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Abstract: In recent years, there has been a plethora of attempts to discover biomarkers that are
more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma
(HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA,
exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of
inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis
B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without
recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the
potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD),
cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis
(NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid,
phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile
acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the
pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published
metabolomic observations in various liver diseases in adults, adolescents, and children, together with
animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant
liver disease may help reduce the incidence of HCC.

Keywords: metabolomics; lipidomics; biomarker; premalignant; alcoholic liver disease; cholestasis;
fibrosis; cirrhosis; NAFL; NASH

1. The Need for Biomarkers of Premalignant Liver Disease

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the commonest
types of primary liver cancer, and their combined incidence ranks among the highest cancer rates
in the world [1]. HCC in particular is a major health problem, with an annual death rate in excess
of 500,000 worldwide [2]. HCC in the United States, which comprises 75% of all primary liver
cancers [3], has been attributed primarily to a number of infectious and lifestyle causes. The principal
attributable factors among these are alcohol (32.0% in males, 30.7% in females), adiposity (26.6% in
males, 15.6% in females), hepatitis C virus (HCV) infection (17.5% overall), smoking (9.0% in males,
8.0% in females), diabetes (6.9% in males, 5.5% in females), and hepatitis B virus (HBV) infection
(5.3% overall). In contrast, in China, HBV (53.8% overall) is the principal cause, with adiposity a
relatively minor contributor (7.2% in males, 4.2% in females) [4]. These causative factors produce
insults to the liver that include inflammation, steatosis, and fibrosis, all of which can progress through
various stages, in particular cirrhosis, that can eventually lead to HCC. In recent years, there have
been multiple attempts to develop predictive biomarkers of HCC, but many of these have involved
the study of HCC cases themselves. Understanding the progression from hepatic insult through
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premalignant stages to HCC would seem to be the most fruitful means of predicting the development
of HCC in susceptible individuals. In this review, we examine the investigations into key premalignant
stages of HCC and ICC that have employed metabolomics both in patients and in animal models.
In particular, we have focused on the metabolomics of alcoholic liver disease (ALD), cholestasis,
fibrosis, cirrhosis, nonalcoholic fatty liver (steatosis, NAFL), and nonalcoholic steatohepatitis (NASH).
In each case, we evaluated whether the experimental data provide sufficient grounds, especially in
terms of specificity, to warrant further development of clinical biomarkers of hepatic premalignancy.
Additionally, we considered only metabolites that were upregulated as potential biomarkers for the
aforementioned premalignant liver diseases. The references cited in this review were culled from
PubMed searches with keywords metabolomics OR metabonomics AND the various disease entities,
such as alcoholic liver disease. Some references also arose from the bibliographies cited by publications
found in these initial searches.

2. Hepatic Metabolism

The human body comprises around 34 trillion cells of which ca. 240 billion (0.7%) make up
the approximately 1.5 kg of healthy liver, the largest solid organ and the biggest gland in the body.
Of the roughly 20,000 human protein-coding genes, 60% are transcribed in the liver, many of which
are not expressed in any other tissue [5]. Studies in mice using single cell transcriptomics revealed
that about half of all hepatocyte genes were expressed in a zonal manner, supporting the concept
that different liver regions have diverse metabolic functions. This was interpreted as being due
to variable microenvironments attributable to gradients of oxygen, nutrients, and hormones [6].
Metabolic reactions that are specific to the liver include de novo synthesis and secretion of the primary
bile acids glycocholate, taurocholate, glycochenodeoxycholate, and taurochenodeoxycholate, together
with ornithine degradation. Overall, the liver is the most metabolically-active tissue, followed by
adipose tissue and skeletal muscle [5]. Parenchymal hepatocytes comprise up to 85% of the liver
volume, with sinusoidal endothelial cells, perisinusoidal stellate cells and phagocytic Kupffer cells, with
intrahepatic lymphocytes making up the rest. Strong evidence suggests that different hepatic cell types
possess variable gene expression profiles [6–8]. The liver is therefore highly heterogeneous in both gene
expression and metabolic function. Assignment of metabolic function to discrete hepatic regions based
upon in vivo observations alone is extremely challenging, since metabolic phenotypes vary between
cell types and also across the liver. The role of in vitro studies in this regard will be increasingly
important as aids to the interpretation of in vivo metabolic phenotyping. For example, laser capture
microdissection has been employed as an adjunct to genomic, transcriptomic, and proteomic analyses
of liver diseases [9], but so far, rarely for metabolic profiling of liver tissue.

3. Metabolomics—The What, the How, and the Why

It is two decades since Jeremy Nicholson and colleagues introduced the concept of metabonomics,
with the promise of biomarker discovery from changes in metabolite profiles that result from
constitutional differences such as disease or genetics or from exogenous challenges due to drug
administration or exposure to toxicants [10]. The initial protocols based upon high-resolution proton
nuclear magnetic resonance spectroscopy (1H NMR) of body fluids have been supplemented by an
array of additional technologies, based mostly on mass spectrometry (MS), which have infiltrated
virtually every branch of biology and medicine. The literature currently stands at virtually 30,000
PubMed citations with almost 6000 in 2019 alone. The identification and quantitation of all metabolites
in a given organism or biofluid was at first seen as a realistic goal [11]. However, as the biochemical
complexity and analytical shortcomings came more into focus, global metabolite quantitation was
abandoned, and more realistic definitions emerged, such as, “metabolomics studies the low molecular
weight metabolites [e.g., <1.5 kDa] found in cells and organisms, usually through the analysis of
plasma/serum, urine or cell culture medium using mainly MS or NMR technologies” [12]. There has also
been some confusion regarding the use of the terms “metabolomics” and “metabonomics.” Although it



Metabolites 2020, 10, 50 3 of 58

has been stated that the difference in terms is not a technical one, and that the terminologies are
often used interchangeably [13], almost without exception, metabonomics published reports were
conducted using NMR rather than MS. Other commonly-used phrases include untargeted and targeted
metabolic phenotyping. Untargeted metabolomics is commonly conducted by first separating the
biological analytes that have a large range of physicochemical properties using ultraperformance
liquid chromatography (UPLC) with either reversed phase (RP) and/or hydrophobic interaction
chromatography (HILIC) columns [14]. Interfaced by electrospray ionization (ESI) in either positive
(ESI+) and/or negative (ESI-) mode, the UPLC eluate is analyzed by quadrupole time-of-flight mass
spectrometry (QTOFMS). This may yield in excess of 5000 ions in each ionization mode, which
should not be interpreted as 5000 biological constituents, as many of these features correspond to
adducts, dimers, multiply charged species, and fragment ions formed in the electrosprayer. In targeted
metabolomics, specific metabolites, for example amino acids or acyl carnitines, are quantitated using
stable isotope labeled standards [15]. This is frequently conducted using tandem mass spectrometry,
often with a triple quadrupole mass spectrometer (TQMS), rather than a QTOFMS. Another common
technology used in metabolomics is gas chromatography-mass spectrometry (GC-MS). This has the
benefit of a high confidence in metabolite identification, albeit for a small number of metabolites and a
lower throughput than UPLC-QTOFMS. The technologies available for metabolomic analysis have
recently been reviewed in detail [16].

In a typical metabolomics experiment, two or more groups of samples are investigated. These could
be biofluids from a patient group and age- and sex-matched healthy controls, genetically-modified mice
and their wild-type (WT) controls, and persons or experimental animals that have been administered
a drug, specific diet, or with some other lifestyle variable (e.g. smoking or particular occupation),
compared with a suitable control group. Analysis of the biofluids, usually urine and/or serum/plasma,
by MS- or NMR-based methods produces a data table that must first be preprocessed (normalization,
scaling, peak picking) prior to multivariate data analysis (MDA). It is first prudent to conduct
unsupervised MDA, for example, with principal components analysis (PCA), which reveals the internal
structure of the dataset, the principal components of variance, and the existence of any outliers.
A number of presentations of the data are common, including the scores plot (with one data point
for each sample) and the loadings plot, which for MS methods show the ions responsible for the
distribution of samples in the scores plot. If each sample group analyzed clusters and separates from
the other group(s), then this leads to supervised analyses such as partial least squares-discriminant
analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA). Unless at least a partial separation of scores
was observed in the PCA analysis, there is a danger that the data could be overmodeled using these
supervised analyses. The literature is replete with examples of this. The generated loadings plots
can be used with various software packages that assist in the identification of metabolites that differ
significantly between the test groups. The reader is directed to specific reviews in this area [17–19].

Various estimates of distinct human metabolomes have been reported that were derived using
multiple analytical platforms to gain maximum metabolite coverage. The human cerebrospinal
fluid metabolome (308 metabolites) [20], the human serum metabolome (4229 “highly probable”
metabolites) [21], the human urine metabolome (2651 “confirmed” metabolites) [22], and the human
fecal metabolome (>6000 identified metabolites) [23] have all been described. The culmination of these
efforts is the human metabolome database (HMDB 4.0) that comprises 114,100 total metabolites that
encompass “the complete collection of small molecules found in the human body including peptides,
lipids, amino acids, nucleic acids, carbohydrates, organic acids, biogenic amines, vitamins, minerals,
food additives, drugs, cosmetics, contaminants, pollutants, and just about any other chemical that
humans ingest, metabolize, catabolize or come into contact with” [24]. This still may be the tip of
the iceberg. It has been estimated that humans are probably exposed to some 1–3 million discrete
chemicals in their lifetimes [11] of which >25,000 have already been described in the diet [25].

The lipidome refers to the total number of lipid species present in a cell, tissue, organ, organism,
or biofluid such as plasma. Although there is overlap with the human metabolome, the human
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lipidome is expected to be highly complex due in great part to the varying chain lengths and degrees
of unsaturation, together with structural isomerism. As of January 2018, there were more than 40,000
lipid structures listed in the LIPID MAPS database [26]. Our conservative estimate is that the human
lipidome is made up of at least 100,000 discrete lipid entities.

Based on the foregoing evidence, it is likely that a human metabolome that includes the lipidome
may have some 200,000 members. As stated above, there are thought to be ~20,000 protein coding
human genes, although the exact number is yet to be determined. The total number of cellular proteins
(proteome) may be 16,000–17,000, similar to the total number of mRNA transcripts (transcriptome)
obtained by untargeted RNA sequencing (RNA-seq) [27]. In addition, the existence of a human
core proteome of 10,000–12,000 ubiquitously expressed proteins has been postulated, whose primary
function is the general control and maintenance of cells [28]. Many of these are enzymes, and therefore
contribute to the human metabolome, either through the metabolism of a single specific metabolite or
pair of metabolites, such as lactate dehydrogenase or in a pleiotropic fashion, such as the thousands
of potential metabolites produced by the human cytochromes P450 [29]. Nevertheless, it has been
estimated that there are 1–2 million “protein entities” that are expressed in a cell at a given time as a result
of posttranslational modifications (PTMs), such as acetylation, phosphorylation, and glycosylation [30].
To study mechanisms of liver disease through the lens of untargeted proteomics would be an extremely
demanding task. However, targeted proteomics in the form of specific protein biomarkers in plasma or
serum has a long history. This is because of the availability of commercial antibodies against virtually
every protein and this forms the basis of convenient quantitative immunoassays such as ELISA.

The expression of phenotypes, including metabolic phenotypes, from a genomic sequence that
is transcribed, spliced, and translated to protein with potential post-translational modifications,
is analogous to the information flow involved when listening to a music compact disk or some other
digital music format. In the former case, the genome is analogous to the compact disk itself, which
without the apparatus for converting it to sound, is simply a digital storage system (Figure 1). This is
why the metabolic phenotype is more revealing of the status of a cell, tissue, or organism than a genetic
sequence, because it more resembles the musical experience rather than analyzing the so-called pits
and lands (Figure 1) on a CD.Metabolites 2019, 9, x FOR PEER REVIEW 5 of 57 
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In terms of generating new knowledge regarding the liver, metabolomics has for some years
offered this opportunity. Because the liver is the seat of much of the body’s metabolic processes,
the systemic measurement of metabolites that originate in the liver should provide clear signposts
to liver wellbeing or disease. This alone justifies the inclusion of metabolomic protocols in the study
of hepatic pathogenesis. As we will demonstrate below, a plethora of such studies has already been
reported, but the picture is still not in focus. We will seek to highlight the potential biomarkers that can
be determined through metabolomics and that point most directly to disease mechanisms. We will
discuss below the shortcomings of the current trend of identifying metabolomic biomarkers as risk
factors for liver disease.

4. Biomarkers—The Good, the Bad, and the Ugly

A biomarker has been characterized as “a defined characteristic that is measured as an
indicator of normal biological processes, pathogenic processes, or responses to an exposure or
intervention, including therapeutic interventions.” It has also been emphasized that biomarkers can
be medical measurements, including physiological measurements, blood tests, molecular analyses
of biopsies, genetic or metabolic data, and measurements from images [31]. Blood pressure and
blood glucose are commonly determined biomarkers of both pathogenic processes and therapeutic
interventions. Neither of these biomarkers point to mechanisms of either disease or therapeutic
response. Measurement of the pressure of various parts of the arterial circulation was initiated in
the mid-18th century by the English clergyman Stephen Hales [32]. The testing of the color, smell,
and taste of urine as indicators of disease goes back at least as far as the ancient Greeks, with diagnostic
‘urine charts’ dating from the Middle Ages [13]. Determination of blood glucose developed relatively
recently and as a substitute to urine taste as a diagnostic biomarker for diabetes [33].

The first metabolic biomarkers that indicated disease mechanisms are contained in the remarkable
work of Sir Archibald Garrod (1857–1936) who coined the phrases “inborn errors of metabolism” [34]
and “chemical individuality” [35] in the early part of the 20th century. Garrod contended that four
diseases, i.e., alkaptonuria, albinism, cystinuria, and pentosuria, were Mendelian autosomal recessive
traits, therefore pointing to genetic mechanisms for each. Moreover, he recognized that increased
urinary homogentisic acid (HGA; known then as “alkapton acid”) in newborn babies with alkaptonuria
that stained their diapers black could be further increased by the oral administration of tyrosine
or a diet rich in proteins containing aromatic amino acids such as tyrosine and phenylalanine [36].
This led Garrod to propose an impairment in the aromatic ring opening of aromatic amino acids as the
mechanism of alkaptonuria. This flew in the face of the contemporaneous “germ theory of disease” that
focused on external rather than inborn causes of disease, and maintained that alkaptonuria resulted
from a gastrointestinal infection. These ideas hindered the acceptance of Garrod’s concepts for many
years [37]. Today, we recognize that Garrod’s interpretation was correct, and also that mutations in
the HGO gene causing a deficiency in hepatic homogentisate 1,2-dioxygenase (EC 1.13.11.5) activity
result in an accumulation of HGA and its clinical sequelae such as ochronosis, the yellowish staining of
connective tissue by HGA [38]. The major impact of a metabolic biomarker of disease (HGA) is that the
mechanism when unmasked can lead to potential therapies of the disease. In the case of alkaptonuria,
nitisinone has been shown in several studies to reduce the circulating levels of HGA. Nitisinone is an
inhibitor of 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27), the enzyme responsible for the
formation of HGA. A daily dose of 2 mg slowed progression of alkaptonuria and arrested ocular and
ear ochronosis [39]. This old example of alkaptonuria is a clear-cut prototype for a metabolic biomarker
of disease that originates in the liver, which has led to both an understanding of the disease mechanism
and its potential treatment. Sadly, many recent examples of liver disease metabolic biomarkers have
not lived up to this paradigm.

Alpha-fetoprotein (AFP) was reported in 1956 to be in human fetal serum but not in the serum of
healthy adults. The production of AFP by fetal liver largely ceases before birth [40]. The discovery
a few years later of AFP in animal models with hepatocellular carcinoma (HCC) [41] led to clinical
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investigations that associated AFP with HCC. It has been stated that ~70% HCC secrete AFP [42] and
up to 40% of HCC patients may not show elevated serum AFP [43]. This suboptimal sensitivity is
coupled with specificity issues in relation to premalignant liver diseases such as hepatitis and cirrhosis,
together with ovarian and testicular malignancies. Therefore, the clinical interpretation of serum AFP
with respect to HCC requires care. Nevertheless, serum AFP is widely used as both a diagnostic and
prognostic biomarker for HCC [42–44]. In these regards, it is recognized that it should be replaced
with more specific and sensitive biomarkers [43,44]. Neither European nor American guidelines for
HCC screening include serum AFP concentration [45].

Although osteopontin (OPN), a protein normally expressed in kidney and bone, has a high
sensitivity for the detection of HCC, its elevation can be linked to more than 30 types of cancer [45] and
to many other diseases, including diseases of the liver [46]. Its employment as a HCC risk biomarker
is clearly inappropriate. We will examine below whether metabolomics can disclose liver disease
biomarkers with high sensitivity and especially with high specificity.

Of the biomarkers for liver disease discussed above, the determination of metabolite HGA to
diagnose the rare inborn error of metabolism alkaptonuria is by far the most sensitive and specific.
Studies in experimental animals in the 1950s suggested that homogentisate 1,2-dioxygenase was
expressed in liver, to a lesser extent in kidney, and with little enzyme activity reported for heart,
skeletal muscle, brain, intestine, spleen, and blood [47]. Contemporary biochemical and molecular
methodologies have recently revealed that homogentisate 1,2-dioxygenase is expressed in human
and mouse brain, explaining the various observations of brain pigmentation found in cases of
alkaptonuria [48]. Both AFP and OPN are compromised by insufficient specificity, which would require
them to be used in combination with other biomarkers for liver disease risk.

5. Biomarkers of Premalignant Liver Disease

5.1. Alcoholic Liver Disease (ALD)

Excessive alcohol consumption is a global healthcare problem that accounts for almost 1% of all
global deaths and 50% of all liver cirrhosis-attributable deaths [49]. The spectrum of hepatic lesions
includes steatosis, alcoholic steatohepatitis (ASH), alcoholic hepatitis, fibrosis, cirrhosis, and HCC.
Alcohol is a principal cause of end-stage liver disease, for which the only curative treatment is
transplantation [50]. The insult on the liver by alcohol is closely related to the fact that the liver is the
site of most of the metabolism of alcohol. Alcohol dehydrogenase (ADH; EC 1.1.1.1) converts ethanol
to acetaldehyde with the generation of NADH reducing equivalents. Subsequent metabolism by
acetaldehyde dehydrogenase (ALDH; EC 1.2.1.3) generates further equivalents of NADH. The elevated
ratio of NADH/NAD+ due to excess alcohol consumption is responsible for many of the biochemical
consequences in the liver. For example, lactic acidosis, hyperuricemia, enhanced lipogenesis, and
depressed fatty acid β-oxidation have long been known to be driven by excess hepatic NADH [51].
However, the influence of ethanol exposure on lipid metabolism is considerably more complicated
than redox inhibition of fatty acid β-oxidation [52].

Much of the understanding of the mechanisms of liver disease have been generated using
animal models. In pioneering studies, rats fed a 5% ethanol diet (36% total calories) had a plasma
glycerolipid profile that mirrored the serum ethanol profile. Relative to paired rats fed a sucrose
diet, the ethanol-fed rats displayed a 3-fold increase in total hepatic lipids and an 8-fold greater
hepatic triglyceride content [53]. This early work led to the establishment of the Lieber-Decarli
experimental alcohol diet [54], which is still widely employed [55]. Binge ethanol administration
to mice (5 g/kg in three divided doses over 36 h) has also been used [56], in which case, hepatic
S-adenosylmethionine (SAM), cysteine, and glutathione were decreased, while hypotaurine and taurine
levels were elevated. These findings were interpreted as being due to both oxidative injury and a
rapid elevation in cysteine dioxygenase (EC 1.13.11.20) activity, responsible for the production of
hypotaurine and taurine. These markers could be attenuated by the co-administration of betaine,
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thought to be due to the regulation by betaine of hepatic levels of SAM and GSH [56]. Changes in
hepatic lipid profiles occurred after chronic feeding of Yucatan micropigs (20–40 kg) with a 40% ethanol
folate-deficient diet. In alcoholic pigs, hepatic triglycerides were elevated with increased desaturation
of fatty acids (16:0 to 16:1n7 and 18:0 to 18:1n9) by stearoyl-CoA desaturase (SCD; EC 1.14.19.1) and
decreased fatty acid elongation pathway (ELOVL5; EC 2.3.1.199) and phosphatidylethanolamine
N-methyltransferase (PEMT; EC 2.1.1.17) activity. This latter enzyme attenuation led to a shift from
phosphatidylethanolamines to phosphatidylcholines in the liver [57].

The above studies of the effect of alcohol administration were highly targeted, and therefore,
limited in their description of the hepatic metabolic phenotype induced by alcohol. They were also
limited by the vastly different protocols of ethanol administration. A study in mice was conducted
using the Lieber-Decarli diet treated wild-type (WT) and Ppara-null mice (PPARα is a nuclear
receptor that regulates much of lipid metabolism including fatty acid β-oxidation) [58]. Six months’
chronic alcohol exposure led to increased hepatic triglyceride accumulation in the Ppara-null mice.
Urines collected from 2 to 6 months were analyzed using an untargeted metabolomic protocol
by UPLC-ESI-QTOFMS, and showed differential elevated metabolite profiles for the WT and null
mice. In WT mice, the principal elevated urinary metabolites resulting from alcohol administration
were ethyl sulfate and ethyl-β-D-glucuronide, secondary metabolites of ethanol, together with
4-hydroxyphenylacetic acid and its sulfate conjugate. These were also found for the null mice and,
in addition, elevated urinary excretion of indole-3-lactic acid was found only in the Ppara-null mice,
which was mechanistically related to the administration of ethanol in these animals. In a subsequent
and more detailed investigation [59] that used WT and Ppara-null mice with two different strain
backgrounds, indole-3-lactic acid and phenyllactic acid were reported as ALD biomarkers, with
their formation arising from their corresponding pyruvic acids having been driven by the NADH
hepatic overload due to ethanol consumption (Figure 2). The mechanism-based biomarkers also
shed light on the development of steatosis, driven by the deficit in NAD+ and the hepatic increase
in NADH. The redox inhibition of fatty acid β-oxidation is an initial step of triglyceride and lipid
droplet accumulation in the liver [52]. Metabolomic investigations in rats fed the Lieber-DeCarli
liquid diet for 2 and 3 months have been conducted using high-field 1H and 31P NMR. These studies
reported a two-fold increase in plasma triglycerides and a halving of plasma free fatty acids, mirroring
smaller but statistically significant changes in the liver. Both total and free cholesterol were increased
two-fold in the liver [60]. Metabolomics has identified specific lipids in serum that were associated with
alcohol-induced liver diseases, specifically, N-lauroylglycine identified cirrhosis with 100% sensitivity
and 90% specificity, while decatrienoic acid could evaluate liver disease severity with 100% sensitivity
and specificity [61].

N-Acetyltaurine (NAT) has been reported to be a biomarker of alcohol exposure in mice, arising
from metabolism of ethanol to acetaldehyde via ADH and CYP2E1 (EC 1.14.13.n7), and further by
ALDH to acetate [62]. NAT is not specific to alcohol exposure, since it has been described as a
biomarker of gamma-irradiation in both rats [63] and rhesus monkeys [64]. NAT urinary excretion has
been reported in healthy human subjects who drank alcohol (0.66 to 0.84 g/kg) [65]. In blood, NAT
concentration as a biomarker of alcohol exposure was of limited value [66]. To date, NAT has not been
evaluated with respect to liver disease.
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with permission).

Chronic alcohol exposure in both experimental animals and humans leads to functional
perturbations in the intestinal microbiota as determined by metabolomic investigations of intestinal
metabolites. A wide range of altered intestinal microbiota metabolites has been reported, including
decreased amino acids, changes in steroid, lipid, carnitine, and bile acid metabolism. Short-chain fatty
acids (SCFAs) that are produced by bacterial fermentation were lowered by alcohol administration
to rats, with the exception of acetate, which is an end-product of ethanol metabolism [67,68].
Additionally, saturated long-chain fatty acid (LCFA) biosynthesis by the microbiota is reduced
by ethanol administration. These attenuated LCFA metabolites have been shown to contribute to
alcohol-associated dysbiosis, influencing ALD [69]. Microbial metabolites combined with reduced
levels of Lactobacillus trigger intestinal inflammation and liver disease following alcohol administration
highlighting the role of gut microbiome-liver cross talk in ALD [49]. Studies that identified metabolomic
and lipidomic biomarkers of alcoholic liver disease are listed in Table 1.
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Table 1. Metabolomic and lipidomic biomarkers of alcoholic liver disease.

Species Alcohol Dose Pathology Metabolites Reported Ref.

Rat 20% or 36% of total
calories; 24 days

Hepatomegaly
Fatty infiltration

Plasma triglycerides↑
Plasma phospholipids↑

Hepatic triglycerides↑ 8-fold
[53]

Rat
5% alcohol

Lieber-DeCarli diet;
2-3 months

Fatty infiltration
Mild inflammatory
infiltrate; 3 months

Mild oxidative
stress, 3 months

Liver triglycerides↑
Liver cholesterol↑

Liver phospholipids and
lysophospholipids↓

[60]

Rat 6 g/kg alcohol +
high-fat diet

Regional laminar
necrosis and edema
around central vein.

Inflammatory
cell infiltrate.

Total of 37 core ALD
biomarkers identified.
Pathways perturbed
included TCA cycle,

carbohydrate and amino
acid metabolism.

[70]

Mouse 5 g/kg every 12 h X 3 Serum ALT↑
Hepatic CYP2E1↑

Malondialdehyde↑
Methionine↑

Hypotaurine↑ Taurine↑
SAM↓ GSH↓

[56]

Mouse
129 Sv WT and

Ppara-null

4% alcohol
Lieber-DeCarli diet;

2–6 months

Little change after
1 month

Ethylsulfate↑
Ethyl-β-D-glucuronide↑

4-hydroxyphenylacetic acid
(4HPAA)↑ 4HPAA sulfate↑

in both WT and null.
Indole-3-lactic acid↑ in

null only.

[58]

Mouse
129 Sv and

C57BL/6 WT
and Ppara-null

4% alcohol
Lieber-DeCarli diet;

1 month

Steatosis in B6
null mice

Indole-3-lactic acid↑ and
phenyllactic acid↑ in

alcohol-treated Ppara-null
mouse, both 129 Sv

and C57BL/6

[59]

Mouse
WT and

Cyp2e1-null

2.2%, 4.5%, 5.4%
Lieber-DeCarli
semi-solid diet;

21 days

CYP2E1↑ in WT
Microvesicular and

macrovesicular
steatosis around

central vein;
WT>null

Hepatic and serum
triglycerides↑ in WT only.
Urinary N-acetyltaurine,

4HPAA sulfate, ethylsulfate,
ethyl-β-D-glucuronide↑

[62]

Mouse 4.896 g/kg; 7 days

ALT↑ AST↑
Focal hepatic

necrosis
Inflammatory

infiltrate

Serum Malondialdehyde↑
GSH↓ GSSG↑

Methylglyoxal↑
[71]

Mouse
5% alcohol

Lieber-DeCarli diet;
8 weeks

Mild
steatohepatitis

No fibrosis

Correlation between urinary
and fecal metabolites. Many

fecal and urinary
metabolites altered. Amino
acid metabolism perturbed.

Indole-3-lactic acid↑

[72]

Mouse
Cramp-null

and WT

5% alcohol
Lieber-DeCarli diet;

24 days
Not clearly stated

In alcohol-fed WT, fecal
taurine, α-aminoisobutyric
acid, nicotinic acid, serine,

SCFAs↓
In alcohol-fed null mice,

only nicotinic acid↑

[73]
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Table 1. Cont.

Species Alcohol Dose Pathology Metabolites Reported Ref.

Micropig 40% total calories
Folate-depleted diet Not determined

Hepatic triglycerides↑
SCD pathway↑

ELOVL5 pathway↑
PEMT pathway↓

Phospholipid export↓

[57]

Human

100–300 g/day;
10 days

118 g/day; 11 days,
141 g/day; 8 days

Fatty infiltration Plasma triglycerides↑ [53]

Human

30 ALD patients
(mean daily alcohol
consumption 109.7

g/day) vs. 10
healthy controls

Cirrhosis (80%)
Decompensated

cirrhosis (DC; 23%)

N-Lauroylglycine↑
in cirrhosis.

Decatrienoic acid associated
with disease severity.

[61]

Human

30 Alcohol use
disorder (AUD), 13
alcoholic hepatitis

(AH) and 16
nonalcoholic controls

ALT↑ (AUD = AH)
AST↑ (AH>>AUD)

Seven serum oxylipins and
nine fecal oxylipins↑

Results related to
inflammation and

platelet aggregation.
Inflammatoryω-6 PUFA
oxylipins counteracted by

ω-3 bioactive
lipid mediators.

[74]

Human
64 AH patients,
26 DC patients

without AH

AST and GGT↑
(AH > DC). Other

serum markers and
MELD score

AH = DC

Metabolomic signature of
AH claimed but

not disclosed.
[75]

5.2. Cholestasis

Cholestasis is the impaired formation or secretion of bile into the small intestine, and can be
classified as intrahepatic or extrahepatic, together with obstructive or nonobstructive. There are many
causes of the various manifestations of cholestasis including gallstones, malignancy, and defective bile
acid synthesis and secretion [76]. Metabolomics has been employed to attempt to distinguish between
the different mechanisms of cholestasis. In the first such study, rat models of inhibited biliary secretion
(intrahepatic) and obstructed bile flow (extrahepatic) were employed, and urine was analyzed by
1H NMR. It was concluded that bile acids, valine, and methyl malonate were possible cholestatic
biomarkers [77]. These biomarkers did not appear to be specific to cholestatic injury. Another early
approach was to use metabolomics to understand the metabolic consequences of perturbed bile acid
(BA) homeostasis, as occurs in cholestasis. The farnesoid X receptor (FXR) is a nuclear receptor
that regulates genes involved in BA synthesis, metabolism, and transport. Fxr-null and WT mice
dosed with the FXR ligands CA or LCA generated metabolites indicative of intrahepatic cholestasis.
These included the sulfate and β-D-glucuronic acid conjugates of p-cresol [78], a fermentation product
of tyrosine produced by Clostridium difficile in the gut [79], thereby providing further evidence of gut
microbiota-liver crosstalk. Other metabolites related to cholestasis included corticosterone and CA
metabolites, with the latter being produced by induced CYP3A11 [78]. Furthermore, in LCA-induced
experimental intrahepatic cholestasis in mice, TGFβ-SMAD3 signaling mediated the alterations in
phospholipid and BA metabolism [80]. In a rat model for cholestasis, mass spectrometry-based targeted
metabolomics revealed elevations in urinary taurine and hypotaurine (5- to 9-fold). The largest increases
between cholestatic and control rats were for CA, LCA, deoxycholic acid, and ursodeoxycholic acid (10-
to 23-fold, respectively) [81]. Four independent rat studies that employed the experimental cholestatic
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compound α-naphthylisothiocyanate (ANIT) reported that both free and conjugated primary BAs were
significantly elevated above controls by ANIT administration [82–85]. It has been demonstrated that
several traditional Chinese medicine (TCM) remedies for treating jaundice can reverse the metabolomic
fingerprint of ANIT, and therefore, protect against ANIT-induced cholestasis. These treatments include
paeoniflorin (from the dried root of Paeonia lactiflora) [83,84], rhubarb [85], Yinchenhao decoction
(from the above ground parts of Artemisia annua) [86], chicken bile powder (containing mainly
taurochenodeoxycholic acid that is deconjugated in the gut producing the primary BA that is a FXR
ligand) [87], Huangqi decoction (a TCM comprising Radix Astragali and Radix Glycyrrhizae) [88],
gentiopicroside (from Gentiana rigescens Franch. ex Hemsl.) [89], and Da-Huang-Xiao-Shi decoction [90].
In addition to TCMs, melatonin (100 mg/kg p.o.) has been administered to rats 24 h after they had
received ANIT (25 mg/kg i.p.). This high dose of melatonin (relative to the 4-20 mg/kg doses used in
mouse melatonin studies [91,92]) produced a modest reduction in serum liver enzymes and bilirubin
with a less severe liver histology. The metabolomic changes in serum due to melatonin administration
were unexceptional and, in part, derived metabolically from melatonin [93]. The mechanism of
ANIT-induced cholestasis continues to be investigated using metabolomic tools. The plasma and liver
biomarkers described in mice administered ANIT gave rise to the conclusion that the cholestatic liver
injury might correlate significantly with hepatocyte necrosis, metabolic disorders, and an imbalance of
intestinal microbiome ecology as a result of BA accumulation [94].

A metabolomic investigation has also been reported, whereby regulation of BA metabolism by the
nuclear receptor PPARα and inhibition of NF-κB/STAT3 signaling protected against cholestasis induced
by ANIT [95]. Furthermore, a lipidomic study of ANIT-induced intrahepatic cholestasis uncovered
the role of the aryl hydrocarbon receptor (AHR) in regulating expression of choline kinase (CHK)
in mice. Knockout of the Ahr gene significantly reversed ANIT-induced lipid metabolism via Chka
expression, and reversed the intrahepatic cholestasis [96]. Vascular protein sorting-associated protein
33B (VPS33B) is involved in the trafficking of intracellular proteins to distinct organelles. Mutations in
VPS33B are associated with a neonatal syndrome that includes cholestasis (OMIM 208085). Using the
lipidomic and metabolomic profiles of hepatic Vps33b-null male mice, which displayed cholestasis
with elevated serum liver enzymes and total bilirubin and total BAs, demonstrated the importance of
VPS33B in BA, glycerolipid, phospholipid, and sphingolipid metabolism. In particular, the elevation of
hepatic ceramides was thought to influence apoptosis and the progression of cholestasis [97].

Bile duct ligation (BDL) is a nonchemical means to produce experimental cholestasis in rats.
Compared with sham operated rats, BDL rats displayed oxidative stress, with diminished serum
GSH, total antioxidant capacity, and superoxide dismutase and glutathione peroxidase activities,
with upregulated serum malondialdehyde. Changes in certain amino acids, lipids, Krebs cycle
intermediates, and lactic acid were signs of the effects of cholestasis on energy metabolism [98].
The BDL cholestasis rat model was shown to generate similar metabolic characteristics as thioacetamide
(TAA)-induced cholestasis in rats, with excessive fatty acid oxidation, insufficient glutathione
regeneration, and disturbed gut microbiota. These features in both rat models could be reversed by the
TCM Huang-Lian-Jie-Du-Decoction [99]. A metabolomic study recently compared three models of
chemically-induced cholestasis, using ANIT, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), or LCA.
BAs were increased in all three models, whereas arginine was decreased. Hepatic protoporphyrin IX,
a metabolic precursor of heme and cytochrome c, was increased only in the DDC model [100].

Both primary biliary cholangitis (PBC) (previously known as primary biliary cirrhosis) and
primary sclerosing cholangitis (PSC) are chronic cholestatic liver diseases. PBC and PSC patients
were investigated using targeted profiling of serum BAs. In PBC with cholestasis, total primary
BAs (CA and chenodeoxycholic acid) were 13.5-fold higher than noncholestatic donors, in particular,
their taurine conjugates (34- to 46.5-fold accumulation) [101]. A similar pattern of elevated free
and conjugated primary BAs was reported in another PBC metabolomic investigation. The total
secondary BAs (deoxycholic acid and LCA) were not significantly altered in PBC, nor were the
6α-hydroxylated BAs (hyocholic acid and hyodeoxycholic acid). In PSC with cholestasis, primary
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BAs were more abundant and both secondary BAs, and 6α-hydroxylated BAs were significantly
reduced. The authors recognized that the BA composition of bile requires determination in these two
cholestatic diseases [102]. Similar findings were reported in a later study that also included some small
changes in free fatty acids and markers of inflammation and oxidative stress [103]. Furthermore, BAs
increased during progression of PBC with a decline in acylcarnitines, such as propionyl and butyryl
carnitine [104]. The metabolic signatures of PBC and celiac disease have been compared and contrasted
with healthy controls using 1H NMR-based metabolomics on serum and urine. Both diseases showed
distinct metabolite patterns, although relatively few metabolites, such as pyruvate, lactate, glutamate,
glutamine, hippurate, and trigonelline (a metabolite of niacin also found in coffee) were described [105].
It is unclear whether the differences described were due to dietary factors. Intrahepatic cholestasis
of pregnancy (ICP) has an incidence of between 0.1% (Europe) and 15.6% (South America) [106].
A urinary metabolomic study of ICP revealed several significant predictive biomarkers of ICP, including
the primary BA metabolites glycocholic acid and chenodeoxycholic acid 3-sulfate [107]. In a serum
targeted metabolomics ICP study, 60 BAs were detected of which most conjugated BAs were elevated
in ICP. Metabolomics was also employed to monitor BAs during treatment with ursodeoxycholic
acid [108]. Targeted metabolomics of urinary sulfated BAs was used to define biomarkers for the
diagnosis and grading of ICP. Total sulfated BAs were remarkably increased in ICP, particularly those
formed from glycine and taurine conjugated BAs. Clear clustering and separation of the PCA and
OPLS-DA scores for controls, mild ICP, and severe ICP were reported, and are depicted in Figure 3.
In order to better understand how ICP endangers the fetus and the links between fetal BA homeostasis
and sulfation capacity, a metabolomic investigation in pregnant swine was conducted. It was found
that sulfation played a pivotal role in maintaining BA homeostasis in the fetus. Furthermore, fetal
mortality showed an exponential increase in relation to the total BA increase from week 60 to week
90 [109]. A controversial condition related to ICP that is asymptomatic and difficult to distinguish
from ICP is asymptomatic hypercholanemia of pregnancy (AHP). A targeted metabolomics study was
undertaken in order to establish a differential diagnosis of AHP. Compared to a control group, AHP
had several higher urinary BAs and sulfated BAs than controls, and more that were lower in AHP than
ICP. Glycocholic acid and tauro-ω-muricholic acid were a potential combination biomarker for AHP,
whereas a further combination biomarker involving BA sulfates could distinguish AHP from ICP [110].
Metabolomic profiling of maternal hair was conducted to find predictive biomarkers of ICP. Despite
the identification of 105 metabolites in hair, none was associated with ICP [111].
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Cholestasis may also occur in neonates. Infantile hepatitis syndrome (IHS) and biliary atresia
(BLA) are the most common in the first three months of life. Using GC-MS metabolomics on urine, it was
reported that IHS could be distinguished from BLA with the biomarkers N-acetyl-D-mannosamine
and α-aminoadipic acid [113]. A summary of studies is given in Table 2.

Table 2. Metabolomic and lipidomic biomarkers of cholestasis.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Rat
Inhibition of bile

secretion vs. bile flow
obstruction

Intrahepatic
cholestasis vs.
extrahepatic
cholestasis

1H NMR
Bile acids↑ Bilirubin↑

vs. Bile acids↑ BCAAs↑
SCFAs↑

[77]

Mouse
Fxr-null vs. WT treated
with FXR ligands CA

and LCA
Cholestasis UPLC-ESI-QTOFMS

p-Cresol sulfate and
β-D-glucuronide↑

Corticosterone metabolites↑
Cholic acid metabolites↑

[78]

Rat Eisai hyperbilirubinemic
rat Cholestasis UPLC-TQMS

Taurine↑ Hypotaurine↑
Unconjugated primary and

secondary bile acids↑
[81]

Rat
ANIT

Methapyrilene
Dimethylnitrosamine

Cholestasis
UPLC-TQMS

GC-MS
UPLC-QTOFMS

Bile acids↑ Arginine↓
Pantothenate↑

Protoporphyrin IX↑
Palmitoyl carnitine↑

Arachidonic, linoleic and
oleic acids↓

[82–85]

Mouse Vps33b-depleted mouse Cholestasis UPLC-MS
Serum bile acids↑
triglycerides↑ and
sphingomyelins↑

[97]

Rat Bile duct ligation (BDL) Cholestasis UPLC-QTOFMS

Phenylalanine↑ Glutamate↑
Tyrosine↑ Kynurenine↑

Lactate↑ LPC(14:0) ↑
Glycine↑ Succinate↑MDA↑
GSH↑ Valine↓ Isoleucine↓

Citrate↓ Palmitate↓ Taurine↓
LPC(19:0)↓

[98]

Rat TAA or BDL Cholestasis 1H NMR

BDL vs. TAA:
2-Hydroxybutyrate↑

BCAAs↑ Lysine↑ Arginine↑
Glycine↑ Citrate↑

2-Oxoglutarate↑ Fumarate↑
Hippurate↑

Phenacetylglycine↑

[99]

Mouse ANIT or DDC or LCA Cholestasis UPLC-QTOFMS Phospholipids↑
Protoporphyrin IX↑ GSH↓ [100]

Human Primary biliary
cholangitis Cholestasis UPLC-QTOFMS

Primary bile acids↑
Phospholipids↑ Oleic and

Linoleic acids↑
[101–103]

Human Intrahepatic cholestasis
of pregnancy (ICP) Cholestasis HPLC-QTOFMS

MG(22:5) ↑ LPE(22:5) ↑
L-Homocysteine sulfonic
acid↑ Glycocholic acid↑
Chenodeoxycholic acid

3-sulfate↑

[107]

Human
Hypercholanemia of
pregnancy (HCP) vs.

ICP
Cholestasis UPLC-QTOFMS

Sulfated bile acid pattern
used for differential

diagnosis of HCP and ICP
[110]

Human
Infantile hepatitis

syndrome (IHS) vs.
biliary atresia

Cholestasis GC-MS

N-Acetyl-D-mannosamine
and α-Aminoadipic acid

used for differential
diagnosis

[113]

5.3. Fibrosis and Cirrhosis

Fibrosis occurs when damage to the liver causing overactive wound healing leads to the formation
of scarring or deposition of extracellular matrix proteins including collagen. This process occurs in
most chronic liver diseases, and can ultimately lead to cirrhosis and liver failure. Such end-stage liver
disease may require transplantation [114]. Fibrosis is staged 0 to 4 by liver biopsy using the METAVIR
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scoring system, F0 = no fibrosis, F1 = portal fibrosis, F2 = periportal fibrosis, F3 = bridging fibrosis,
F4 = cirrhosis. Fibrosis is also graded according to the severity of the underlying disease process,
activity grades A0 to A3 [115]. Fibrosis and cirrhosis are primarily caused by hepatitis or chronic
alcoholism, but can also arise due to nonalcoholic fatty liver disease (NAFLD), including nonalcoholic
steatohepatitis (NASH). In compensated cirrhosis, the liver is still able to perform most of its basic
functions despite the scarring. Compensated cirrhosis involves Stage 1 (no varices, no ascites) and
Stage 2 (varices, no ascites). In decompensated cirrhosis, excessive scarring inhibits basic liver functions
and comprises Stage 3 (ascites ± varices) and Stage 4 (bleeding varices ± ascites) [116]. The 1-year
survival for compensated and decompensated cirrhosis is 87.3% and 75.0% and 5-year survival is 66.5%
and 45.4%, respectively [117]. As the terminal stages of liver fibrosis that can lead to HCC have a high
morbidity and mortality with only transplantation as a therapeutic option, there have been extensive
studies using metabolomics to define biomarkers for the underlying disease progression.

Relatively few investigations have sought biomarkers of fibrosis using metabolomics. The greatest
both quantity and quality of potential biomarker data has been leveraged using mass spectrometry
methodologies. Metabolic pathways associated with hepatic fibrosis, specifically, for carbohydrates,
amino acids, and lipids, have been reviewed [118]. In a Japanese study that employed CE-TOFMS and
LC-TOFMS, the progression of fibrosis in NAFLD was reported to be associated with increased serum
concentrations of several metabolites, among them the sulfates of the three steroids etiocholanolone
(a major testosterone metabolite), dehydroepiandrosterone (a precursor of androgens and estrogens)
and 16α-hydroxy-dehydroepiandrosterone (a precursor of estriol). The first of these sulfates decreased
in relation to fibrosis progression from F0/F1 to F4, while the last steroid sulfate increased during
fibrosis progression, especially when expressed as a ratio to either of the other two sulfates [119].
Although these steroid sulfates and their ratios appeared to be biomarkers of fibrosis progression in
NAFLD, the key biomarker, 16α-hydroxy-dehydroepiandrosterone sulfate, has also been reported in
serum of patients with breast cancer and endometrial cancer [120]. A Brazilian study in chronic hepatitis
C collected large amounts of clinical data on 69 fibrotic patients classified with fibrosis by METAVIR
that was significant (≥F2; 42), nonsignificant (<F2; 27), also as advanced (≥F3; 28), nonadvanced (<F3;
41), and as cirrhosis (F4; 18) and noncirrhosis (<F4; 51). 1H NMR was used to analyze serum, but not
to identify metabolites. The PLS-DA 3-D scores plots showed clustering and separation for F0-F1 vs.
F2-F4, F0-F2 vs. F3-F4 with partial separation of F0-F3 vs. F4, leading the authors to hypothesize
that their metabolomic strategy could distinguish between significant fibrosis, advanced fibrosis,
and cirrhosis [121]. Without knowledge of the altered metabolites central to the metabolomic model
used, it is not possible to delineate whether the discriminatory signals arise as biomarkers for the disease
process or due to confounding factors such as comorbidities or drug treatment, as commented in another
similar case (see below) [122]. A 1H NMR-based metabolomic study was conducted in rats injected i.p.
for 8 weeks with CCl4. Seven metabolites were diminished in urine of treated rats compared with
controls, namely, 2-oxoglutarate, citrate, dimethylamine, phenacetylglycine, creatinine, and hippurate.
Only taurine urinary excretion was found to be significantly elevated in this rat model of fibrosis [123].
A subsequent report from this group found more metabolomic changes in their CCl4 fibrosis rat model.
They proposed that the TCM Corydalis saxicola Bunting exhibited antifibrotic effects by regulating
ALT, FXR, COX-2, metalloproteinase-1, and angiotensinogen based upon network analysis with their
NMR metabolomic data [124], about which we remain skeptical. Shi-Wei-Gan-Ning-Pill (SWGNP) is a
multicomponent Tibetan recipe used to treat viral hepatitis, hepatic fibrosis and steatosis, cirrhosis,
and HCC. In a study in the CCl4 rat model, SWGNP was also administered at a low, medium, and high
dose, equivalent to 3-, 6-, and 12-times the clinical dose, respectively. 1H NMR-based metabolomics
was conducted on liver extracts and serum. A total of 39 metabolites were identified in rat liver extracts
and 28 in serum. Alterations in energy metabolites suggested that the liver responded to CCl4 crisis by
metabolic remodeling from mitochondrial respiration to cytosolic aerobic glycolysis, increased fatty
acid β-oxidation, glycogenolysis, and metabolism of ketone bodies. The medium and high doses of
SWGNP significantly decreased the histological scores in the CCl4 model, together with fibrosis and
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oxidative stress markers. SWGNP also reversed changes in amino acids and nucleosides caused by CCl4.
The authors concluded that SWGNP could alleviate liver fibrosis caused by CCl4 [125]. Another Tibetan
folk remedy has been investigated in the CCl4 rat fibrosis model, that of Herpetospermum caudigerum
Wall. (HCW), the Himalayan Bitter Gourd, a large climbing plant that grows at an altitude of 1500 to
3600 m, whose dry ripe seeds have been used as a hepatoprotectant. In the CCl4 experiments, HCW was
administered at doses of 1 and 3 g/kg. HCW produced similar effects on fibrosis markers as SWGNP,
with the exception that the lower dose was more effective than the higher dose. The metabolomic effects
and proposed mechanisms were very similar for HCW [126] to those of SWGNP [125]. The active
principles of neither of these TCMs have been identified, except that HCW was said to comprise mainly
lignans, coumarins, triterpenes, saponins, phenols, essential oils, amino acids, and trace elements [126].
The underlying antifibrotic mechanisms of these TCM remedies remain unknown, despite the clues
provided by metabolomics.

Earliest serum biomarkers of liver cirrhosis (LC) were derived from chronic hepatitis B patients in
China, and comprised the four primary bile salts found by UPLC-QTOFMS [127]. However, elevated
glycine and taurine conjugated primary bile acids are not specific to LC (see above). A similar
population studied using GC-MS identified several elevated metabolic intermediates in cirrhotic serum,
including butanoic and hexanoic acid [128]. These two SCFAs are presumably products of the gut
microflora (see above). Amino acid D- and L-enantiomers in serum and urine have been examined
using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC X GC-TOFMS)
in 25 LC patients and 16 controls in Germany. No L-amino acids were significantly higher in the
serum of LC patients, although several were significantly higher in controls. In contrast, D-alanine and
D-proline were significantly elevated in LC serum, and D-valine, D-leucine, and D-threonine were only
detected in LC serum [129]. It is attractive to consider these D-amino acids as candidate biomarkers for
LC. However, only D-serine and D-aspartate are considered human tissue-derived, while the rest most
likely arise from microbial sources, either in the diet or from the gut microbiota [130]. This may be
further evidence of gut microbiota-liver cross-talk in liver disease. Further evidence of this crosstalk is
furnished by a Chinese study that examined stool samples by UPLC-ESI-QTOFMS taken from cirrhotic
patients (etiologies either HBV, HCV or alcohol; 17) and healthy controls (24). The two groups clustered
and separated in both the PCA and PLS-DA scores plots. Several metabolites that were reduced in
cirrhotic feces, chenodeoxycholic acid, 7-ketolithocholic acid, urobilin, and urobilinogen. A number
of metabolites were more prominent in cirrhotic feces, including amino acids, and long-chain fatty
acids and their carnitine esters. These findings were interpreted as due to changes in biliary function
and the gut microbiota in cirrhosis leading to fat malabsorption [131]. Another Chinese study claimed
that taurocholate was not merely a biomarker for cirrhosis progression, but also actively promoted
this progression. Of the 12 BAs targeted using UPLC-TQMS, taurocholate increased 76-fold between
LC (32) and HV (27). This was said to be due to increased synthesis. In addition, the promotion of
cirrhosis progression by taurocholate was postulated to be due to stellate cell activation via the TLR4
pathway [132].

We have reported a metabolomic and lipidomic investigation of into Swiss HCC patients (20)
using UPLC-ESI-QTOFMS and GC-MS, in which LC patients (7) were included together with healthy
volunteers (HV; 6) and an acute myelogenous leukemia (AML) control group (22). With one exception,
all the HCC patients also had LC. Interestingly, LC and HCC clustered together in both the unsupervised
(PCA) and supervised (PLS-DA) scores plots, and clearly segregated from the HV and AML clusters.
This suggests that the greatest insult to liver metabolism resulted from LC rather than HCC. No elevated
biomarkers specific to LC were described, although several were found for HCC (see below) [133].
The investigation by GC-MS of urine from HCV-positive untreated Egyptian patients with LC (40) and
HCC (55), together with HV (45) essentially confirmed the findings of metabolomic similarity between
LC and HCC patients. With the exception of AFP, serum biochemistry was similar for the LC and
HCC. Several urinary metabolites were elevated above HV for both LC and HCC in a similar fashion,
including serine, glycine, threonine, and citrate [134]. Although not stated, the HCC patients almost
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certainly also had LC, underlining the difficulties of distinguishing between HCC and LC in studies of
this kind for an HCV population. In a Chinese study of LC (20), healthy controls (20) and HCC (59) using
UPLC-ESI-QTOFMS, three ions corresponding to canavaninosuccinate (CVS) were virtually absent in LC
serum relative to the other groups [135]. CVS is a derivative of aspartate formed from ureidohomoserine;
aspartate is further converted to creatine [136]. The extinction of CVS in LC serum is an appealing
biomarker for LC, except that it is also massively reduced in plasma of chronic kidney disease patients
relative to controls, correlating strongly with the glomerular filtration rate [137]. A US study compared
patients with high both liver and kidney disease severity (ascites present, GFR ≤ 60; n = 34) with those
with low liver and kidney disease (ascites absent, GFR ≥ 60; n = 69) severity. Using UPLC-ESI-TQMS,
34/1028 plasma metabolites were significantly increased in the severe hepatorenal dysfunction group.
The greatest change (2.39) was for 4-acetamidobutanoate, the acetylated metabolite of GABA and
a product of arginine and proline metabolism (http://www.hmdb.ca/metabolites/HMDB0003681).
Pathway enrichment analysis identified glucuronidation and methylation, together with ascorbate
and aldarate metabolism, that were linked to hepatorenal dysfunction [138]. Another study in China
used both NMR and UPLC-ESI-QTOFMS to analyze serum from LC (42), HCC (43) and HV (18).
Several phospholipids and fatty acids together with bilirubin were elevated in LC vs. HV [139], findings
similar to those which we had previously reported in Swiss patients [133]. A UK study that employed
both NMR and UPLC-ESI-QTOFMS of plasma from 248 subjects examined the differences between
surviving and nonsurviving patients with decompensated cirrhosis. NMR profiles of nonsurvivors had
increased plasma lactate, tyrosine, methionine and phenylalanine. UPLC-ESI-QTOFMS showed that
lysophosphatidylcholines (LPC) and phosphatidylcholines (PC) were downregulated in nonsurvivors.
LPC concentrations negatively correlated with the circulating markers of cell death, M30 and M65.
Therefore, metabolomic phenotyping (“metabotyping”) was said to accurately predict mortality
in decompensated cirrhosis, due to LPC and amino acid metabolism dysregulation that reflected
hepatocyte cell death [140]. Using LC-MS, a Chinese group profiled 43 steroids in the urine of HV
(21), LC (21), and HCC (28) relative to urinary creatinine. The PCA scores plot showed some overlap
between these three groups. Many steroids in LC displayed lower urinary excretion than HV controls,
including pregnanediol, corticosterone, androsterone, etiocholanolone, dehydroepiandrosterone,
and testosterone. In contrast, LC urinary excretion of 16α-hydroxyestrone was markedly elevated
above HV controls. These findings are consistent with what has been described as a “feminization”
phenotype in LC [141]. It is worth noting that these investigators treated the urines with sulfatase
and β-glucuronidase prior to steroid analysis to determine total (free plus conjugated) steroids;
therefore, their results are difficult to compare with those cited above where sulfated steroids were
quantitated [120]. Using GC-MS, serum from Chinese HBV-positive (49), LC (52) and HCC patients
(39), together with healthy controls (61) was analyzed. All four groups clustered and separated
in the OPLS-DA scores plot. Of the top 30 discriminating metabolites, serine, succinate, malate,
5-oxoproline, glutamate, phenylalanine, ornithine, citrate, and tyrosine were all elevated in LC relative
to controls. Palmitate was proposed as a biomarker for cirrhosis development in HBV hepatitis, with
high sensitivity and specificity in ROC analysis. The purpose of this study however was to examine
the progression of hepatitis B to HCC via cirrhosis [142]. Interestingly, a review of metabolomic studies
of hepatitis B, HBV-related LC and HBV-related HCC clearly shows the overlap in these three groups
in upregulated metabolites [143]. Oxylipins are another group of lipids that have been investigated in
HBV-related LC and HCC. UPLC-ESI-TQMS was utilized to quantitate 18 omega-6 fatty acid-derived
oxylipins in serum from patients with chronic hepatitis B (34), HBV-related LC (46), HBV-related HCC
(38), and healthy controls (50). Compared with healthy controls, LC had statistically significantly
elevated 13-HODE, but lower levels of TXB2 [144]. The 13(S)-HODE and 13(R)-HODE enantiomers
are produced from linoleic acid by 15-lipoxygenase and are credited with differential effects on cell
growth and apoptosis [145]. Unfortunately, it was not determined which enantiomer was elevated
in plasma of LC patients [144]. Apparently, patients with HBV-related LC can be classified under
the theory of TCM as having one of two typical patterns, Gan Dan Shi Re (GDSR) or Gan Shen Yin
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Xu (GSYX). Serum of cases with GDSR (40), GSYX (41), and those with no obvious pattern (called
“Latent Pattern” (LP); 30) were investigated using GC-TOFMS metabolomics. Eight metabolites were
specific to the GDSR type of HBV cirrhosis, a separate eight were specific to the GSYX type, and a
further 10 metabolites were common to both types. The GDSR metabolites were said to be related
to abnormalities in linoleic acid metabolism, while the GSYX metabolites were said to arise from
abnormalities in glycine, serine, and threonine metabolism. All these 26 metabolites were potential
biomarkers for HBV-related cirrhosis [146].

As mentioned earlier, BLA is a neonatal cholestatic condition and is the most life-threatening
cholestatic disorder in children. In a Chinese study, liver samples from BLA (52) and IHS (16) were
profiled for amino acids and biogenic amines using UPLC-ESI-TQMS. Several amino acids had higher
hepatic concentrations in IHS than in BLA. However, histamine was twice as abundant in BLA as in
IHS liver. In addition, the degree of fibrosis from F1/F2 to F4 correlated with histamine concentration.
Histamine therefore presents a potential target for preventing fibrosis in BLA [147].

Several investigators have used 1H NMR in the search of biomarkers for liver fibrosis and cirrhosis.
For example, a Spanish study of LC with minimal hepatic encephalopathy was conducted by 1H NMR,
resulting in elevated glucose, lactate, methionine, trimethylamine N-oxide (TMAO), and glycerol [148],
none of which is specific to LC or even liver disease. A further Spanish NMR study compared liver
biopsies from cirrhosis and chronic hepatitis due to HCV, HBV, alcohol, and autoimmunity. Elevated in
cirrhosis were glutamate and phosphoethanolamine [149]. A UK study used 1H NMR metabolite
profiling to compare livers removed from patients with either LC associated with ALD (5) or with
NASH (14) with healthy donor transplant livers (16). Cirrhotic livers had significantly increased levels
of isoleucine, valine, succinate, lactate, and betaine [150]. Another NMR study was conducted on
Chinese patients that included those with HCC. The elevated serum metabolites in LC occurred also
when the patients had HCC, with the exception of taurine, namely, acetate, pyruvate, glutamine,
α-ketoglutarate, glycerol, tyrosine, 1-methylhistidine, and phenylalanine [151]. A French study using
1H NMR examined metabolic differences between alcoholic cirrhotic patients with severe and mild
chronic liver failure (CLF) that had been stratified by MELD score. Lactate, pyruvate, glucose, amino
acids, and creatinine were significantly higher in patients with severe CLF than mild CLF [152].
These findings cannot be considered as biomarkers of severe CLF, as they are not specific. A Chinese
study in compensated cirrhosis (30), decompensated cirrhosis (30), and healthy controls (30) using
1H NMR on serum samples reported that succinate, pyruvate, and phenylalanine increased with
cirrhosis progression [153]. Yet, again, these cannot be considered as biomarkers due to their lack
of specificity. An earlier Canadian study had been the first to profile metabolites in compensated
and decompensated cirrhosis patients with HCV, together with healthy volunteers, but used 31P
magnetic resonance spectroscopy performed on the abdomen over the liver. The acquired spectra
showed phosphomonoesters (PME), phosphodiesters (PDE), and β-ATP resonances, the last of which
was significantly lower in decompensated cirrhosis vs. the other two groups combined, and the
PME/PDE ratio was significantly higher in decompensated cirrhosis than controls. This ratio was
interpreted based upon published findings as an indicator of a disturbed endoplasmic reticulum
membrane in decompensated cirrhosis [154]. Austrian investigators used high-field 1H-MRS and
ultrahigh-field 31P-MRS to examine in vivo the livers of NAFLD patients with little or no fibrosis and
NASH patients with advanced fibrosis. The 1H-MRS lipid signal was massively increased in NASH
livers over NAFLD livers and cross-correlated with histology from liver biopsies. The lipid saturation,
polyunsaturation, and monounsaturation indices did not differ between NAFLD and NASH livers.
Moreover, 31P-MRS measures of the PME (including phosphoethanolamine) and PDE (including
glycerophosphocholine) resonances reflected the severity of fibrosis. Changes in energy metabolism,
as reflected by ATP flux, were decreased in advanced fibrosis. This noninvasive real-time profiling
technique appeared to be of significant value for investigation of hepatic structure and function [155].
An Italian study combined NMR metabolomics of stool samples with 16S rRNA sequencing of gut
microbiota in LC patients (46) and healthy age-matched controls (14). Peripheral blood and liver
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biopsies were also analyzed together with portal blood from seven cirrhotics and caecal biopsies taken
during colonoscopy in 17 LC patients and 6 controls. The metagenomics data demonstrated a marked
dysbiosis in LC patients. The principally elevated metabolites in LC feces relative to controls were
phenylalanine, threonine, butanoate, methanol, cadaverine, and α-glucose. Using the metagenomics
data, eight pathways were underrepresented and two overrepresented in LC. The authors concluded
that intervention with prebiotics/probiotics/synbiotics, diet, or fecal microbiota transplant could
support development of new customized treatments for LC patients [156]. Interestingly, partial
reversal of dysbiosis and metabolomic profile was reported after splenectomy in LC patients (12) [157].
A combined metagenomics and metabolomic investigation of LC was conducted in China with HV
(47), compensated LC (49) and decompensated LC (46). Urine was analyzed by UPLC-ESI-QTOFMS
and PCA scores plots for total metabolites and a subset of 75 differential metabolites both separated
HV from LC urines, with compensated and decompensated LC clustering together. Six metabolites
were reported to be lower in LC urine than in HV urine, but none greater [158]. Another combined
metagenomics and metabolomics investigation was conducted to compare Turkish patients on a
Mediterranean diet (HV, 46; compensated LC, 50; decompensated LC, 43) with American patients on a
Western diet (HV, 48; compensated LC, 59; decompensated LC, 50). In this study, 1H NMR was used
for plasma metabolomics, which showed higher lactate concentrations in Turkey vs. USA. There were
similar trends between decompensated LC and HV in both Turkey and USA, with reduced lipids and
phosphocholines. Correlation networks in cirrhotics showed differences between the beneficial taxa
Blautia and Oscillispira in Turkish compared with American patients [159]. The metabolomic differences
described in this unique study were disappointing and would have greatly benefitted from analysis
using MS-based methodology.

Acute-on-chronic liver failure (ACLF) refers to patients with acute deterioration of liver function
in compensated or decompensated but stable cirrhosis. Serum from a group of French compensated
and decompensated cirrhosis patients (93) was compared with that from ACLF patients (30) using
1H NMR metabolomics. The latter group showed higher serum lactate, pyruvate, ketone bodies,
glutamine, phenylalanine, tyrosine, and creatinine [160], none of which is a specific biomarker. A UK
study examined plasma by 1H NMR for stable cirrhotic patients (18), patients with stable cirrhosis
during an episode of encephalopathy (18), together with matched controls (17). With the exception of
pyruvate, which was significantly higher, glycolysis end-products and gluconeogenesis precursors
(pyruvate, alanine, threonine, glycine and aspartate) were significantly lower in cirrhotics with
encephalopathy than without and both higher than controls. There was no discernable effect of
encephalopathy on branched-chain and aromatic amino acids or on urea cycle intermediates [161].
Yet, again, such NMR-derived metabolites do not show sufficient specificity to be considered as
biomarkers. In contrast, a French group compared hepatic encephalopathy (HE) patients (14)
with control patients without neurological disease (27) using UPLC-MS analysis of cerebrospinal
fluid (CSF) and plasma. A total of 73 metabolites were identified in CSF including amino acids,
acylcarnitines, bile acids, and nucleosides. It was further reported that acetylated amino sugars,
acetylated amino acids, and metabolites involved in ammonia, amino acid, and energy metabolism
were specifically and significantly increased in CSF of HE patients [162]. These findings underscore the
superiority of MS-based over NMR-based metabolomics protocols in terms of metabolite identification.
Serum analysis by 1H NMR was conducted on a Spanish two groups of HCV patients, one without
fibrosis (F0; 30) and the other with cirrhosis (F4; 27). Glucose, citrate, and VLDL1 were significantly
elevated, and choline, glutamine, acetoacetate, glycoprotein N-acetyl groups, cysteine, histidine,
and LDL1 were significantly depressed in the serum of cirrhotic HCV patients. The authors believed
that these results provided new biomarkers to distinguish no fibrosis from severe fibrosis (cirrhosis) in
HCV infection [163]. An investigation of Italian patients with chronic HCV attempted to diagnose the
degree of fibrosis using 1H NMR on plasma, serum, and urine samples. Remarkably, these investigators
did not identify metabolites, but rather, used statistical analysis of their spectra in an attempt to classify
and distinguish chronic hepatitis C (little or no fibrosis) from cirrhosis (severe fibrosis) [164]. This study



Metabolites 2020, 10, 50 19 of 58

has been severely criticized not only on the basis of the lack of metabolite identification, but also for
the statistical methods employed for data analysis [122].

Animal models have also been employed. TAA has been administered i.p. to rats to generate
experimental fibrosis and cirrhosis. One such study tracked serum and urine by 1H NMR metabolomics
over 7 weeks of TAA administration. Liver injury included fibrosis and cirrhosis. TAA was found
to increase 2-oxoglutarate and decrease succinate in both serum and urine, while urinary excretion
of fumarate, oxaloacetate, and citrate was increased, leading investigators to conclude that TAA
impaired the TCA cycle [165]. These and other reported amino acid changes are not specific to fibrosis
or cirrhosis. The i.p. administration of dimethylnitrosamine (DMN) to rats produces histologically
confirmed fibrosis. UPLC-ESI-QTOFMS metabolomics on serum from control and DMN-treated
rats, together with serum from rats treated with DMN together with Yin-Chen-Hao-Tang decoction
(YCHT), a TCM long used in the treatment of liver diseases including fibrosis. Biochemical parameters
including serum liver enzymes and total bilirubin, together with liver histology, in the YCHT treated
rats were intermediate between the controls and the DMN-treated animals. Moreover, several serum
lipids, including LPC(18:1), LPC(18:2), oleic acid (18:1), linoleic acid (18:2), arachidonic acid (20:4),
and docosahexaenoic acid (22:6; DHA) that were altered by DMN treatment (LPCs ↑, fatty acids ↓),
remained relatively stable with co-administration of YCHT [166]. Despite these lipidomic findings,
the antifibrotic mechanism of YCHT remains unclear. Another TCM that has been evaluated in the
DMN rat liver fibrosis model is Huangqi Decoction (HQD). In these experiments, 16 individual bile
acids were profiled by LC-MS and demonstrated that bile acids were elevated by DMN treatment and
that HQD restored these to normal levels. Additionally, gene expression related to bile acid synthesis
and transport was examined, and also altered by DMN treatment, but restored by HQD [167].

Carbon tetrachloride (CCl4) is another hepatotoxin that can produce liver fibrosis in rats. Its effects
upon the serum metabolome of rats has been reported using UPLC-ESI-QTOFMS. The protocol involved
12 weeks twice weekly s.c. injections of 50% CCl4 in olive oil at a dose of 5 mL/kg. Blood biochemistry
and liver histology were consistent with liver fibrosis. Of the many prominent metabolites detected, two,
i.e., cervonoyl ethanolamide (8,11,14-eicosatrienoyl ethanolamide) and β-muricholic acid, were defined
as biomarker candidates. Pathway analysis proposed that CCl4 induction of liver fibrosis altered
glycerophospholipid metabolism, linoleic acid metabolism, α-linoleic acid metabolism, glycine, serine
and threonine metabolism, arachidonic acid metabolism, tryptophan metabolism, and aminoacyl-tRNA
biosynthesis [168]. This provided a paradigm for chemically-induced liver fibrosis against which other
studies could be compared. CCl4 has also been employed to induce decompensated cirrhosis with
ascites in rats, using a similar protocol that that described above. In this study, serum and urine were
analyzed by Orbitrap UPLC-MS. Aromatic amino acids, alanine, and bile acids were elevated in the
CCl4-treated rats, while LPCs, eicosapentaenoic acid, creatine, carnitine, branched-chain amino acids
(BCAAs), and arginine were significantly lowered [169].

The TCM used to treat liver fibrosis, Jiaqi Ganxian Granule (JGG), was tested against CCl4-induced
hepatic fibrosis in rats. As the mechanism was unknown, detailed UPLC-ESI-QTOFMS metabolomics
was conducted on rat serum. Fibrosis markers in serum, namely collagen type IV, procollagen
III, hyaluronic acid, and laminin were all significantly increased by CCl4, but normalized by JGG
intervention, as was liver histology. Lipid markers that were downregulated by CCl4, but normalized
by JGG included sphinganine, dihydroceramide, and monostearoylglycerol. Metabolites that were
upregulated by CCl4 but normalized by JGG were the bile acid 3,7-dihydroxy-12-oxocholanoic
acid, the phosphatidylinositol PI(18:0/16:0), the ethanolamide metabolite of DHA, LPC(22:6),
and PC(20:4/18:2). JGG, therefore, affected sphingolipid and glycerophospholipid metabolism among
other pathways [170]. These represent further examples of where metabolomics has informed about
the mechanism of action of a TCM on liver disease. A similar study reported in Chinese that
Scutellariae Radix decoction, prepared from the root of a flowering plant of the mint family, and baicalin,
a flavone glycoside purified from Scutellaria baicalensis, were effective against liver fibrosis in this
rat model. UPLC-ESI-QTOFMS analysis showed that several elevated metabolites in fibrotic rat
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urine were ameliorated by the decoction treatment, including, L-tryptophan, 3-methyldioxyindole,
5-hydroxyindoleacetylglycine, kynurenic acid, 4-(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoic acid,
methylmalonic acid, and L-leucine. Baicalin treatment also reversed these urinary metabolites with
the exception of L-leucine [171]. Another rat model of fibrosis uses dimethylnitrosamine (DMN)
i.p. administration over a period of 8 weeks. Cultured bear bile powder (CBBP) has been used as
a TCM to treat liver diseases for thousands of years. Using Orbitrap UPLC-MS, it was reported
that CBBP co-administration (65, 130 and 260 mg/kg) restored the lowered serum concentrations of
eicosapentaenoic and docosahexaenoic acids that occurred when DMN provoked fibrosis. CBBP
had the additional effect of inducing the expression of the nuclear receptors PPARα and PPARγ.
Moreover, expression of four PPARα-regulated genes involved in fatty acid β-oxidation (Cpt1b, Cpt2,
Mcad, and Hadha) was decreased by DMN treatment but restored by CBBP, suggesting that CBBP may
improve fatty acid β-oxidation. By inducing PPARγ, CBBP decreased the downstream expression
of the inflammatory cytokine IL-6, while also inhibiting activation of hepatic stellate cells, thereby
ameliorating fibrogenesis [172]. Further details of the aforementioned studies appear in Table 3.

Table 3. Metabolomic and lipidomic biomarkers of liver fibrosis and cirrhosis.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human NAFLD Fibrosis
progression

CE-TOFMS
LC-TOFMS

F0/F1→F4 Etiocholanolone
sulfate↓

Dehydroepiandrosterone sulfate↓
16α-hydroxy-dehydroepiandrosterone

sulfate↑
(all in serum)

[119]

Human Fibrosis or Cirrhosis
Significant fibrosis,
advanced fibrosis,

cirrhosis

1H NMR
No metabolites reported, only

multivariate model used to
distinguish pathologies.

[121]

Human Chronic hepatitis B Cirrhosis UPLC-QTOFMS

Glycocholic acid↑
Glycochenodeoxycholic acid↑

Taurocholic acid↑
Taurochenodeoxycholic acid↑

(all in serum)

[127]

Human Chronic hepatitis B Cirrhosis GC-MS
Acetate↑ Hexanoate↑ Butanoate↑

Glucose↓ Sorbitol↓
(all in serum)

[128]

Human Causes not stated Cirrhosis 2D-GC-TOFMS

D-Alanine↑ D-Proline↑
D-Valine↑ D-Leucine↑

D-Threonine↑
(all in serum)

[129]

Human HBV, HCV, alcohol Cirrhosis UPLC-QTOFMS

Chenodeoxycholic acid↓
7-Ketolithocholic acid↓

Urobilin↓ Urobilinogen↓
LPC(16:0)↑ LPC(18:0)↑ LPC(18:1)↑

LPC(18:2)↑
(all in feces)

[131]

Human HBV, alcohol, PBC,
cryptogenic cirrhosis Cirrhosis UPLC-TQMS

Taurocholic acid↑
Taurochenodeoxycholic acid↑
Tauroursodeoxycholic acid↑

Glycocholic acid↑
Ursodeoxycholic acid↑

Chenodeoxycholic acid↑
Cholic acid↑

Taurolithocholic acid↑
Taurodeoxycholic acid↑

Hyodeoxycholic acid↑ Lithocholic
acid↑

Deoxycholic acid↑
(all in serum)

[132]
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Table 3. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human Chronic hepatitis C Cirrhosis GC-MS

Proline↑ Serine↑ Glycine↑
Threonine↑ Citrate↑ Xylitol↓

Arabinose↓ Urea↓
(all in urine)

[134]

Human Chronic hepatitis B Cirrhosis UPLC-QTOFMS

Phenylalanine↑
Glycochenodeoxycholic acid↑

Oleamide↑ LPC(16:0)↓
PC(16:0/18:2)↓ PC(16:0/22:6)↓
PC(16:0/20:4)↓ PC(18:0/18:2)↓

Canavaninosuccinate↓
(all in serum)

[135]

Human Hepatorenal syndrome Cirrhosis UPLC-TQMS 4-Acetamidobutanoate↑
(in plasma) [138]

Human Chronic hepatitis B Cirrhosis
1H NMR

UPLC-QTOFMS

Tyrosine↑ Oxaloacetate↑
Phenylalanine↑

C16-Sphinganine↑
Phytosphingosine↑ Isobutyrate↑

LPC(18:1) ↑ Linoelaidic acid↑
Bilirubin↑ PC(18:4/20:1)↓
PC(14:1/14:1)↓ LPC(16:0)↓

Formate↓ Ascorbate↓ Carnitine↓
α-CEHC↓

(all in serum)

[139]

Human Causes not stated

Decompensated
cirrhosis (90-day

mortality vs.
survivors)

1H NMR
UPLC-QTOFMS

Isoleucine↑ Leucine↑ Lactate↑
Creatinine↑ Urea↑ Tyrosine↑
Histidine↑ Phenylalanine↑

Formate↑ LPC(16:0) ↑ Pyruvate↓
Choline↓ Phosphocholine↓

Glycine↓ Glucose↓ PC(34:2)↓
PC(18:2/18:2)↓ PC(16:0/18:2)↓

PC(18:0/18:2)↓ LPC(18:2)↓
PC(18:2/18:5)↓ PC(22:5/20:4)↓

PI(37:2)↓ PS(41:4)↓
(all in plasma)

[140]

Human Causes not stated Cirrhosis UPLC-Orbitrap
MS

16α-Hydroxyestrone↑
4-Androstenedione↓

17α-Hydroxyprogesterone↓
18-Hydroxycorticosterone↓

Cortisol↓ Cortexolone↓
Allotetrahydrocortisol↓
Deoxycorticosterone↓

Epitestosterone↓
Testosterone↓

Dehydroepiandrosterone↓
Etiocholanolone↓

Tetrahydrodeoxycortisol↓
Androsterone↓

17α-Hydroxypregnenolone↓
Epiandrosterone↓

11-Oxoetiocholanolone↓
7β-Hydroxy-dehydroepiandrosterone↓

Androstenetriol↓
Androstenediol↓

Pregnanediol↓
(all in urine)

[141]

Human Chronic hepatitis B Cirrhosis (vs. HBV) GC-TOFMS

Serine↑ 5-Oxoproline↑
Phenylalanine↑ Tyrosine↑

Ornithine↑ Citrate↑ Palmitic acid↑
Fructose↓ Glutamate↓

Indole-3-acetic acid↓ arachidonic
acid↓ 2-Deoxy-D-glucose↓

(all in serum)

[142]

Human Chronic hepatitis B Cirrhosis (vs.
HBV/HV) UPLC-TQMS 9,10-DiHOME↑ 13-HODE↑ TXB2↓

(all in serum) [144]
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Table 3. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human Chronic hepatitis B

Cirrhosis (GDSR
and GSYX patterns,

vs. latent
pattern (LP))

GC-TOFMS

GDSR vs. LP:
Nonanoate↑ Urea↓ Serine↓

2-Hydroxybutyrate↓
2-Hydroxyglutarate↓

Phenylalanine↓ Asparagine↓
Citrulline↓ Tyrosine↓ Arabinose↓

Sorbose↓ Fructose↓Myristate↓
Palmitolate↓ Palmitate↓ Linolate↓
Tryptamine↓ Glycolate↓ Quinate↓

Petroselinate↓
GSYX vs. LP:

1,5-Anhydrosorbitol↑ Fructose↑
2-Hydroxybutyrate↓ Serine↓
Threonine↓ 5-Oxoglutarate↓

2-Hydroxyglutarate↓
Phenylalanine↓ Asparagine↓

Tyrosine↓ Arabinose↓ Arabitol↓
Nonanoate↓ Glycerate↓

Pipecolate↓ Glutarate↓ Quinate↓
α-Tocopherol↓
(all in serum)

[146]

Human
Biliary atresia (BA) and

neonatal hepatitis
syndrome (NHS)

Fibrosis F1 to F4 UPLC-TQMS

BA/NHS:
Histamine↑Methionine↓
Phenylalanine↓ Serine↓

Threonine↓ Valine↓ Glutamine↓
Sarcosine↓ Lysine↓
F4>F3>F1/F2 in BA:

Histamine↑
(all in liver homogenates)

[147]

Human Alcohol

Cirrhosis ±
minimal hepatic
encephalopathy

(MHE)

1H NMR

MHE+/MHE-:
Lactate↑ Glucose↑ TMAO↑

Glycerol↑ LDL↓ VLDL↓
Isoleucine↓ Leucine↓ Valine↓

Alanine↓ Acetoacetate↓ Choline↓
Glycine↓

(all in serum)

[148]

Human
Chronic hepatitis C,
Chronic hepatitis B,

Alcohol, Autoimmunity
Cirrhosis MAS 1H NMR

Phosphoethanolamine↑
Phosphocholine↑ Glutamate↑

Aspartate↓
α-Glucose↓
β-Glucose↓
(all in liver)

[149]

Human ALD, NASH Cirrhosis 1H NMR

ALD Cirrhosis:
Isoleucine↑ Valine↑

1,2-Propanediol↑ Succinate↑
Aspartate↑ Betaine↑ Lactate↑

Glucose↑ Uracil↑ Phenylalanine↑
NASH Cirrhosis:

Leucine↑ Isoleucine↑ Valine↑
1,2-Propanediol↑ Succinate↑
Aspartate↑ Betaine↑ Lactate↑

Phenylalanine↑ Uracil↑ Uridine↓
Inosine↓

(all in liver)

[150]

Human Causes not stated Cirrhosis 1H NMR

Acetate↑ Pyruvate↑ Glutamine↑
α-Ketoglutarate↑ Taurine↑

Glycerol↑ Tyrosine↑
1-Methylhistidine↑

Phenylalanine↑
N-Acetylglycoproteins↑ LDL↓
VLDL↓ Isoleucine↓ Leucine↓

Valine↓ Acetoacetate↓ Choline↓
(all in serum)

[151]
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Table 3. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human Alcohol Cirrhosis (mild vs.
severe liver failure)

1H NMR

Correlated with severity of
liver failure:

3-Hydroxybutyrate↑ Alanine↑
Acetate↑

Choline/Phosphocholine↑
(all in serum)

[152]

Human Chronic hepatitis B
Cirrhosis

(compensated vs.
decompensated)

1H NMR

Distinguishing between
compensated and

decompensated cirrhosis:
Succinate, Pyruvate,

Phenylalanine, Histidine, Lysine,
Glutamine, Acetone, Glutamate,

Creatine, Alanine
(all in serum)

[153]

Human Causes not stated Cirrhosis 1H NMR

Positively correlated with portal
blood proinflammatory cytokines

IL6, TNFα and IL1β:
Trimethylamine

Negatively correlated with portal
blood proinflammatory cytokines

IL6, TNFα and IL1β:
Acetate, n-Heptanoate

Positively correlated with WBC
and platelet counts:

Threonine, α-Galactose,
β-Glucose

(all in feces)

[156]

Human Various liver injuries
Cirrhosis

(compensated vs.
decompensated)

UPLC-QTOFMS

Lower in LC:
N6-Methyladenosine,

1-Methyluric acid,
Cinnamic acid, Decenoylcarnitine,

Phenacetylglutamine
(all in urine)

[158]

Human
Various etiologies, incl.

HBV, HCV, alcohol,
NASH

Cirrhosis
US vs. Turkish (TR)

population
(dietary)

1H NMR

Lactate (Controls and
Decompensated; TR>US),

Glucose (Controls and
Decompensated; US>TR )

(all in plasma)

[159]

Human Alcohol

Acute-on-chronic
liver failure (ACLF)

vs. stable
compensated or
decompensated
cirrhosis (CLF)

1H NMR

ACLF > CLF:
3-Hydroxybutyrate, Lactate,

Acetoacetate, Pyruvate,
Glutamine, Glutamate, Creatinine,

Tyrosine, Phenylalanine
(all in serum)

[160]

Human Causes not stated
Stable cirrhosis (C)
± encephalopathy
(E) (C±E) and HV

1H NMR

C±E > HV:
Lactate, Pyruvate, Alanine,

Threonine, Glycine, Aspartate,
Acetoacetate,

3-Hydroxybutyrate,
Phenylalanine, Tyrosine,
Methionine, Glutamate,

Methylamine, Dimethylamine,
TMAO, Glycerol

C±E < HV:
Valine, Glutamine, Histidine,

Arginine
E > HV:

Leucine, Isoleucine
C > HV:

Myoinositol
(all in plasma)

[161]
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Table 3. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human Alcohol, HBV or
HCV, NASH

Hepatic
encephalopathy

(HE), cirrhosis (C),
neurological

patients without
liver disease

(NP), HV

UPLC-Orbitrap
MS

HE > NP:
13x N-Acetyl metabolites,
5x Glutamate/Glutamine

metabolites, 4x Methionine
metabolites, 4x Phenylalanine

metabolites, 6x Tryptophan
metabolites, 6x Fatty acid

metabolites, Pyruvate, 5x Amino
acid derivatives, 2x Dipeptides, 3x

Bile acids, 3x Nucleoside
derivatives, Dihydrothymine, 4x

Alcohols and polyols,
Ribitol/Arabitol, Cortisol,

Pyridoxic acid, Phenyl sulfate
HE < NP:

Alanine, Taurine, Anhydro
sorbitol, Levulinic acid

(both in CSF and plasma)
HE > C:

9x N-Acetyl metabolites,
Phenacetylglutamine,

2x Methionine metabolites,
2x Phenylalanine metabolites,

3x Tryptophan metabolites,
4x Fatty acid metabolites,
Citrulline, 2x Dipeptides,

Taurocholic acid, 3x Nucleosides
and derivatives, Anhydro sorbitol,

2x Alcohols, Ribitol/Arabitol,
Cortisol, Phenyl sulfate

HE < C:
Methionine sulfoxide,

Levulinic acid
(all in plasma)

[162]

Human Chronic hepatitis C Fibrosis (F4 vs. F0) 1H NMR

F4 vs. F0:
VLDL↑ Citrate↑ Glucose↑

Phenylalanine↑ LDL↓ HDL↓
Choline↓ Acetoacetate↓

Isoleucine/Leucine↓
Creatinine/Creatine↓ Glutamate↓
Glutamine↓ Asparagine↓ Valine↓

Lysine↓ Cysteine↓ Glycerol↓
Arginine↓ Histidine↓
3-Hydroxybutyrate↓

(all in serum)

[163]

Rat TAA Fibrosis/Cirrhosis
vs. controls

1H NMR

3-Hydroxybutyrate↑
Acetoacetate↑ Butyrate↑ Choline↑

Glycine↑ Alanine↑ Leucine↑
Lysine↑ Succinate↑ Valine↑
2-Oxoglutarate↓ Acetate↓

Adipate↓ Dimethylglycine↓
Lactate↓ Pyruvate↓ TMAO↓

Tyrosine↓
(all in serum)

1-Methylhistidine↑
3-Hydroxybutyrate↑ Acetate↑
Alanine↑ Butyrate↑ Choline↑

Creatinine↑ Hippurate↑
Isoleucine↑ Pyruvate↑ Succinate↑
Taurine↑ TMAO↑ Tryptophan↑

Valine↑
2-Hydroxybutyrate↓

2-Oxoglutarate↓ Acetoacetate↓
Acetone↓ Adipate↓ Citrate↓

Dimethylamine↓
Dimethylglycine↓ Fumarate↓
Methylamine↓ Oxaloacetate↓
Sarcosine↓ Trimethylamine↓

(all in urine)

[165]
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Table 3. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Rat Dimethylnitrosamine Fibrosis UPLC-QTOFMS

LPC(18:1) ↑ LPC(18:2) ↑
LPC(20:4)↓ FA(22:6)↓

FA(20:4)↓ FA(18:1)↓ FA(18:2)↓
(all in serum)

[166]

Rat Dimethylnitrosamine Fibrosis UPLC-QTOFMS

Cholic acid↑ Deoxycholic acid↑
Ursodeoxycholic acid↑

Chenodeoxycholic acid↑
Hyodeoxycholic acid↑ Lithocholic

acid↑ Taurocholic acid↑
Taurodeoxycholic acid↑

Tauroursodeoxycholic acid↑
Taurochenodeoxycholic acid↑
Taurohyodeoxycholic acid↑

Taurolithocholic acid↑ Glycocholic
acid↑ Glycodeoxycholic acid↑
Glycoursodeoxycholic acid↑

Glycochenodeoxycholic acid↑
(all in serum)

[167]

Rat CCl4 Fibrosis UPLC-QTOFMS
Cervonoyl ethanolamide↑

β-Muricholic acid↑
(all in serum)

[168]

Rat CCl4
Decompensated
cirrhosis/ascites

UPLC-Orbitrap
MS

Alanine↑ Phenylalanine↑
Tryptophan↑ Tyrosine↑

Nutriacholic acid↑ LPC(16:0)↓
LPC(18:0)↓ LPC(18:2)↓ FA(20:5)↓

Carnitine↓ Creatine↓ Valine↓
Isoleucine↓ Arginine↓

(all in serum)
Glutamyltaurine↑

4,6-Dihydroxyquinoline↑
Phenylalanine↑ TMAO↑
3-Methyldioxyindole↑

1,2,3-Trihydroxybenzene↑
Tryptophan↑ Histamine↑

Tyrosine↑ Pantothenic acid↑
2-Phenylglycine↑ Proline↑
N6,N6,N6-Trimethyllysine↑

Dopamine↑ Phenacetylglycine↓
Creatinine↓ Creatine↓

4-Acetamidobutanoate↓ Indole↓
Carnitine↓

(all in urine)

[169]

Rat CCl4 Fibrosis UPLC-QTOFMS

12-Ketochenodeoxycholic acid↑
PI(18:0/16:0) ↑ Cervonoyl

ethanolamide↑ LPC(18:2)↑
LPC(22:6)↑ PC(18:1/16:0)↑

PC(18:2/16:0)↑ PC(20:4/18:2)↑
PC(22:6/18:1)↑ Creatine↓

Sphinganine↓ Dihydroceramide↓
8-HETE↓ LPC(18:0)↓ LPC(20:1)↓

LPC(22:0)↓
(all in serum)

[170]

Rat Dimethylnitrosamine Fibrosis UPLC-Orbitrap
MS

Leucine↓ LPC(16:0)↓ LPC(16:0)↓
LPC(18:0)↓ LPC(20:1)↓ LPC(20:4)↓

LPC(22:6)↓ FA(16:0)↓ FA(18:0)↓
FA(20:4)↓ FA(20:5)↓ FA(22:6)↓

All-trans-retinoic acid↓ Bilirubin↓
(all in serum)

[172]

Rat CCl4 Fibrosis 1H NMR

2-Oxoglutarate↓ Citrate↓
Dimethylamine↓ Creatinine↓

Phenacetylglycine↓ Hippurate↓
Taurine↑

(all in urine)

[123]

Rat CCl4 Fibrosis 1H NMR

Glucose↓ Lactate↑ Fumarate↓
NADPH↓ Succinate↑ Acetate↑

3-Hydroxybutyrate↓
UDP-glucose↑

UDP-galactose↑
(in serum and liver)

[125]
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5.4. NAFL and NASH

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder in Western countries,
affecting 17–46% of adults. NAFLD includes two pathologically-distinct conditions with different
prognoses: nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). “NAFLD is
characterized by excessive hepatic fat accumulation, associated with insulin resistance (IR), and defined
by the presence of steatosis in >5% of hepatocytes according to histological analysis“ [173]. The diagnosis
of NAFLD requires the exclusion of chronic alcohol consumption as a cause. NASH is characterized by
the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without
fibrosis [174]. NASH can progress to cirrhosis in up to 20% of cases [173,174]. The definitive diagnosis of
NASH requires a liver biopsy [173]. A number of biomarkers of NAFLD have been evaluated, including
fatty liver index (FLI), NAFLD liver fat score (NAFLD-LFS), hepatic steatosis index (HSI), visceral
adiposity index (VAI), and triglyceride x glucose (TyG) index. When steatosis was histologically
graded as none (<5%), mild (5–33%), moderate (33-66%), and severe (>66%), with the exception
of VAI, all biomarkers showed a linear trend across the steatosis grades. The authors concluded,
“More research is needed to identify truly independent and quantitative markers of steatosis” [175].
Metabolomics, therefore, has a role to play in delivering biomarkers for steatosis and its progression.
Recently, it has been argued that NAFLD patients should be classified into different subtypes dependent
upon perturbation of the principal pathways regulating fatty acid homeostasis. Specific serum lipid
signatures can be associated with individual mechanisms of progression from steatosis to NASH,
and possibly lead to novel and specific NASH therapies [176]. Such metabolomic approaches that help
refine definition of the disease phenotype have now been integrated into orthogonal technologies,
such as genomics, proteomics, structural biology, imaging [177], and metagenomics.

Investigation of both NAFL and NASH in a metabolomic context is a relatively recent endeavor.
Because of the nature of the disease, many investigators have focused on the lipidome. Until a decade
ago, the plasma lipidome of NAFLD and whether or not NASH expressed a distinct lipidomic signature
were unknown. An early US study examined plasma lipid profiles in both NAFL and NASH compared
to healthy controls (HV), and reported significantly increased monounsaturated fatty acids (MUFAs)
with an altered pattern of polyunsaturated fatty acids (PUFAs) in both NAFL and NASH. Moreover,
the progression of NAFL to NASH was characterized by an increase in the lipoxygenase metabolites
5-HETE, 8-HETE, and 15-HETE. Interestingly, the nonenzymic oxidation product of arachidonic acid,
11-HETE, was significantly increased only in NASH [178]. A Spanish group reported an altered
pattern of serum phosphocholines and potentially antioxidant lyso plasmalogens [PC(P-24:0/0:0) and
PC(P-22:0/0:0)] in NASH compared to stage 3 hepatic steatosis. Several sphingolipids were also altered
in NAFLD compared with healthy subjects. Furthermore, arachidonic acid and glutamate were both
decreased in NASH. Metabolic profiling by these authors of an animal model for NAFLD (glycine
N-methyltransferase Gnmt-null mice) produced finding consistent with the patient observations [179].
Serum lyso plasmalogens are therefore potential biomarkers for NASH. Another US study of NAFL,
NASH and HV found that NAFLD patients had perturbed glutathione metabolism compared to HV,
with markedly higher conjugated primary bile acids in plasma. NASH patients displayed lower
long-chain fatty acids, higher carnitine and short-chain acyl carnitines, together with several other
metabolites. While the metabolomic fingerprints could distinguish NAFL or NASH from HV, they could
not distinguish between NAFL and NASH [180]. A 1H NMR-based study in China investigated NAFLD
patients and HV, together with mice fed a methionine- and choline-deficient (MCD) diet as a model for
NAFLD. Based upon both clinical and animal model findings, four potential biomarkers of NAFLD
were proposed: serum glucose, lactate, glutamate/glutamine, and taurine [181]. None of these “usual
suspects” provides a basis for evaluating the progression of NAFLD due to lack of specificity. A dietary
intervention study in US patients with NAFL examined the effect of insulin sensitivity on the plasma
metabolome in NAFL. The pattern of LPCs, in particular LPC(16:0), which was significantly lower in
insulin resistant NAFL patients (see Table 4), was put forward to potentially provide biomarkers for
NAFL-associated insulin resistance [182]. Serum BA concentrations have also been investigated in
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NASH and reported to be elevated both fasting and after a fatty breakfast designed to contract the
gall bladder. Elevated fasting BAs included secondary BAs, which are formed by dihydroxylation of
primary BAs by gut microbiota species belonging to the orders Bacteroides, Clostridium, and Escherichia,
which may be increased in the dysbiosis associated with NAFLD. Altered patterns of circulating BAs
in NASH may contribute to hepatic damage [183]. The pattern of BCAAs and acyl carnitines has
been investigated in liver samples from healthy subjects, NAFL, fatty NASH, and nonfatty NASH.
Hepatic valine was decreased in NAFL, and all BCAAs and phenylalanine were elevated in NASH,
with and without steatosis. Certain carnitine esters were elevated in NAFLD (see Table 4). The findings
were interpreted as due to oxidative stress and inflammation in the liver [184]. None of these findings
yielded a suitably specific biomarker of NASH or its progression. A US group examined whether or not
arachidonic acid-derived eicosanoids could distinguish between NAFL and NASH, since lipotoxicity is
a key component of the progression of NAFL to NASH. Several such lipids were altered between NAFL
and NASH, including elevated PGE2, 13,14-dihydro-15-keto-PGD2, 11,12-diHETrE, 14,15-diHETrE and
attenuated 15-HETE (Table 4). It was reported that 11,12-diHETrE, 13,14-dihydro-15-keto-PGD2 and
eicosatetraenedioic acid (20-COOH AA) were the top candidate biomarkers to distinguish NASH from
NAFL with an area under the receiver operating characteristic curve (AUROC) of 1 for 11,12-diHETrE
and 1 for the combination of 13,14-dihydro-15-keto-PGD2 and 20-COOH AA [185]. If confirmed
in other studies, these findings would have great potential as biomarkers for NASH in NAFLD.
Another potential distinction between NAFL and NASH are ketone bodies, such as acetoacetate and
3-hydroxybutyrate, which are produced in the liver from fatty acids. NASH patients were found to
have lower serum ketone bodies than NAFL patients, with a lower serum total free fatty acid level
(Table 4) [186]. Although these findings contribute to an understanding of NASH pathogenesis, they
are not useful for the generation of biomarkers of NASH. Examination of increasing severity of NAFL
in obese patients revealed α-ketoglutarate as the principal marker of NAFL (Table 4) [187]. With a
specificity of only 62.5%, α-ketoglutarate is unlikely to be a biomarker for NAFL. Patients undergoing
bariatric surgery that have a wedge liver biopsy taken routinely during surgery have been investigated
with lipidomics and metabolomics. Patients were classified histologically as non-NASH, non-NAFLD,
NAFL, and NASH. PNPLA3 I148M (isoleucine→methionine) variant was also determined that is
more common in NASH. Discovery and validation cohorts were also used. A strong negative
correlation was reported between the number of TG double bonds and the TG concentrations in NASH
relative to non-NASH livers, for both discovery and validation cohorts. A “NASH ClinLipMet score”
was developed based upon (i) clinical variables, (ii) PNPLA3 genotype, (iii) lipidomic data and (iv)
metabolomic data. This was highest performing combination biomarker with sensitivity of 85.5% and
specificity of 72.1% for NASH (Table 4) [188]. In terms of biomarker discovery, the large amount of
data were derived only from liver biopsies, and so there are no indications how parts (iii) and (iv) of
the aforementioned NASH ClinLipMet score relate to, and can be determined from, serum or plasma.
A small clinical study was conducted in liver samples from control, NAFL, and NASH patients in which
lipidomic analyses were conducted in liver biopsies. These authors identified a signature comprising
32 lipids that distinguished NASH with 100% specificity and sensitivity. This signature comprised
various phospholipids, sphingolipids, fatty acids, triglycerides, and cholesteryl esters, measured by
LC-MS, which we do not believe could represent a viable biomarker for NASH due to its complexity.
Furthermore, five fatty acids were identified as accumulating in NASH that were demonstrated to be
toxic to HepG2 cells and primary human hepatocytes in culture (see Table 4) [189]. A Chinese urinary
metabolomics study compared NAFL patients with normal liver function with NASH patients with
abnormal liver function. Many discriminating metabolites were reported (Table 4) [190], although
none displayed a large fold-change or was seen as highly specific to NASH. An elegant study was
reported containing several large clinical cohorts containing biopsy-proven NASH patients that also
had liver fat determined by CT. Serum metabolomics identified the top metabolite associated with
liver fat as a mass of 202.1185+. Databases contained a large number of hits for this mass and so a
GWAS strategy was adopted yielding SNPs for the AGXT2 gene whose expressed enzyme produces
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a metabolite, dimethylguanidino valeric acid (DMGV), which matched this mass [191]. In terms
of a biomarker for NASH or NAFL, DMGV displayed a wide overlap between control and NASH
with approx. 20% higher mean value for NASH. This is not a viable biomarker and perhaps other
ions in their “Top-20” [191] should be investigated. Other investigators chose a single biomarker for
progression of NAFL to NASH, i.e. pyroglutamate (5-oxoproline), based upon a serum metabolomic
study. 5-Oxoproline had a higher AUROC value than adiponectin, TNF-α, or IL-8 [192]. The utility
of 5-oxoproline as a biomarker for NASH is doubtful, as it is often found to be elevated in relation
to hepatic oxidative stress. We have recently reported a highly statistically significant upregulation
of 5-oxoproline in HepG2 cells treated with the experimental anti-HCV drug [193], in the liver of
whole-body γ-irradiated mice [194] and in γ-irradiated HepG2 cells [195].

An in vivo MRS technique has been applied to patients with biopsy-proven NAFL or NASH.
Both high-field 1H and ultra-high-field 31P MRS were employed. Many MRS alterations correlated
with NASH, mostly with advanced fibrosis, e.g. phosphoethanolamine/total phosphorus (TP) ratio.
ATP/TP declined in advanced fibrosis and ATP flux was lower in NASH [155]. While these rapid
noninvasive techniques are useful in a research setting, it is still premature to evaluate their diagnostic
potential for NASH. A lipidomic study of patients with chronic hepatitis B virus infection (CHB)
with and without NAFLD has been conducted in China. Monounsaturated triacylglycerols (TGs)
were found more commonly in NASH patients than non-NASH patients [196]. However, there was
considerable overlap between these groups, and examination of the raw data does not support the
specificity of monounsaturated TGs, with both saturated and diunsaturated TGs associated with NASH.
Patients with steatosis are known to have dysregulation of branched-chain and aromatic amino acids.
A metabolomic, transcriptomic and metagenomic study of morbidly obese women with and without
steatosis has been reported. The plasma metabolite phenylacetic acid produced from phenylalanine
by gut microbiota was the most strongly correlated metabolite to steatosis. Mechanistic studies in
human hepatocytes and in mice confirmed this association [197]. Using biopsy-proven patients with
normal liver (NL), NAFL, and NASH, serum lipidomics was used to define the pattern of TGs in all
three groups. Triglycerides were elevated in the order NAFL > NL ≥ NASH. Of the 28 TGs measured,
TG(46:0), (48:0), (53:0), (44:1), (48:1), (49:1), (52:1), (53:1), (50:2), (54:5), and (58:2) were always NAFL >

NL and NASH < NAFL. Satisfactory AUROC values were obtained for NAFLD vs. NL. Exclusion of
patients with glucose > 136 mg/dL improved the sensitivity and specificity for NASH vs. NAFL [198].
As with all studies of this nature, there was considerable overlap between the three different clinical
states in serum metabolite profiles. A lipidomic investigation in Greece reported differences between
NASH, NAFL, and healthy subjects for several lipid groups and for certain free fatty acids in serum
(Table 4). The authors proposed that their bioinformatic methods could distinguish between NASH,
NAFL, and healthy status based upon the determination of 36 lipids, 61 glycans, and 23 fatty acids.
Moreover, the authors stated that they could differentiate with very high accuracy (up to 90%) using
10–20 total variables between these three conditions. They also reported that they could robustly
discriminate between the presence of fibrosis or not using a model containing 10 lipid species [199]. It is
unclear to us at this time how such a complex procedure could be adapted to routine clinical diagnosis.

A large study in Germany measured plasma and urine metabolomic profiles across a wide range
of liver fat content (LFC) that had been determined by MRI in 769 selected nondiabetic patients. A wide
number of metabolites correlated both positively and negatively with LFC (Table 4). Usual positive
associations included BCAAs and aromatic amino acids and their metabolites. A more unusual
metabolite correlating with LFC was 7α-hydroxy-3-oxo-4-cholestenoate [200], which is a metabolite
in the primary bile acid synthesis pathway. Unfortunately, its utility as a potential biomarker for
NAFLD is reduced by its occurrence in sterol 27-hydroxylase deficiency, familial hypercholanemia
and Zellweger syndrome. A Mexican study targeted 31 acyl carnitines and 7 amino acids in relation
to obesity and NAFLD. No biomarkers of NAFLD per se were reported [201]. A search for plasma
biomarkers of visceral adipose tissue and hepatic triglyceride content (HTGC) has been reported.
A significant number of plasma phospholipids were associated with HTGC (Table 4). Similar findings
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have been reported by other groups. The aromatic amino acids tyrosine and tryptophan were also
positively associated with HTGC [202]. No useful biomarkers for NAFL emerged from this study.

As stated earlier, redox changes in the liver can contribute to both steatosis (NAFL) and
hyperuricemia (HU). It has been observed that HU often progresses together with NAFLD, and this
has stimulated a metabolomic investigation of HU, HU that progressed to HU with NAFLD within
one year, HU with NAFLD, and healthy controls. The principal serum changes were upregulated
phosphatidic acid and CE(18:0) and downregulated inosine (Table 4) during progression from HU to
HU plus NAFLD [203]. Unfortunately, the exact nature of the phosphatidic acid was not given by the
authors, although the empirical formula cited corresponded to PA(16:0/16:0), the exact mass given did
not, otherwise this could have been a potential biomarker for NAFLD.

A dual investigation in human and mouse liver was conducted in which GC-MS analysis of
both human discovery and validation sets found two hepatic metabolites negatively correlated with
nonalcoholic steatosis score, i.e., nicotinic acid and hydroquinone. When HFD was supplemented with
nicotinic acid or hydroquinone, nicotinic acid prevented fat accumulation in mouse liver and reduced
serum ALT (Table 4). The authors discussed the use of nicotinic acid as a lipid lowering agent and the
potential of future such studies in identifying novel therapeutic targets for NAFLD [204]. Another dual
human and mouse liver investigation conducted a metabolomic and lipidomic analysis of Mat1a-KO
and WT mouse liver and serum. MAT1A synthesizes the methylation cofactor S-adenosylmethionine.
Mat1a-KO mice spontaneously develop steatohepatitis. Based upon the Mat1a-KO metabolome that is
associated with NASH, serum of biopsy proven NAFLD patients was also analyzed and compared with
Mat1a-KO mouse findings. The metabolomic signature of these mice, comprising high concentrations
of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, was present in serum of
49% of NAFLD patients, leading to two subtypes of patient, so-called M-subtype and non-M-subtype.
Metabolite patterns also distinguished NAFL from NASH. Potential biomarkers might be used to
monitor disease progression and identify novel therapeutic targets [205].

A metabolomic study of Chinese NAFLD patients with and without type-2 diabetes mellitus
(T2DM) reported elevated bilirubin, various amino acids, and acyl carnitines, together with
oleamide [206]. Many of these metabolic changes were confirmatory of published studies. The elevated
acyl carnitines reported are consistent with impaired long-chain fatty acid β-oxidation. Interestingly,
we had previously reported a three-fold elevation of plasma oleamide in HCV-positive patients versus
HCV-negative subjects [207]. Apparently, these authors did not test their patients for HCV, despite the
high prevalence of HCV in liver disease patients in China [208].

The metabolomics of NAFLD has also been investigated in children and adolescents. A noninvasive
breath test was employed to examine 21 volatile organic compounds (VOCs). Compared with
children with a normal liver, children with NAFLD had significantly greater breath concentrations of
acetaldehyde, acetone, isoprene, pentane, and trimethylamine. It is highly likely that the gut microbiota
plays a role in the generation of both acetaldehyde and trimethylamine. We agree with the authors that
breath testing represents a potential for screening with diagnostic biomarkers of pediatric NAFLD [209].
However, many of these VOCs may not be specific to NAFLD because of the 17 VOCs identified in
the caecal contents of mice, eight, including acetaldehyde, were reported for mice fed either the MCD
diet or normal chow [210]. An Italian study recruited children with biopsy-proven NAFLD (64) and
matched healthy controls (64). HPLC was used to measure oxidative stress markers that arose from
excessive consumption of GSH [211]. In obese Hispanic-American adolescents, with and without
NAFLD, untargeted high resolution mass spectrometry demonstrated changes in lipid and amino
acid biochemistry with a particular effect on tyrosine metabolism (see Table 4) [212]. The effect of
NAFLD with and without obesity, together with small intestine bacterial overgrowth, on the urinary
metabolome was examined in Italian children. Data were reported on multiple perturbed host and
gut microbiota pathways (Table 4), and in particular, on elevated urine glucose concentrations in
NAFLD [213]. Again, none of the reported changes met criteria for a diagnostic biomarker, in particular,
the biochemical distinctiveness of the findings. A further Italian study investigated obese adolescents
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with and without NAFLD. Plasma metabolomics established increases in branched-chain and aromatic
amino acids, together with certain acyl carnitines in NAFLD subjects (Table 4) [214]. Although one
of the elevated metabolites in NAFLD (hydroxydecenoylcarnitine) was an unusual finding, the fold
difference between the two groups (±NAFLD) was small with large variances and a borderline statistical
significance, reducing the opportunity to develop this as a biomarker. Obese adolescents with and
without NAFL and with and without metabolic syndrome (MetS) have been studied for their salivary
metabolomic changes. Several fatty acids and sugars were reported to differ between these groups
(Table 4) [215]. How NAFLD was diagnosed in adolescents, whether by ultrasound or liver enzyme
elevations, made a significant difference to the metabolomic findings, especially with lipid profiles,
and amino acid and ketone body plasma concentrations [216]. Another NAFLD study in children and
adolescents reported changes in certain plasma amino acids and phospholipids (Table 4). These authors
generated a model using random forests machine learning with a sensitivity of 73% and specificity of
97% for detecting NAFLD. Random forests was applied to a combination of metabolite and clinical
data, such as waist circumference, whole-body insulin sensitivity index (based on an oral glucose
tolerance test) and blood triglyceride level [217].

Investigations in animal models have been used frequently to understand the mechanisms of
NAFLD and to find biomarkers for disease progression. A mechanistic investigation in MCD diet
fed mice with NASH, using UPLC-QTOFMS, reported significant decreases in several serum LPCs
with marked increases in tauro-β-muricholate, taurocholate and 12-HETE compared with control mice.
These results could be explained by the observed up- and down-regulation of several enzyme and
transporter genes. The authors concluded that phospholipid and bile acid metabolism is disrupted in
NASH, probably due to enhanced inflammatory signaling in the liver [218]. This group conducted
a second study with mice fed MCD, in which they reported an increase in serum oleic and linoleic
acids and of nonesterified fatty acids that they attributed to enhanced fatty acid release from white
adipose tissue in NASH. They demonstrated that this was due to methionine deficiency and not choline
deficiency [219]. Another group fed mice a different NASH-inducing diet based upon lard, cholesterol,
and cholic acid. Although this was essentially a proteomic investigation, various key metabolites
were measured in liver extracts and found to be altered, including predictable lipid changes, but also
perturbations in methionine cycle intermediates (Table 4) [220]. Another strategy for the investigation
dietary-induced NASH was reported, whereby livers from mice with a disrupted LDL receptor gene
(Ldlr-null) that had been fed a western diet (WD; 17% energy as protein, 43% as carbohydrate, 41% as
fat, and 0.2% as cholesterol; supplemented with olive oil) were examined. Ldlr-null mice fed regular
chow served as controls. WD livers displayed a histology and gene expression profile consistent with
NASH. Experiments were conducted by replacing the olive oil supplementation with DHA (22:6n-3).
As Table 4 shows, multiple lipid classes were either up- or downregulated by WD + olive oil in this
genetic/dietary mouse model of NASH. DHA dietary supplementation was effective at protecting
against the effects of WD in this mouse line [221]. The effect of NAFLD progression on hepatic BA pools
and 70 genes involved in BA homeostasis have been examined in human liver samples. Expression of
CYP7B1 mRNA and protein were highly upregulated in NASH, together with clear changes in glycine-
and taurine-conjugated BAs away from the classical BA synthesis pathway towards the alternative
BA synthetic pathway (Table 4). These findings were interpreted as an attempt by the liver in NASH
to minimize hepatotoxicity [222]. Other investigators have used a 16-week high-fat diet (HFD with
60% calories from fat) in WT mice compared with controls on normal chow (12.7% calories from fat).
This HFD regimen produced NAFLD, which was then investigated by 1H NMR metabolomics in
serum, liver and urine. Elevations in serum and liver glucose and lipids were reported, together with a
decreased urinary excretion of amino acids (BCAAs, aromatic amino acids), energy metabolites and gut
microbiota metabolites [223]. A similar study has been reported in which the mouse sera were analyzed
by UPLC-QTOFMS and GC-MS. Glucose was elevated and GSH attenuated after HFD-induced NAFL.
Several serum metabolites were altered and related to oxidative stress, inflammation, and mitochondrial
dysfunction (Table 4) [224]. Although this was a detailed account of the effects of HFD-NAFLD on
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the metabolome, the findings do not lend themselves readily as biomarkers of NAFLD for reasons of
specificity. A different diet feeding regimen has been used to generate NAFLD in the mouse without
obesity. This procedure used a high-fat, high-cholesterol, cholate diet (HFDCC) and both liver and
plasma were analyzed by GC-TOFMS and UPLC-QTOFMS. Total cholesterol and CE(16:1), (18:1), (18:2),
(18:3), (20:1), (20:3), (20:4), (22:5), (22:6) were elevated in liver, together with cholic acid, DGs, TGs,
CERs, SMs, LPCs, the PC/PE ratio, while PEs were downregulated. The nonlipid metabolites xylitol,
xanthosine, squalene, and phenylethylamine were elevated in liver tissue of HFDCC-fed mice. Citrate,
G-1-P, and saccharic acid were all downregulated in these livers. Subtle differences were reported for
plasma of HFDCC-fed mice, including elevated total cholesterol, CE(16:1), (18:1), (18:2), (18:3), (20:1),
(20:3), (20:4), (22:5), cholic acid, deoxycholic acid, CERs, SMs, and PEs, while FFAs, glycerol, TGs, and
LPEs were all diminished in pathological livers [225]. Xanthosine, the ribonucleoside of xanthine,
could be a potential biomarker when evaluated in patients. However, it was elevated in liver and its
levels in plasma were not reported. Moreover, xanthosine has been reported to be a urinary biomarker
for nephropathy in T2DM patients [226] thereby reducing its specificity.

A further means of producing features of NASH in the mouse is with 5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC). The three mouse strains A/J, C57BL/6J and PWD/PhJ were placed on a
diet supplemented with 0.1% DDC or a control diet for 8 weeks. Livers were analyzed for 44
metabolites by targeted MS methods and also subjected to proteomic and RNA-Seq analyses, which
showed that many pathways were altered by DDC treatment, in particular, arachidonic acid and
S-adenosylmethionine metabolism. However, after Bonferroni correction of their findings for multiple
comparisons, the following hepatic metabolites were elevated by DDC: putrescine, arginine, citrulline,
cAMP, 2-oxoglutarate, asparagine, and glutamate (Table 4). In silico modelling was conducted to
understand the effect of DDC on eicosanoid metabolism [227]. Livers from mice fed a HFD were
compared with controls in a wide-ranging lipidomics study that analyzed diacylglycerols (DAG),
cholesterol esters (CE), phospholipids, plasmalogens, sphingolipids, and eicosanoids. A large number
of differences between HFD and controls were observed (Table 4) [228]. Another NASH-generating
diet has been employed in mice, that of a high-trans-fat, high-fructose diet (TFD) for 8 weeks (steatosis)
and 24 weeks (NASH). These experiments sought to examine flux through the hepatic TCA cycle
using 13C NMR-based mass isotopomer analysis, which remained normal during steatosis but was
two-fold induced in NASH. In parallel to TCA cycle flux induction, ketogenesis was impaired and
hepatic diacylglycerols (DGs), ceramides (CERs) and long-chain acyl carnitines accumulated in the liver
(Table 4), suggesting inefficient disposal of free fatty acids. The authors concluded that accumulation
of “lipotoxic” metabolites could promote inflammation and the metabolic transition to NASH [229].
As serum or plasma was not analyzed, it is not known whether or not any of the accumulated lipids
associated with NASH were also present in the circulation and could be evaluated in patients as
potential biomarkers for NAFLD progression.

Correlations between specific gut microbiome species and plasma lipids in mice fed HFD that
developed NAFL or NASH. Bacteroides uniformis species decreased while Mucispirillum schaedleri
species increased in mice with NASH. Interestingly, Bacteroides uniformis correlated positively with
TGs and negatively with FFAs. Mucispirillum schaedleri correlated positively with FFAs, LPC(20:3),
LPC(20:4), and DG(16:1/18:2). Mechanistically, it was claimed that Bacteroides uniformis increased
specific TGs and decreased hepatic injury and inflammation in diet-induced mice [230]. Clearly, these
observations need to be independently evaluated and then investigated in NAFLD patients before
potential biomarkers can be proposed.

The db/db mouse model of leptin receptor deficiency is currently the most widely-used mouse
model of type-2 diabetes mellitus (T2DB). Another means of examining the metabolic pathways
associated with NAFL is to reverse the steatosis. Caloric restriction (CR) was applied to obese diabetic
db/db mice with insulin resistance and steatosis, which were also compared pre- and post-CR to
nondiabetic heterozygous db/m mice without insulin resistance and steatosis. Compared to db/m
mice, db/db mice had elevated hepatic ketone bodies, lactate, acetate, glutathione, and various
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glycerolipids, in particular, diglycerides and triglycerides, many of which were reversed by CR
(Table 4). The transcriptomic findings were consistent with these observations [231]. In addition to the
db/db mouse, a leptin-deficient obese mouse (ob/ob) has also been developed, which is a model for
NAFLD. Homozygous ob/ob mice have been compared with nonsteatotic heterozygous ob/+ mice
using high resolution magic-angle spinning (HR MAS) 1H NMR. 1H signals from lipids were highly
statistically significantly elevated in ob/ob livers, as expected. Several other molecules involved in
betaine (N,N,N-trimethylglycine) metabolism were altered (Table 4) [232].

Rats have also been fed a HFD to induce NASH and serum analyzed by
UPLC-QTOFMS. Elevated glucose, triglycerides and cholesterol were indicative of insulin
resistance. Altered lipid metabolites involved sphingomyelin (SM), phosphatidylcholine (PC),
13-hydroperoxy-9,11-octadecadienoic acid (13-HpODE), and fatty acids (FA) 20:3, 22:3, 20:1 and
phytomonic acid (11,12-methyleneoctadecanoic acid) (Table 4) [233]. This last fatty acid is an unusual
finding and, if confirmed, could be evaluated in human samples as a potential biomarker for NASH.
Another rat study designed to evaluate the effect of turmeric extract on experimental NASH compared
HFD-fed with control-fed rats. UPLC-QTOFMS analysis or serum revealed relatively few upregulated
metabolites and a much greater number of downregulated lipids, in particular several steroids,
including androgen and corticosteroid metabolites (Table 4) [234]. The only highly statistically
significant upregulated metabolite was the fatty acid FA(28:8), which has been described as a marine
ω-3 fatty acid [235] derived from dinoflagellate species [236]. If confirmed and a mechanism for
its formation in human liver by fatty acid elongases and desaturases can be described, this would
represent a potential NASH biomarker. A study was conducted comparing metabolomic profiles of
rat and human liver, and, of particular interest, MCD diet-fed rat liver (model for NASH) and liver
from NASH patients. Despite the large number of metabolic differences reported between treated
and control rat liver and NASH liver and healthy patient liver, very few metabolites corresponded
between MCD rat liver and human NASH liver. In fact, in the scores plot presented, healthy rat liver
was closer to diseased rat liver than to healthy human liver, which was itself closer to diseased human
liver. Asparagine, citrulline, and lysine, together with stearoyl carnitine, were the only metabolites
upregulated in both rat MCD liver and human NASH liver (Table 4) [237]. Interestingly, stearoyl
carnitine together with (9E)-octadecenoyl carnitine, docosapentaenoic acid and vitamin D2 were
elevated in serum of rats fed either HFD (NAFL), MCD diet (NASH), or HFD plus streptozocin
(NASH plus T2DM) [238]. These rat observations reduce the potential value of long-chain fatty acyl
carnitines, like stearoyl carnitine, as potential biomarkers for clinical NASH or NAFLD progression.
Another investigation was conducted in rats focusing on fatty acid profiles in blood cells and the liver
of rats fed either a control diet or a HFD/cholesterol diet. Correlations between certain MUFAs and
PUFAs were reported for both diets [239]. None of these fatty acids changes were specific enough to be
evaluated as biomarkers of NAFLD in patients. Finally, an investigation of the pattern of BAs in serum,
liver, and caecal contents was undertaken in rats fed HFD and control diet. Metagenomic analyses
established that hyodeoxycholate, which was decreased in both serum and caecal contents of rats
fed HFD, was related to the level of the Bacteroidetes phylum. The concentration of cholate that
was increased in the caecal contents of rats fed HFD, was correlated with levels of Firmicutes and
Verrucomicrobia phyla, but correlated inversely with Bacteroidetes [240]. As the BA pattern appeared to
be dependent upon the status of the gut microbiota, the data obtained were not useful for evaluation
as biomarkers of NAFLD.
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Table 4. Metabolomic and lipidomic biomarkers of NAFL and NASH.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human Obesity/metabolic syndrome NAFL and NASH
NAFL→NASH HPLC-TQMS

FA(14:0)↑ FA(16:0)↑
FA(14:1n5)↑ FA(16:1n7)↑
FA(18:2n6)↓ FA(18:3n6)↑

FA(20:3n6)↑
FA(22:6n3)/FA(22:5n3) in PC

and PE pools↓
5-HETE↑ 8-HETE↑

15-HETE↑
(all in plasma)

[178]

Human Nondiabetic. NAFLD
confirmed by liver biopsy NAFLD vs. HV UPLC-TQMS

GC-MS

Glycocholate↑
Taurocholate↑

Glycochenodeoxycholate↑
Homocysteine↑ Cysteine↑

GSH↓
Glutamylvaline↑
γ-Glutamylleucine↑

γ-Glutamylphenylalanine↑
γ-Glutamyltyrosine↑

Cysteine-glutathione-disulfide↓
Carnitine↑

Propionylcarnitine↑
2-Methylbutanoylcarnitine↑

Butanoylcarnitine↑
Tyrosine↑ Glutamate↑
Isoleucine↑ Leucine↑

Valine↑ Taurocholate↑
(all in plasma)

[180]

Human

Liver samples from normal
(17), steatosis (4), NASH

(fatty) (14) and NASH (not
fatty) (23)

NAFL→NASH UPLC
Orbitrap-MS

Taurocholate↑
Taurodeoxycholate↑

Glycochenodeoxycholate↑
Taurine↑

Cholic acid↓
Glycodeoxycholate↓

(all in liver)
Gene expression data

consistent with the above
(CYP7B1↑)

[222]

Human
Dietary intervention study,
unrelated healthy surgical

liver samples

NAFL (20
insulin-resistant/20

insulin sensitive)
vs. control

UPLC-TQMS
GC-MS

Insulin-resistant NAFL vs.
insulin-sensitive NAFL:
Total LPCs↓ LPC(16:0)↓

(all in plasma)

[182]

Human

NASH and healthy subjects
given high-fat meal to
stimulate gall bladder

contraction

Fasting and
postprandial serum

from NASH and
healthy subjects

UPLC-TQMS

NASH vs. control
(preprandial):

Total BAs↑ Glyco-BAs↑
Tauro-BAs↑

NASH vs. control
(postprandial):

Mainly Total BAs↑
Glyco-BAs↑

(all in serum)

[183]

Human
Normal, Steatosis, NASH

with steatosis, NASH
without steatosis livers

Normal, NAFL,
fatty NASH,

nonfatty-NASH

UPLC
Orbitrap-MS

Control→NAFL:
Acetyl carnitine↑

Lauroyl carnitine↑
Butanoyl carnitine↑
Palmitoyl carnitine↑

Hexanoyl carnitine↓ Valine↓
NAFL→NASH:

Leucine↑ Isoleucine ↑
Tyrosine↑ Valine↑

Phenylalanine↑
(all in liver)

[184]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human

Biopsy-proven NAFL,
biopsy-proven NASH and
normal controls with MRI

fat fraction <5%

Normal, NAFL and
NASH

UPLC-QTRAP
MS/MS

NAFL→NASH:
PGE2↑

13,14-dihydro-15-keto-PGD2↑
11,12-diHETrE↑

14,15-diHETrE↑ 15-HETE↓
[all AA-derived]
(all in plasma)

[185]

Human Obese normal liver, obese
NAFL and obese NASH

Normal, NAFL and
NASH

1H NMR

LDL-cholesterol↑ Alanine↑
Histidine↑ Phenylalanine↑

Tyrosine↑ Leucine↑
Free fatty acids↓ Citrate↓

3-Hydroxybutyrate↓
Acetoacetate↓
(all in serum)

[186]

Human Morbid obesity with and
without NAFL

Obesity without
NAFL, mild NAFL,

moderate NAFL,
severe NAFL

UPLC-LITMS
GC-TOFMS

Metabolon, Inc.

α-Ketoglutarate principal
plasma marker with

AUROC of 0.743, sensitivity
of 80%, specificity of 62.5%.

(all in plasma)

[187]

Human
Mouse

Liver biopsies from patients
with normal liver and

NAFLD
HFD, HFD + nicotinic acid,
HFD + hydroquinone, HFD
+ tert-butylhydroquinone

NASH vs. NAFL
vs. control GC-MS

Nicotinic acid and
hydroquinone negatively
correlated with steatosis

(NAS) score.
Nicotinic acid

supplementation of HFD
prevented fat accumulation
and improved serum ALT.

(all in liver)

[204]

Human
NAFLD, NAFLD + T2DM,

control, evaluated by
ultrasound

NAFLD, NAFLD +
T2DM, control UPLC-QTOFMS

NAFLD vs. control:
Proline↑ Phenylalanine↑

Oleamide↑ Bilirubin↑
Palmitoyl carnitine↑

LPC(20:5)↑ Lyso-PAF C-18↓
NAFLD + T2DM vs. control:

Leucine↑ Oleamide↑
LPC(14:0)↑ Bilirubin↑

Tetradecenoyl carnitine↑
Linoleoyl carnitine↑

Tetradecadienoyl carnitine↑
(all in serum)

[206]

Human

Hyperuricemia (HU),
HU+NAFLD, HU

progressed to HU+NAFLD,
healthy controls

HU, initial
HU+NAFLD,

initial
HU→outcome
HU+NAFLD,

healthy controls

UPLC-QTOFMS

HU vs. control:
Phosphatidic acid↑

3,4-Dihydroxyphenylglycol↑
Valine↑ CE(18:0)↑ Uric acid↑
Acetyl carnitine↑ Inosine↓

5-Hydroxyindoleacetic acid↓
5-Aminoimidazole ribotide↓
Pyrrolidonecarboxylic acid↓

Glycerophosphocholine↓
HU vs. outcome

HU+NAFLD:
Phosphatidic acid↑ Inosinic
acid↑ Tryptophan↑ Valine↑

Alanine↑ Lactate↑ CE(18:0)↑
Uric acid↑ Trimethylamine↑

Acetyl carnitine↑
5-Methoxyindoleacetic acid↑

Acetoin↑ Inosine↓
Kynurenine↓

5-Hydroxyindoleacetic acid↓
Pyrrolidonecarboxylic acid↓

4-Fumarylacetoacetate↓
Pregnenolone sulfate↓

(all in serum)

[203]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human

Bariatric surgery patients
with wedge liver biopsy
during surgery classified

histologically as non-NASH,
non-NAFLD, NAFL and
NASH. PNPLA3 I148M
variant also determined

(more common in NASH).
Discovery and validation

cohorts used.

non-NASH vs.
non-NAFLD vs.

NAFL vs. NASH

UPLC-QTOFMS
2D-GC-TOFMS

Strong negative correlation
between number of TG

double bonds to TG
concentrations in NASH
relative to non-NASH for

both discovery and
validation cohorts. A

“NASH ClinLipMet score”
was developed based upon

(i) clinical variables, (ii)
PNPLA3 genotype, (iii)
lipidomic data and (iv)

metabolomic data. This was
highest performing

combination biomarker with
sensitivity of 85.5% and
specificity of 72.1% for

NASH.
(all in liver)

[188]

Human Normal liver, NAFL liver,
NASH liver

NASH vs. NAFLD
vs. control
lipidomics

UPLC-TQMS
GC-MS

Thirty-two lipids
discriminated NASH with

100% sensitivity and
specificity. Accumulated

hepatotoxic lipids in NASH
included FA(14:0), FA(16:0),
FA(16:1n-7), FA(18:1n-7) and

FA(18:1n-9). Reduced in
NASH: FA(20:4n-6),

FA(20:5n-3), FA(22:6n-3),
total CER, total SM, total PI,
total PS, total PE, total PC.

(all in liver)

[189]

Human

Nondiabetic NAFL patients
with normal liver function,
NASH with abnormal liver
function, healthy controls.

NASH vs. NAFL
vs. control urines. LC-TQMS

NASH vs. control:
Lysine↑ Valine↑ Citrulline↑

Arginine↑ Threonine↑
Tyrosine↑ Leucine↑

Hippurate↑
3-Indoleacetate↑

5-Hydroxyindoleacetate↓
3-Indoleformate↓ Cortisol↓

NASH vs. NAFL:
Methyl xanthine↑

Tryptophan↑
3-Indoleacetate↑ Gluconate↑

Proline↓
(all in urine)

[190]

Human
Several large clinical cohorts

with CT-defined liver fat
plus NASH patients.

NASH vs. controls UPLC-Q-
Orbitrap-MS

Top metabolite correlated
with liver fat was 202.1185+,
which produced 24 hits in

HMDB. Dimethylguanidino
valeric acid (DMGV) chosen

on basis of GWAS, which
found SNPs for AGXT2 that

produces DMGV.
(all in plasma)

[191]

Human
NAFLD criteria met/not met

at baseline, after dietary
manipulation.

Non-NAFLD,
Non-NAFLD→

NAFLD, NAFLD→
Non-NAFLD

UPLC-QTOFMS

Phospholipid and
sphingolipid changes not of
great statistical significance.

Also lipid groups, not
individual lipids, given only.

(all in serum)

[241]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human
NAFL and NASH based

upon liver biopsy,
healthy controls.

NASH vs. NAFL
vs. controls

HPLC-
Orbitrap-MS

Five metabolites increased
control→NAFL→NASH –

Uracil, α-Linolenic acid
(all-cis-9,12,15-octadecatrienoic
acid), Glutamate, Glutamine

and 5-Oxoproline, which
was chosen as a biomarker
with a better AUROC for

NASH vs. NAFL, than
adiponectin,

TNF-α, or IL-8.
(all in serum)

[192]

Human NAFL and NASH confirmed
by liver biopsy NASH vs. NAFL

High-field 1H
MRS and

ultra-high-field
31P MRS
(in vivo)

Many MRS alterations
correlated with

NAFL→NASH, mostly with
advanced fibrosis, e.g.

phosphoethanolamine/total
phosphorus (TP) ratio.
ATP/TP↓ in advanced
fibrosis and ATP flux↓

in NASH

[155]

Human

Chronic hepatitis B (CHB)
with biopsy-proven NAFLD

and without NAFLD,
healthy controls

CHB +NAFLD vs.
CHB-NAFLD vs.

controls
UPLC-QTOFMS

Most neutral lipids and
ceramides were elevated in
CHB+NAFLD but decreased
in CHB-NAFLD vs. healthy
controls. Monounsaturated
TGs were a good predictor

of NASH, superior to
cytokeratin-18 or ALT.

[196]

Human Hepatic steatosis in
morbidly obese women

Metagenomic
signature of

hepatic steatosis

1H NMR (urine
and plasma)

UPLC-TQMS
(plasma)

Microbiota metabolite
produced from

phenylalanine, phenylacetic
acid (PAA) associated

with steatosis.

[197]

Human
Biopsy-proven subjects with

normal liver (NL), NAFL
and NASH

NASH vs. NAFL
vs. NL discovery

and validation
cohorts

UPLC-QTOFMS

Triglycerides are elevated
NAFL > NL ≥NASH. Of the
28 TGs measured, TG(46:0),
(48:0), (53:0), (44:1), (48:1),
(49:1), (52:1), (53:1), (50:2),

(54:5) and (58:2) were always
NAFL > NL and NASH <

NAFL.
(all in serum)

[198]

Human

Large study of 769
nondiabetic patients with
liver fat content measured

by MRI and correlated with
metabolite profiles of urine

and fasting plasma

613 plasma and 587
urine samples

across a range of
liver pathologies

(34.7% with
steatosis)

UPLC-LITMS
1H NMR

Associations in plasma
with LFC:

BCAAs↑ Aromatic amino
acids↑ Dipeptides↑ Proline↑
Tryptophan↑ Indoleacetate↑

Urate↑ Piperine↑
7α-Hydroxy-3-oxo-cholestenoate↑

Ether-PCs↓
3-Phenylpropionate↓ Proline

betaine↓
Associations in urine

with LFC:
BCAA derivatives↑ Lactate↑

Isovalerylglycine↓
Isobutyrylglycine↓

γ-Glutamylthreonine↓
4-Vinylphenol sulfate↓

Hippurate↓
Cinnamoylglycine↓

[200]



Metabolites 2020, 10, 50 37 of 58

Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human NAFLD determined by
hepatic ultrasound

BMI < 25 vs. BMI >
30 vs. BMI > 30

with NAFLD

TQMS for 31
acyl carnitines
and 7 amino

acids

Family history predicted
obesity correlating with

amino acids that contributed
to an increase in specific acyl

carnitines. Excess FFAs
related to obesity were

associated with NAFLD.

[201]

Human

Patients with normal fasting
glucose. Visceral adipose
tissue (VAT) assessed by
MRI. Hepatic TG content
(HTGC) determined by

proton-MR spectroscopy.

Range of VAT and
HTGC ESI-FIA-MS/MS

Associated with HTGC:
LPC(14:0), PC(28:1),

PC(30:0), PC(32:1), PC(32:2),
PC(34:1), PC(34:3), PC(34:4),
PC(36:1), PC(36:2), PC(36:3),
PC(36:6), PC(38:3), PC(38:5),
PC(40:4), PC(40:5), SM(22:3),

Tryptophan, Tyrosine
(all in plasma)

[202]

Human

NAFL and NASH
determined by liver biopsy

and healthy controls by
ultrasound and liver

enzymes

NASH vs. NAFL
vs. controls

UPLC-Orbitrap-MS
GC

Lipid group trends:
DG: NASH > NAFL >

healthy
PG: NASH ≈ NAFL >

healthy
PA: NASH ≈ NAFL >

healthy
AcCa: NASH < NAFL ≈

healthy
CE: NASH < NAFL <

healthy
LPC: NASH < NAFL ≈

healthy
SM: NASH < NAFL ≈

healthy
FA(16:0): NASH > NAFL >

healthy
FA(16:1n-7cis): NASH >

NAFL > healthy
FA(18:1n-9cis): NASH >

NAFL > healthy
FA(18:2n-6): NASH < NAFL

< healthy
FA(20:4n-6): NASH < NAFL

< healthy

[199]

Human

Children, overweight or
obese, with or without

clinical/radiological signs of
NAFLD

NAFLD vs. control

Selective ion
flow tube mass
spectrometry

(SIFT-MS)

Acetaldehyde↑ Acetone↑
Isoprene↑ Pentane↑

Trimethylamine↑
(all in breath)

[209]

Human
Children with

biopsy-proven NAFLD and
matched healthy controls

NAFLD vs. control HPLC
Homocysteine↑ Cysteine↑

CysGly↑ GSH↓
(all in plasma)

[211]

Human
Children with obesity and
NAFL confirmed by MRS

and matched obese controls
NAFL vs. control UPLC-Q-

Orbitrap-MS

Tyrosine↑ Glutamate↑
Octanoic acid↑ Linoleic

acid↓
(all in plasma)

[212]

Human
Children with obesity,

NAFL, NASH and
healthy controls

NASH vs. NAFL
vs. control GC-MS

1-Butanol↑ (in NAFL)
1-Pentanol↑ (in NAFL) ↓ (in
NASH) Phenol↑ (in NAFL)
2-Butanone↑ (in NAFL and

NASH)
4-Methyl-2-pentanone↓ (in

NAFL)↑ (in NASH)
(all in feces)

Metagenomics also
conducted. Correlations
with NAFLD and certain

VOCs reported

[242]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Human Children with NAFLD, with
or without obesity

Obese − NAFL,
obese + NAFL,
normal weight

healthy controls

GC-MS

NAFL vs. control:
Glucose↑

1-Methylhistidine↑
Pseudouridine↑ Glycolic
acid↑Mannose↓ p-Cresol

sulfate↓ Kynurenine↓
Hydroquinone↓ Adipate↓

Phenylacetic acid↓
Small intestine bacterial

overgrowth (SIBO):
Glycolic acid↑Mannose↑
Valine↓ p-Cresol sulfate↓

Butanoate↓ Adipate↓
(all in urine)

[213]

Human
Children with obesity, with

and without NAFLD
assessed by MRI

Obese + NAFLD vs.
obese − NAFLD UPLC-QTRAP-MS

Isoleucine↑ Leucine↑
Valine↑ C4-carnitine↑

C5-carnitine↑
C14:1-OH-carnitine↑
Tryptophan↑ Lysine↑
Glutamate↑ PC(32:1)↑

(all in plasma)

[214]

Human

Children with obesity, with
and without NAFL assessed

by ultrasound (US), with
and without metabolic
syndrome (MetS) and

nonobese controls

Obese + NAFL vs.
obese − NAFL

Obese + MetS vs.
obese −MetS

GC-MS

Obese − NAFL vs. controls:
Palmitate↑Myristate↑ Urea↑

N-Acetylgalactosamine↑
Maltose↑ Gluconate↑

Isoleucine↑
Hydroxybutanoate↓Malate↓
Obese + NAFL vs. controls:

Laurate↑Maltose↑
(all in saliva)

[215]

Human Adolescents with NAFLD
assessed by US or ALT/AST

US vs. ALT vs.
AST diagnostic

methods

Biochemical
lipid analysis

1H NMR

Many differences in lipid
profiles, amino acids
(alanine, glutamine,

histidine; BCAAs; aromatic
amino acids) and ketone

bodies (acetate, acetoacetate,
β-hydroxybutyrate)

(all in plasma)

[216]

Human
Adolescents with obesity

and with or without NAFLD
confirmed by MRI

NAFLD vs.
non-NAFLD

UPLC-Q-
Orbitrap-MS

Leucine/Isoleucine↑
Tryptophan↑ Serine↓

Dihydrothymine↓
LPE(20:0)↓ LPC(18:1)↓

(all in plasma)

[217]

Human

Children with or without
NAFLD confirmed by

ultrasound and
liver enzymes

NAFLD vs.
non-NAFLD GC-MS

24-h Urinary steroid profiles:
Cortisol (obese controls)↑

Tetrahydrocortisone
(NAFLD)↑

Overall data pointed to
5α-reductase↑,

21-hydroxylase↑ and
11β-hydroxysteroid
dehydrogenase 1↓

[243]

Human
Mouse

Morbidly obese, nondiabetic
Gnmt-null vs. WT

NAFL→NASH
NASH vs. control UPLC-QTOFMS

PC(14:0/20:4)↑ LPC(18:1)↑
PC(P-24:0/0:0)↓
PC(P-22:0/0:0)↓

PC(O-20:0/0:0)↓ FA(20:4)↓
Glutamate↓

(all in serum)
Results consistent with

human studies

[179]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Mouse
Human

Methionine and choline
deficient diet (MCD)

HBV-negative, NAFLD
confirmed by liver biopsy

NASH vs. NAFL
vs. control

1H NMR

Glucose↑ Lactate↑
Glutamate↑ Taurine↑

TG↑ Total cholesterol↑
LDL cholesterol↑

Glucose↑ Lactate↑
Glutamate↑ Taurine↑

(all in serum)

[181]

Mouse
Human

Mat1a-KO vs. WT mouse
liver and serum metabolome
NAFL and NASH discovery

and validation cohorts

Mat1a-KO vs. WT
Clustering analysis

into M-subtype
and

Non-M-subtype
based upon mouse

metabolomes

UPLC-QTOFMS

M-subtype NASH
biomarkers:

Amino acids (5), Fatty acyls
(8), Triglycerides (3),

Glycerophospholipids (37),
Sphingomyelins (1)

Non-M-subtype NASH
biomarkers:

Amino acids (1), Fatty acids
(1), Bile acids (1),
Triglycerides (3)

M-subtype patients: 34%
NASH

Non-M-subtype patients:
39% NASH

[205]

Mouse MCD NASH vs. control UPLC-QTOFMS

Tauro-β-muricholate↑
Taurocholate↑ 12-HETE↑

LPC(16:0)↓ LPC(18:0)↓
LPC(18:1)↓

(all in serum)

[218]

Mouse
MCD vs.

choline-supplemented MCD
(MCS)

Differential effects
of methionine and
choline deficiency

UPLC-QTOFMS

MCD vs MCS:
Oleic acid↑ Linoleic acid↑
Total nonesterified fatty

acids↑
(all in serum)

[219]

Mouse
NASH-inducing diet (35%

lard, 1.25% cholesterol, 0.5%
sodium cholate)

NAFLD vs. control HPLC-TQMS

Glycerol↑ Free cholesterol↑
Esterified cholesterol↑

Putrescine↑
N8-Acetylspermidine↓
Spermine↓ Adenine↓

Adenosine↓ Homocysteine↓
Methylthioadenosine↓

S-Adenosylhomocysteine↓
S-Adenosylmethionine↓
Proteomic findings were
consistent with the above

(all in liver)

[220]

Mouse

Ldlr-null mice fed a Western
diet (energy as 17% protein,
43% carbohydrate, 41% fat,
0.2% cholesterol) + olive oil

(WD + O)

NAFLD/NASH vs.
control

UPLC-LITMS
GC-MS

Metabolon, Inc.

Saturated fatty acids↑
MUFAs↑

Palmitoyl-sphingomyelin↑
Cholesterol↑ n-6 PUFA↑

12-HETE↑ C20-22 n-3
PUFA-containing

phosphoglycerolipids↓
18-HEPE↓ 17,18-diHETE↓

S-Lactoyl-glutathione↓
(all in liver)

F3-Isoprostanes↓
(in urine)

[221]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Mouse
HFD (60% calories from fat)

and normal chow (12.7%
calories from fat)

NAFLD vs. control 1H NMR

Glucose↑ Total cholesterol↑
HDL-cholesterol↑ AST↑

ALT↑ Phosphatidylcholine↑
Pyruvate↓ Acetate↓ Lactate↓

Citrate↓ Arginine↓
Ornithine↓ Acetoacetate↓

3-Hydroxybutyrate↓
Isoleucine↓ Leucine↓
Valine↓ Glutamate↓

Glutamine↓ Tyrosine↓
Phenylalanine↓ Alanine↓

Lysine↓ Glycine↓ Betaine↓
Isobutanoate↓

1-Methylhistidine↓
(all in serum)

Total cholesterol↑
Triglycerides↑ Fatty acids↑

PUFA/MUFA↓
(all in liver)

Pyruvate↑ Creatinine↑
Taurine↑ Glycine↑ Formate↑

Butanoate↑
Guanidinoacetate↑ Glucose↑

1-Methylnicotinamide↑
Nicotinamide N-oxide↑

Acetoacetate↓ Succinate↓
Citrate↓ 2-Oxoglutarate↓

Trimethylamine↓
Trans-aconitate↓ Hippurate↓
Trigonelline↓ Niacinamide↓

Tyrosine↓
1-Methylhistidine↓

Phenylalanine↓
(all in urine)

[223]

Mouse
HFD (60% calories from fat)

and normal chow (13.5%
calories from fat)

NAFLD vs. control UPLC-QTOFMS
GC-MS

Methylhippurate↑ Glycerol
3-phosphate↑Mannose↑

Ketoleucine↑
2-Ketohexanoate↑

Hydroxyphenyllactate↑
Succinate↑

Xylose/Ribose/Arabinose↓
Glucuronate↓ Catechol↓

4-Coumarate↓ Hippurate↓
Taurocholate↓

Glycochenodeoxycholate↓
Glycocholate↓ Histamine↓

(all in serum)

[224]

Mouse
A/J, C57BL/6J and PWD/PhJ

strains fed standard diet
with 0.1% DDC

DDC-treated vs.
control UPLC-Q-LITMS

Putrescine↑ Arginine↑
Citrulline↑ cAMP↑

2-Oxoglutarate↑
Asparagine↑ Glutamate↑

(all in liver)

[227]

Mouse

HFD-fed mice (42% calories
from fat, 43% from

carbohydrates, 15% from
protein) vs. standard chow

(17% from fat, 58% from
carbohydrates, 25% from

protein)

NAFLD vs. control UPLC-Q-LITMS

SFA-DAGs↑MUFA-DAGs↑
PUFA-DAGs↓ SFA-CEs↑
MUFA-CEs↑ PAs↑ PGs↑

SFA-CERs↑ Sphingosine↑
Sphingosine-1-phosphate↑

Dihydrosphingosine↑
Dihydrosphingosine-1-phosphate↑

Galactosylceramide↓
Glucosylceramide↓
Lactosylceramide↑

Globotrioseacylceramide↑
TxB2↑ PGF2α↑ All other

eicosanoids↓
Pattern changed from weeks

16-52.
(all in liver)

[228]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Mouse

db/db leptin
receptor-deficient mice with

insulin resistance and
steatosis subjected to caloric
restriction (CR), db/m mice
without insulin resistance

and steatosis

db/db, pre- and
post-caloric

restriction, db/m

1H NMR
UPLC-QTOFMS

db/db vs. db/m:
Acetone↑

3-Hydroxybutyrate↑
Lactate↑ Acetate↑

Glutathione↑ Ascorbate↑
Many glycerolipids↑

db/db + CR vs. db/db:
3-Hydroxybutyrate↓

Ascorbate↓
Many glycerolipids↓

RT-PCR findings consistent
with metabolomic data

(all in liver)

[231]

Mouse
Leptin-deficient obese ob/ob
mice and nonsteatotic ob/+

heterozygous mice

Intact liver tissues
of two mouse lines

compared

HR-MAS 1H
NMR

Many lipid 1H signals
highly statistically

significantly elevated in
steatotic ob/ob livers

compared with nonsteatotic
ob/+ livers, as expected.

ob/ob livers vs. ob/+ livers:
Betaine↑ Phenylalanine↑

Uridine↑ Creatinine↓
Glutamate↓ Glycine↓

Glycolate↓ Trimethylamine
N-oxide↓

N,N-Dimethylglycine↓
ADP↓ AMP↓

[232]

Mouse

High-trans-fat high-fructose
diet (TFD) for 8 weeks

(steatosis) and 24 weeks
(NASH)

TFD-fed, normal
diet-fed

Fasting hepatic
mitochondrial

flux by 13C
NMR

isotopomer
analysis.

LC-TQMS
lipidomics

8-week (steatosis) vs.
24-week (NASH):

Endogenous glucose
production↑ TCA cycle

flux↑ Anaplerosis↑ Pyruvate
cycling↑

Control vs. 8-week
(steatosis):

Total diacylglycerols↑ Total
ceramides↑ C8-acyl
carnitine↑ C16-acyl

carnitine↑
8-week (steatosis) vs.

24-week (NASH):
DG(16:1/16:1)↑

DG(16:0/18:1)↑ DG(34:2)↑
DG(18:1/18:1)↑
DG(18:1/18:2)↑
DG(18:2/18:2)↑
DG(16:0/20:4)↑
DG(18:0/20:4)↑
DG(18:1/20:4)↑
DG(18:2/20:4)↑
DG(18:2/20:2)↑
DG(16:1/22:6)↑

DG(18:1/22:6)↑ C6-acyl
carnitine↑ C8-acyl carnitine↑
C14-acyl carnitine↑ C16-acyl

carnitine↑ CER(20:0)↓
CER(22:0)↓
(all in liver)

[229]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Mouse

High-fat, high-cholesterol,
cholate (HFDCC)-fed mice

with NAFLD without
obesity

HFDCC vs. control GC-TOFMS
UPLC-QTOFMS

Total cholesterol↑ CE(16:1),
(18:1), (18:2), (18:3), (20:1),
(20:3), (20:4), (22:5), (22:6)↑
Cholic acid↑ DGs↑ TGs↑

CERs↑ SMs↑ LPCs↑ PC/PE↑
PEs↓ Xylitol↑ Xanthosine↑

Squalene↑
Phenylethylamine↑ Citrate↓

G-1-P↓ Saccharic acid↓
(all in liver)

Total cholesterol↑ CE(16:1),
(18:1), (18:2), (18:3), (20:1),

(20:3), (20:4), (22:5)↑ Cholic
acid↑ Deoxycholic acid↑
CERs↑ SMs↑ PEs↑ FFAs↓

Glycerol↓ TGs↓ LPEs↓
(all in plasma)

[225]

Rat HFD-induced NASH HFD vs. control
diet UPLC-QTOFMS

Glucose↑ Triglycerides↑
LDL-cholesterol↑ SM(36:1)↑

LPC(18:1)↑ LPC(20:2)↑
SM(34:2)↑ PC(34:1)↑
PC(38:4)↑ PC(38:3)↑

LPC(17:1)↑ PC(35:2)↑
FA(20:1)↑ FA(20:3)↑

FA(22:3)↑ Phytomonate↑
LPC(14:0)↑

13-HpODE↑ PC(37:4)↓
PC(38:4)↓ PC(38:6)↓

SM(34:1)↓
SM(34:2)↓SM(42:3)↓
SM(40:1)↓ PC(40:5)↓
PC(40:6)↓ PC(40:8)↓

Creatine↓ Indoxyl sulfate↓
(all in serum)

[233]

Rat

HFD-induced NASH,
positive controls

(methionine plus choline
supplementation), control

diet

HFD vs. positive
control vs. control

diet
UPLC-QTOFMS

HFD vs. control:
FA(28:8)↑ CE(12:0)↑

PG(14:0/18:1)↑ Cortisone↓
Antrosta-1,4-diene-3,17-dione↓
All-trans-retinoyl-β-glucuronide↓

LPA(18:2)↓ PE(15:0/22:2)↓
Cortol↓

21-Hydroxypregnenolone↓
Cortolone↓ Urobilin↓

LPA(18:1)↓ PA(P-20:0/14:0)↓
(all in serum)

[234]

Rat
Human

Rats fed HFD to lead to
steatosis, rats fed MCD diet

to lead to NASH, rats fed
methionine and choline

sufficient diet as
controls→liver samples

NASH (fatty), NASH (not
fatty), steatosis, healthy liver

samples

NASH vs. NAFL
vs. control

(rat and human)

UPLC
Orbitrap-MS

Bile acid metabolomics:
Significant BA profile

differences between rat
MCD and human NASH.

Amino acid metabolomics:
Asparagine↑ Citrulline↑

Lysine↑ comparable
between rat MCD and

human NASH.
Fatty acid, carnitine and

LPC metabolomics:
Stearoyl carnitine↑ only

lipid in both rat MCD and
human NASH

[237]

Rat

HFD, MCD diet and
streptozocin (STZ) in rats.

Metabolomics and
transcriptomics on serum

and liver.

NAFL vs. NASH
vs. NAFL + T2DM UPLC-QTOFMS

Venn diagram for HFD,
MCD and HFD+STZ serum:

Stearoyl carnitine↑
(9E)-octadecenoyl carnitine↑

docosapentaenoic acid↑
vitamin D2↑

[238]
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Table 4. Cont.

Species Manipulation/Condition Pathology Analytical
Methodology Metabolites Reported Ref.

Rat HFD/cholesterol diet vs.
normal diet

Stage of steatosis,
inflammation and

fibrosis determined
histologically

GC

Correlation between liver
and blood cell total fatty

acids for control diet:
FA(16:1), FA(22:6),

FA(18:1n-7), FA(22:5)
Correlation between liver
and blood cell total fatty

acids for HFD/cholesterol
diet:

FA(22:6), FA(18:1n-7)

[239]

Rat HFD vs. normal diet

NAFLD
established by

histology and liver
enzymes

UPLC-TQMS

BAs in liver:
Taurocholate↑

Taurohyodeoxycholate↓
Ursodeoxycholate↓

BAs in caecal contents:
Cholate↑Hyodeoxycholate↓

Muricholate↓
BAs in serum:
Taurocholate↑

Hyodeoxycholate↓
Taurohyodeoxycholate↓

[240]

Overall Summary

A summary of metabolic, metabolomic, and lipidomic investigations into ALD is given in Table 1.
It is clear that the hepatic metabolic phenotypes and therefore biomarkers of both chronic alcohol
consumption and ALD are far from being defined. Despite the considerable number of published
investigations, large variations in study design, species investigated, experimental methodologies and
metabolic findings render a consensus opinion difficult to formulate. Nevertheless, it is becoming clear
that various lipid classes may play a role in both ALD etiology and in shaping the resultant hepatic
metabolic phenotype. Moreover, the recent attention to gut microbiota-liver cross talk offers new
avenues to solving the mechanisms of ALD and providing effective predictive biomarkers. The effects
of alcohol on lipid metabolism has recently been reviewed [52], as has the Lieber-DeCarli diet as a
model for experimental liver disease [55].

Regarding cholestasis, it is well known to be associated with elevated hepatic and serum bile
acids, and can occur in the diseases PBC and PSC, as well as in pregnancy and in the neonatal period.
Metabolomics has revealed that not just the expected primary BAs are elevated in these conditions,
but also BA removal is enhanced by sulfation, with various sulfate conjugates found in the urine.
More mechanistic investigations were generally conducted in rats, predominantly by administration
of the hepatotoxin ANIT. This protocol has found particular utility in the screening of TCMs that
have been used for centuries to treat jaundice in China. Attesting to the efficacy of these treatments,
the metabolomic signature of ANIT-induced cholestasis was attenuated in all cases. In addition,
a number of combination biomarkers have been evaluated for the various manifestations of both
clinical and experimental cholestasis, but it remains to be seen if any of these are adopted into routine
clinical practice (Table 2).

In the case of fibrosis and cirrhosis, a total of 38 studies are summarized in Table 3, i.e., 22 conducted
by MS and 16 by NMR. Nine investigations were conducted in rats and 29 in patients and volunteers.
Considering first the NMR-based studies, it should be noted that these investigations in general identify
in liver samples, serum, plasma, or urine relatively high concentration metabolites, such as Krebs cycle
intermediates, amino acids and simple sugars that have been described as “the usual suspects” [244].
This simple fact renders these targets unsuitable as biomarker candidates for the detection or progression
of fibrosis because of their ubiquitous nature. Although 1H NMR-based metabolomic studies are
seen as having many advantages, such as simplicity, rapidity, and reproducibility, they suffer from
modest resolution and sensitivity. MS-based methodologies, in contrast, are able to resolve, identify
and quantitate hundreds of molecules in a sample, rather than tens of metabolites by NMR. They have
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the distinct advantage in the realm of the relatively low concentration constituents of the metabolome.
As Table 3 demonstrates, fibrosis progression in NAFLD could be evaluated in terms of decreasing serum
concentrations of etiocholanolone sulfate (E) and dehydroepiandrosterone sulfate (D), with concomitant
increasing concentration of 16α-hydroxy-dehydroepiandrosterone sulfate (16). Discovery of these
molecules as potential biomarkers was assessed in a validation cohort [119]. The ratios 16/D and 16/E
exhibited clear statistically significant trends across F0-1, F2, F3, to F4, with sensitivities/specificities
of 81%/80% and 76%/85%, respectively [119]. More commonly, MS-based methods have shown
elevations in specific serum bile acids in human liver cirrhosis [128,132,135], together with fluctuations
in a broad range of urinary steroids [141]. Another common finding were alterations in serum
phospholipids in both human liver cirrhosis [135,139,140] and in animal models [169,170,172]. In both
the human and animal model investigations, perturbations in metabolic intermediates, akin to
those revealed by NMR, have also been described. We consider that only metabolites that appear
unique to fibrosis and/or cirrhosis, such as etiocholanolone sulfate, dehydroepiandrosterone sulfate,
and 16α-hydroxy-dehydroepiandrosterone sulfate should be evaluated as biomarkers. The unusual
metabolite cervonoyl ethanolamide (8,11,14-eicosatrienoyl ethanolamide) was elevated in the rat CCl4
fibrosis model, but has so far not been evaluated in patients with liver fibrosis. However, this fatty acid
amide was also elevated in hyperlipidemic rats [245], reducing its potential as a biomarker for fibrosis.

A total of 30 studies involving adult patients, nine involving adolescents or children, and 21
studies that involve mouse or rat investigations of NAFLD, are included in Table 4. Of these, a total of
49 investigations used mass spectrometry-based methodologies and ten used NMR-based methods.
A large quantity of literature has described a wealth of metabolomic and lipidomic investigations
into steatosis (NAFL) and NASH, together with experiments in laboratory rodent models. In the
most part, this accumulated information largely describes potential mechanisms by which the liver
accumulates lipid droplets and the transition to an accompanied inflammation that defines NASH.
As Table 4 shows, there is a wealth of information regarding up- and down-regulated molecules in
plasma/serum, urine and liver itself. The question is: how useful are these data for the generation
of biomarkers of NAFL or NASH, or the progression of NAFL to NASH? The metabolic profiles of
liver that have been determined in certain investigations are not immediately useful for biomarker
evaluation unless serum/plasma or urine was also investigated. The purpose of a biomarker for liver
disease is to avoid liver biopsy. The increase in peripheral fatty acids and acyl carnitines are consistent
with the known etiology of fatty liver disease. Elevated concentrations of BAs, BCAAs, and aromatic
amino acids are also well-known characteristics of these diseases. The issue is specificity, especially
as many of the studies involved obese patients and those with diabetes and insulin resistance, all of
which factors could confound the NAFLD findings. In a study of nondiabetic patients with steatosis
and NASH, an interesting candidate biomarker emerged, γ-glutamyltyrosine, but unfortunately the
change between control subjects and NAFLD patients was small (1.2–1.3-fold, but highly statistically
significant) with a number of outliers [180]. Larger fold-changes were observed for acyl carnitines.
Lauroyl carnitine was four-fold increased over controls in steatosis and NASH and hexanoyl carnitine
was 3.5-fold elevated in NASH but 2.5-fold decreased in steatosis [184]. As no other study reported
these acyl carnitine changes in NAFLD, they would need to be independently verified. Nevertheless,
acyl carnitine patterns represent potential biomarkers for progression from steatosis to NASH. We have
already discussed above 7α-hydroxy-3-oxo-4-cholestenoate [200] as a potential biomarker for steatosis.
Providing that the patients under investigation were negative for sterol 27-hydroxylase deficiency,
familial hypercholanemia and Zellweger syndrome, with which this BA intermediate is also associated,
it could be further evaluated as a potential biomarker for steatosis. Regarding NAFL in children and
adolescents, almost all patient groups in Table 4 were also obese. These studies did not appear to yield
potential biomarkers of pediatric NAFLD.

NAFLD does not have a natural history in almost all laboratory rodent studies; rather, it is
induced with specialized diets or occurs in genetically modified mice, such as leptin-deficient obese
mice (ob/ob) or leptin receptor-deficient mice (db/db) (Table 4). Unusual metabolites such as the
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globotrioseacylceramide Gb3(d18:1/22:1), which was highly statistically significantly elevated in the
livers of mice fed a high-fat high-cholesterol diet [228], could not be further evaluated because
their serum concentrations were not determined. Another unusual metabolite, phytomonic acid
(11,12-methyleneoctadecanoic acid), reported in serum of HFD-induced NASH in rats [233] may also
not be useful as human biomarkers of NAFLD, because it may be produced by the gut microbiota, given
that its older name is lactobacillic acid. The C8 and C16 acyl carnitines were elevated in liver tissue of
mice fed a high-fructose high-trans-fat diet [229] similar to human findings referred to above [184].
However, again there were no serum/plasma data from which to evaluate the potential of acyl carnitines
as biomarkers of human NAFLD. Other data from rats with different NAFLD phenotypes pointed to the
elevation of stearoyl and elaidoyl [(9E)-octadecenoyl] carnitine in serum, with palmitoyl and stearoyl
carnitine upregulated in liver tissue [238]. In summary, an abundance of metabolomic data from
human and animal model studies of NAFLD provide a number of leads for evaluation of biomarkers
in independent trials.
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