regressed directly and without consideration for different wrist
positions. In the two-step approach, wrist position was first predicted by classifying the FMG signals.
Based on the predicted results, a regression model was selected to predict finger movements. However,
the authors found no statistically significant difference between the two approaches.

4. Discussion

In the past 20 years, researchers have investigated the capability of the FMG approach and
developed methods to predict many gestures and limb movements. From studying the basic signal
characteristics to the utilization of FMG for prosthesis control, progress has been made. However, there
are still challenges that need to be overcome in order to use FMG technology in everyday scenarios.
These challenges exist in all areas of FMG development, including both hardware and software, which
are discussed in this section.

4.1. Challenges in FMG Hardware Development

The main challenge in FMG hardware development is to develop a device that can extract reliable
FMG signals for a long period at a time. Two of the main factors affecting the reliability of the extracted
signals are the sensor characteristics and the device configuration.

Currently, the majority of FMG research use sensors that are based on resistive polymer thick
film (RPTF) technology to extract signals. This type of sensor is very compact in size and relatively
inexpensive. However, such a sensor exhibits a strong non-linear characteristic against the actuation
force and a large part-to-part error, making it difficult to directly link the sensor reading with muscle
stiffness. Also, the majority of FMG devices are in the form of a strap or sleeve for user with intact
limbs, which can be highly conformable to the user’s limb shape. However, because of its flexibility, it
is difficult to ensure that sensors are donned exactly in the same location and with the same pressure
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each time. Furthermore, during long periods of operation, the sensors within the device may shift,
worsening the reliability of the signals.

For limitations related to sensor properties, only an improvement in sensor fabrication technology
can solve the problem. For research purposes, we can use high-quality sensors instead of the inexpensive
RPTF sensors or develop our own custom solution. However, we also should keep in mind that one
of the main advantages of using FMG to decipher limb activity is its low-cost factor. Therefore, if an
engineer wants to utilize FMG technology to predict limb action, the tradeoff between sensor quality
and cost may have to be considered.

Without careful calibration, it is difficult to control the preload force when the device is donned
on a user. In most of published works, researchers adjusted the tightness of the device based only
on the user’s oral feedback. The lack of objective assessment during the donning process introduces
discrepancy in the FMG signal patterns between each setup routine. This limitation also contributes to
the large variation in FMG patterns between different users. To reduce this discrepancy, we recommend
extracting the averaged magnitudes of all FMG signals when the device was first donned, and then
try to match this averaged value for subsequent donning routines. If the sensors used in the device
were fully characterized and the output is converted into a standard pressure unit such as pascal,
then a suitable range for the preload force can be identified for the targeted population. Using the
standardized value, a feedback mechanism such as an LED indicator or a buzzer sound, can also be
built onto the device to signal the right preload force.

To deal with the sensor shifting problem, researchers can improve on the design of the donning
mechanism. However, they should also consider using smaller sensors that can be placed close to
each other to form a map similar to the high-density FMG matrix presented by Radmand et al. [12] or
Castellini et al. [14]. Such a matrix captures the full muscle stiffness characteristics of the targeted limb;
any shifting of the device can be monitored by designing an algorithm to keep track of the shifting of
a reference pattern. In this context, a reference pattern refers to a pattern associated with a known
state that can be predicted with the highest confidence level. Once this state is detected, the current
FMG signal pattern can be used to compare it with the one that was previously found. If the difference
between two patterns is larger than a defined threshold, then the algorithm should adjust the machine
learning model to account for the shifting. It is also important to note, the higher the spatial resolution
the matrix has, the finer detail regarding the shifting of the sensor can be detected. However, with the
higher spatial resolution and more sensing elements, more computational power is required. A study
on identifying the optimum spatial resolution for the high-density matrix is warranted.

4.2. Challenges in FMG Software Development

The main use of FMG technology is to predict limb action for human-machine-interface or activity
monitoring applications. Ultimately, we would like to use this approach to accurately predict as many
actions as possible across all populations. Assuming we already have the best hardware to extract
reliable FMG signals, we still need to process them to get reliable results. Besides the capability of
the proposed machine learning algorithms, there are multiple factors influencing the ability to have
accurate predictions. Two of the main factors are the intra-subject and the inter-subject variability of
FMG signals.

The intra-subject variability refers to the change of FMG patterns due to the change of physical
muscle condition during different activities. For example, after an exercise, our muscles may be
fatigued, which changes the muscle stiffness pattern associated with the same action before the exercise.
In order to combat this issue, we can use additional sensors such as skin temperature, sweat, movement,
or sEMG sensors to assess the fatigue level. The history of the activity level can also be used as a
predictor to assess fatigue. Once the fatigue level is assessed, we can then use this information to adjust
the model parameters on the go. Such a scheme is within the realm of adaptive machine learning
processes and it should be explored. That being said, a future study on how to assess the fatigue level
for FMG applications is warranted.
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The inter-subject variability refers to the difference in FMG patterns for a single action across
different users. This difference is the result of a user’s physical condition across the whole population
spectrum. For instance, individuals with an amputated limb or a limb that suffered from a severe
physical injury or medical condition, their FMG signal patterns are expected to differ from an individual
with a healthy intact limb. However, even within the group of individuals with a fully functional
limb, FMG signal patterns can be quite different due to the difference in limb size, skin thickness, and
muscle density, despite a similar anatomical configuration. These user-dependent characteristics have
to be accounted for if we want to develop a general software algorithm for all users. The best solution
is to capture large amounts of data from users with various physical conditions, across different age
groups, and study the relations between these factors and FMG patterns. Researchers can also rely on
deep learning techniques to develop a model that can be used for the general population. We believe
that the deep learning approach has the potential to unleash the full capability of FMG technology to
predict limb activity.

5. Conclusions

This review article has presented the state-of-art research and development of FMG technology in
the past 20 years. 76-plus FMG related publications were found between 1999 and the middle of 2019.
From the early exploration of the technique to its utilization in real-time control applications, much
progress was made; yet, many challenges remain. We hope that this review article can provide new
insight into FMG technology and contribute to its advancement.
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Appendix A

Table A1. List of FMG related publication.

Reference Title Publication Type

Abboudi et al., 1999 [3] A biomimetic controller for a multi-finger prosthesis Journal
Curcie et al., 2001 [6] Biomimetic finger control by filtering of distributed forelimb pressures Journal

Craelius et al., 2002 [5] The bionic man: restoring mobility Journal
Phillips et al., 2005 [4] Residual kinetic imaging: a versatile interface for prosthetic control Journal

Amft et al., 2006 [8] Sensing Muscle Activities with Body-Worn Sensors Proceeding
Lukowicz et al., 2006 [7] Detecting and Interpreting Muscle Activity with Wearable Force Sensors Proceeding

Ogris et al., 2007 [9] Using FSR-based muscule activity monitoring to recognize
manipulative arm gestures Proceeding

Wininger et al., 2008 [1] Pressure signature of forearm as predictor of grip force Journal
Wang et al., 2010 [37] Biomechatronic approach to a multi-fingered hand prosthesis Proceeding

Yungher et al., 2011 [47] Surface muscle pressure as a measure of active and passive behavior of
muscles during gait Journal

Li et al., 2012 [13] Combined Use of FSR Sensor Array and SVM Classifier for Finger
Motion Recognition Based on Pressure Distribution Map Journal

Bin et al., 2012 [73] Multi-sensor arm rehabilitation monitoring device Proceeding

Morganti et al., 2012 [24] A Smart Watch with Embedded Sensors to Recognize Objects, Grasps
and Forearm Gestures Proceeding
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Table A1. Cont.

Reference Title Publication Type

Yungher et al., 2012 [34] Improving fine motor function after brain injury using gesture
recognition biofeedback Journal

Castellini et al., 2012 [74] Intention Gathering from Muscle Residual Activity for the Severely
Disabled Proceeding

Dementyev et al., 2014 [30] WristFlex Proceeding

Radmand et al., 2014 [12] High-resolution muscle pressure mapping for upper-limb prosthetic
control Proceeding

Castellini et al., 2013 [75] Using a high spatial resolution tactile sensor for intention detection Proceeding

Xiao et al., 2014 [28] Towards the development of a wearable feedback system for
monitoring the activities of the upper-extremities Journal

Carbonaro et al., 2014 [76] An Innovative Multisensor Controlled Prosthetic Hand Proceeding

Castellini et al., 2014 [10] Proceedings of the first workshop on Peripheral Machine Interfaces:
going beyond traditional surface electromyography Journal

Castellini et al., 2014 [68] A wearable low-cost device based upon Force-Sensing Resistors to
detect single-finger forces Proceeding

Ravindra et al., 2014 [35] A Comparative Analysis of Three Non-Invasive Human-Machine
Interfaces for the Disabled Journal

Rasouli et al., 2015 [55] Stable force-myographic control of a prosthetic hand using incremental
learning Proceeding

Sadarangani et al., 2015 [27] A wearable sensor system for rehabilitation applications Proceeding

Koiva et al., 2015 [77] Shape conformable high spatial resolution tactile bracelet for detecting
hand and wrist activity Proceeding

Sanford et al., 2015 [78] Surface EMG and intra-socket force measurement to control a prosthetic
device Proceeding

Chengani et al., 2016 [79]
Pilot study on strategies in sensor placement for robust hand/wrist
gesture classification based on movement related changes in forearm
volume

Proceeding

Cho et al., 2016 [41] Force Myography to Control Robotic Upper Extremity Prostheses: A
Feasibility Study Journal

Connan et al., 2016 [23] Assessment of a Wearable Force- and Electromyography Device and
Comparison of the Related Signals for Myocontrol Journal

Jiang et al., 2016 [50] Ankle positions classification using force myography: An exploratory
investigation Proceeding

Jiang et al., 2016 [32] Exploration of Force Myography and surface Electro Myography in
Hand Gesture classification Journal

Li et al., 2016 [56] FMG-based body motion registration using piezoelectric sensors Proceeding

Radmand et al., 2016 [46] High-density force myography: A possible alternative for upper-limb
prosthetic control Journal

Yap et al., 2016 [38] Design of a wearable FMG sensing system for user intent detection
during hand rehabilitation with a soft robotic glove Proceeding

Kadkhodayan et al., 2016 [70] Continuous Prediction of Finger Movements Using Force Myography Journal

Sakr et al., 2016 [69] On the estimation of isometric wrist/forearm torque about three axes
using Force Myography Proceeding

Ahmadizadeh et al., 2017
[31]

Toward Intuitive Prosthetic Control: Solving Common Issues Using
Force Myography, Surface Electromyography, and Pattern Recognition
in a Pilot Case Study

Journal

Ferigo et al., 2017 [42] A Case Study of a Force-myography Controlled Bionic Hand Mitigating
Limb Position Effect Journal

Ghataurah et al., 2017 [43] A Multi-sensor Approach for Biomimetic Control of a Robotic
Prosthetic Hand Proceeding

Jaquier et al., 2017 [65] Combining Electromyography and Tactile Myography to Improve
Hand and Wrist Activity Detection in Prostheses Journal

Nowak et al., 2017 [66] Multi-modal myocontrol: Testing combined force- and
electromyography Proceeding

Sadarangani et al., 2017 [36]
Force Myography for Monitoring Grasping in Individuals with Stroke
with Mild to Moderate Upper-Extremity Impairments: A Preliminary
Investigation in a Controlled Environment

Journal

Sanford et al., 2017 [80] Concurrent surface electromyography and force myography
classification during times of prosthetic socket shift and user fatigue Journal

Xiao et al., 2017 [45] Performance of Forearm FMG and sEMG for Estimating Elbow,
Forearm and Wrist Positions Journal

Xiao et al., 2017 [29] Counting Grasping Action Using Force Myography: An Exploratory
Study with Healthy Individuals Journal

Delva et al., 2017 [81] FSR based Force Myography (FMG) Stability Throughout
Non-Stationary Upper Extremity Tasks Proceeding

Booth et al., 2018 [82] A Wrist-Worn Piezoelectric Sensor Array for Gesture Input Journal
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Reference Title Publication Type

Castellini et al., 2018 [14] Tactile Myography: An Off-Line Assessment of Able-Bodied Subjects
and One Upper-Limb Amputee Journal

Delva et al., 2018 [83] Investigation into the Potential to Create a Force Myography-based
Smart-home Controller for Aging Populations Proceeding

Ha et al., 2018 [57] Force Myography Signal-Based Hand Gesture Classification for the
Implementation of Real-Time Control System to a Prosthetic Hand Proceeding

Fang et al., 2018 [58] Fabrication, structure characterization, and performance testing of
piezoelectret-film sensors for recording body motion Journal

Fujiwara et al., 2018 [60] Optical fiber force myography sensor for identification of hand postures Journal

Fujiwara et al., 2018 [84] Optical fiber force myography sensor for applications in prosthetic
hand control Proceeding

Godiyal et al., 2018 [26] Force Myography Based Novel Strategy for Locomotion classification Journal
Jiang et al., 2018 [85] Force Exertion Affects Grasp classification Using Force Myography Journal

Jiang et al., 2018 [51] Exploration of Gait Parameters Affecting the Accuracy of Force
Myography-Based Gait Phase Detection Proceeding

Jiang et al., 2018 [67] Virtual grasps recognition using fusion of Leap Motion and force
myography Journal

Truong et al., 2018 [59] CapBand Proceeding

Zhang et al., 2018 [86] A Pilot Study on Using Forcemyography to Record Upper-limb
Movements for Human-machine Interactive Control Proceeding

Belyea et al., 2018 [48] A Proportional Control Scheme for High Density Force Myography Journal
Sadeghi et al., 2018 [33] Regressing grasping using force myography: An exploratory study Journal

Anvaripour et al., 2018 [62] Hand gesture recognition using force myography of the forearm
activities and optimized features Proceeding

Godiyal et al., 2018 [49] A force myography-based system for gait event detection in
overground and ramp walking Journal

Belbasis et al., 2018 [48]
Muscle performance investigated with a novel smart compression
garment based on pressure sensor force myography and its validation
against EMG

Journal

Esposito et al., 2018 [22] A piezoresistive sensor to measure muscle contraction and
mechanomyography Journal

Sakr et al., 2018 [40] Exploratory Evaluation of the Force Myography (FMG) Signals Usage
for Admittance Control of a Linear Actuator Proceeding

Stefanou et al., 2018 [72] Wearable Tactile Sensor Brace for Motion Intent Recognition in
Upper-Limb Rehabilitation Proceeding

Ha et al., 2019 [87] Performance of Forearm FMG for Estimating Hand Gestures and
Prosthetic Hand Control Journal

Xiao et al., 2019 [61] Does force myography recorded at the wrist correlate to resistance load
levels during bicep curls? Journal

Xiao et al., 2019 [25] An Investigation on the Sampling Frequency of the Upper-Limb Force
Myographic Signals Journal

Xiao et al., 2019 [39] Towards an FMG based augmented musical instrument interface Proceeding

Belyea et al., 2019 [71] FMG vs EMG: A Comparison of Usability for Real-time Pattern
Recognition Based Control Journal

Anvaripour et al., 2019 [88] Controlling robot gripper force by transferring human forearm stiffness
using force myography Proceeding

Herrera-Luna et al., 2019 [11] Sensor Fusion Used in Applications for Hand Rehabilitation: a
Systematic Review Journal

Prakash et al., 2019 [44] Novel force myography sensor to measure muscle contractions for
controlling hand prostheses Journal
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