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Abstract: It has been increasingly recognized that SNAIL1 and SNAIL2, as major EMT-inducers,
might also be involved in drug resistance of cancer cells. We sought to determine a relation between
SNAIL1/2, E-cadherin and N-cadherin expression, as well as ovarian cancer cells’ resistance to
cisplatin and EMT markers’ level. Thus, four ovarian cancer cell lines, were used: A2780, A2780cis,
SK-OV-3 and OVCAR-3. We assessed the impact of ERK1/2, AKT and STAT3 proteins (chosen by
the profiling activity of over 40 signaling proteins) on SNAIL1/2 expression, along with E-cadherin
and N-cadherin levels. We showed that expression of SNAIL1 and N-cadherin are the highest
in cisplatin-resistant A2780cis and SK-OV-3 cells, while high SNAIL2 and E-cadherin levels were
observed in cisplatin-sensitive A2780 cells. The highest E-cadherin level was noticed in OVCAR-3
cells. SNAIL1/2 expression was dependent on ERK1/2 activity in cisplatin-resistant and potentially
invasive SK-OV-3 and OVCAR-3 cells. STAT-3 regulates expression of SNAIL1/2 and leads to the
so-called “cadherin switch” in cancer cells, independently of their chemoresistance. In conclusion,
SNAIL1, but not SNAIL2, seems to be involved in ovarian cancer cells’ cisplatin resistance. STAT3 is
a universal factor determining the expression of SNAIL1/2 in ovarian cancer cells regardless of their
chemoresitance or invasive capabilities.
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1. Introduction

The accepted standard of the first-line chemotherapy of epithelial ovarian cancer
(EOC) covers the combination of a platinum-containing agent (cisplatin, carboplatin) and a
member of taxanes (paclitaxel, docetaxel). Although the initial response to chemotherapy
is promising, with the majority of patients (70%) responding positively, most of these
patients experience recurrence of disease, with the incidence varying from up to 30% in
early stage to up to 85% in advanced stage of disease [1,2]. Very often, the recurrent
ovarian cancer has acquired resistance to chemotherapeutic agents. Moreover, it has
been proven that the creation of metastases is common in ovarian cancer, as this disease
exhibits high invasiveness and migration potential [3]. Metastatic sites differ from primary
tumor in response to chemotherapeutic agents, as invading cancer cells are characterized by
enhanced chemoresistance (either innate or acquired), which further limits the effectiveness
of treatment [4].

Since the majority of malignant tumors are of epithelial origin, the ability to change their
morphology and phenotype is required in order to disseminate from primary tumor and
invade distant sites in organism. In this regard, the epithelial to mesenchymal transition (EMT)
process is absolutely essential and a key part of the metastatic cascade event. It allows tumor
cells to adopt a mesenchymal phenotype, thereby increasing their motility, as well as apoptotic
resistance, and allows for their detachment and initial spread within the local extracellular
matrix [5]. The EMT process is determined by a complex network of transcription factors,
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among which, those belonging to the SNAIL family (SNAIL 1, 2, 3), basic helix–loop–helix
(bHLH) family (TWIST 1 and TWIST 2) and zinc-finger E-box-binding homeobox family (ZEB
1 and ZEB 2) seem to have the leading roles. They are often termed “master regulators” of
EMT, since their activity leads to the downregulation of epithelial genes and upregulation
of genes associated with mesenchymal phenotype [6,7]. Interestingly, EMT is also known
to contribute to acquired chemoresistance in diverse types of cancers, including ovarian
cancer [8–11]. Moreover, the manipulation of “master regulators” expression modulates the
response of cancer cells to chemotherapeutic drugs [12,13]. On the other hand, chemotherapy,
apart from inducing resistance to chemotherapeutics, can also cause cancer cells to undergo
EMT. Thus, the EMT/chemoresistance axis is involved in the cancer disease progression and
patients’ response to therapy [12,14]. However, the exact interplay between chemoresistance
and EMT, especially in ovarian cancer, is not fully clear and requires more extensive study.
Moreover, the exact molecular mechanisms responsible for the induction of both phenomena
in ovarian cancer cells have not been clarified.

SNAIL 1 and SNAIL 2 are the most studied proteins in various types of cancer and
it has been proven that their level correlates with the increased migration, invasion and
metastasis of cancer cells [15–18]. The primary function of SNAIL 1 and SNAIL 2 is the
induction of EMT by repressing E-cadherin transcription through interaction with its
gene—CDH1. They can also repress other epithelial markers (occluding, claudin) or tumor
suppressors (PTEN) and simultaneously upregulate mesenchymal markers (Vimentin,
Fibronectin), as well as the activity of metalloproteinases [19,20]. In addition to being EMT
inducers, SNAIL 1 and SNAIL 2 are also implicated in the ovarian cancer cells’ resistance
to platinum compounds [13]. The expression of SNAIL transcription factors undergoes
complex regulation on many levels, among which post-translational modifications of
their central domain, resulting in either phosphorylation, oxidation or nuclear export,
modulate their stability and cellular location. These modifications are a direct result of
various signaling cascade activities, among which the most noteworthy are definitely
those involving TGF-β/SMAD proteins, phosphoinositide 3-kinase (PI3K)/AKT kinase,
mitogen-activated protein kinases (MAPKs), Wnt/GSK3-β and the signal transducer and
activator of transcription 3 (STAT3) [19,21,22].

In this study, we sought to determine whether there are any significant differences in the
expression of SNAIL 1 and SNAIL 2 between four commercially available ovarian cancer cell
lines (A2780, A2780cis, SK-OV-3 and OVCAR-3), which differ in the degree of chemoresistance
and invasive potential. Secondly, we aimed to assess which of the selected intracellular
signaling pathways are the most impactful on the SNAIL 1 and SNAIL 2 expression and the
level of EMT markers (E-cadherin and N-cadherin). Lastly, we wanted to clarify whether
potential changes in SNAIL 1 and SNAIL 2 expression, caused by blocking chosen signaling
proteins’ activity, affect the ovarian cancer cells’ response to cisplatin.

2. Results
2.1. EC50 Value of Cisplatin for Each Ovarian Cancer Cell Line

In the first stage of this research, we evaluated the cisplatin’s half maximal effective
concentration (EC50) values for A2780, A2780cis, SK-OV-3 and OVCAR-3 cell lines after
48 h of exposure. The obtained results (Figure 1) indicate that SK-OV-3 and A2780cis cell
lines are the most cisplatin resistant (EC50 = 41 and 32 µM, respectively), being almost
two times more resistant than the OVCAR-3 cell line (EC50 = 20 µM) and up to six times
more resistant than the most cisplatin-sensitive A2780 cells (EC50 = 6 µM).
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Figure 1. Effective concentration of cisplatin (EC50) for A2780, A2780cis, SK-OV-3 and OVCAR-3 cell
lines. All cell lines were cultured with various concentrations of cisplatin (1–200 µM) or not (control)
for 48 h. Cell viability was determined with MTT assay and is presented as the EC50 value for each
cell line, calculated from three independent experiments (n = 3).

2.2. Basal Expression of SNAIL 1 and SNAIL 2 in Ovarian Cancer Cell Lines

In the second stage of this research, the basal level of SNAIL 1 and SNAIL 2 proteins, as
well as the basal expression of SNAI1 and SNAI2 genes were evaluated in A2780, A2780cis,
SK-OV-3 and OVCAR-3 cell cultures. As it is shown in Figure 2a, the level of SNAIL
1 protein proved to be significantly higher than level of SNAIL 2 in A2780cis, SK-OV-3
and OVCAR-3 but not in the A2780 cell line, which, in contrast, was characterized by the
highest level of SNAIL 2. What is more, SNAIL 1 protein level was the highest in the
SK-OV-3 and in A2780cis cell lines. Almost identical relations could be observed on the
mRNA level of SNAI1 and SNAI2 genes in all tested cell lines (Figure 2b). The expression of
SNAI1 proved to be significantly higher than SNAI2 in A2780cis, SK-OV-3 and OVCAR-3,
but not in A2780 cells. SNAI1 expression was the highest in SK-OV-3 and A2780cis cell
lines, while the expression of SNAI2 was the highest in A2780 cell line.

Figure 2. Conts.
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Figure 2. The expression of SNAIL 1 and SNAIL 2 in A2780, A2780cis, SK-OV-3 and OVCAR-3 cell lines. (a) The basal levels of
SNAIL 1 and SNAIL 2 proteins were determined with immunoblotting-ECL. Representative immunoblots of SNAIL 1 and
SNAIL 2, along with β-actin level, are presented. The acquired bands were quantified by densitometric analysis and data
are presented as the mean optical density intensity (ODI) ± SD from four independent experiments (n = 4). * Statistically
significant difference in SNAIL 1 and SNAIL 2 level: SNAIL 1 vs. SNAIL 2 in A2780, A2780, SK-OV-3 or OVCAR-3 cell line,
p ≤ 0.03 (Mann–Whitney U test test). ## Statistically significant difference in SNAIL 1 level: A2780cis vs. A2780 or OVCAR-3,
p ≤ 0.03 (Mann–Whitney U test) # Statistically significant difference in SNAIL 1 level: SK-OV-3 vs. A2780 or OVCAR-3, p ≤ 0.03
(Mann–Whitney U test). $ Statistically significant difference in SNAIL 2 level: A2780 vs. A2780cis or SK-OV-3 or OVCAR-3,
p ≤ 0.03 (Mann–Whitney U test). (b) The basal expression of SNAI1 and SNAI2 genes was determined with real-time PCR
assay. Data are presented as mean 2−∆CT ± SD from four independent experiments (n = 4). 2−∆CT represents an absolute value
of target mRNA level, in particular, cell line. * Statistically significant difference in SNAI1 and SNAI2 level: SNAI1 vs. SNAI2 in
A2780, A2780, SK-OV-3 or OVCAR-3 cell line, p ≤ 0.04 (Mann–Whitney U test). ## Statistically significant difference in SNAI1
level: A2780cis vs. A2780 or OVCAR-3, p ≤ 0.03 (Mann–Whitney U test) # Statistically significant difference in SNAI1 level:
SK-OV-3 vs. A2780 or OVCAR-3, p ≤ 0.03 (Mann–Whitney U test). $ Statistically significant difference in SNAI2 level: A2780 vs.
A2780cis or SK-OV-3 or OVCAR-3, p ≤ 0.03 (Mann–Whitney U test).

2.3. The Basal Surface Level of E-Cadherin and N-Cadherin on Ovarian Cancer Cell Lines

We have determined the basal level of E-cadherin and N-cadherin proteins on the
surface of A2780, A2780cis, SK-OV-3 and OVCAR-3 cells. The obtained data (Figure 3a,b)
indicate that the level of E-cadherin was significantly higher in OVCAR-3 and A2780 cell
lines than in other tested cell lines, while the level of N-cadherin was the highest in SK-
OV-3 cells. What is more, considerable differences between both proteins’ expression were
noticed in almost every tested cell line. As shown in Figure 3a,b, the level of E-cadherin
was up to 5 and 10 times higher than the level of N-cadherin in A2780 an OVCAR-3
cells, respectively. On the other hand, N-cadherin expression was higher than E-cadherin
expression in SK-OV-3 cell line, while the amount of these proteins was approximately
similar in A2780cis cells.

Figure 3. Conts.
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Figure 3. The basal level of E-cadherin and N-cadherin in A2780, A2780cis, SK-OV-3 and OVCAR-3 cell lines. Surface
expression of both cadherins was determined by staining cells with antibodies, targeting either E-cadherin (Abs conjugated
with PE fluorochrome) or N-cadherin (Abs conjugated with Alexa Fluor 488 fluorochrome) and measuring the intensity of
fluorescence with the use of flow cytometry. (a) Representative histograms of E-cadherin and N-cadherin expression (grey
graph) in regard to appropriate isotype controls (dashed line graph) are shown. (b) The acquired data are presented as
the mean medium fluorescence intensity (MFI) ± SD from four independent experiments (n = 4). * Statistically significant
difference in E-cadherin and N-cadherin level: E-cadherin vs. N-cadherin in A2780, A2780, SK-OV-3 or OVCAR-3 cell
line, p ≤ 0.03 (Mann–Whitney U test test). # Statistically significant difference in E-cadherin level: A2780 vs. A2780cis or
SK-OV-3 p ≤ 0.03 (Mann–Whitney U test) ## Statistically significant difference in E-cadherin level: OVCAR-3 vs. A2780 or
A2780cis or SK-OV-3, p ≤ 0.03 (Mann–Whitney U test). $ Statistically significant difference in N-cadherin level: SK-OV-3 vs.
A2780 or A2780cis or OVCAR-3, p ≤ 0.03 (Mann–Whitney U test).

2.4. Profiling the Activity of 43 Proteins in Ovarian Cancer Cell Lines. Determination of Selected
Proteins Level and Activity

In the following stage of the study, we profiled the activity of 43 proteins in A2780,
A2780cis, SK-OV-3 and OVCAR-3 cell lines using a commercial human proteome profiler
kit. The principle of this kit is based on the comparison of optical density intensity (ODI) of
phosphorylated proteins to the reference protein. Firstly, we have chosen the proteins with
ODI, accounting for 30% or more of reference protein’s ODI value in at least one of the
tested cell lines. As a result, we have selected the 20 most active proteins, which underwent
further selection. Secondly, we have narrowed the choice of proteins and decided to select
only those in which ODI amounted for 50% or more of the reference protein’s ODI value
in at least one of the tested cell lines. As shown in Figure 4, the 12 most active proteins in
A2780, A2780cis, SK-OV-3 and OVCAR-3 cell lines consisted of ERK 1/2, JNK 1/2/3, AKT
1/2/3, GSK-3 a/b, β-catenin, p53, CREB, c-JUN, STAT3, WNK1, PRAS40 and HSP60. All
profiled proteins and their ODI values are presented in Table S1. For subsequent study, we
have chosen three proteins, ERK 1/2, AKT and STAT3, as their phosphorylation level is
one of the highest and they are known to participate in intracellular signaling pathways
involved in cancer cells’ growth, survival and response to cytotoxic agents [23–25].
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Figure 4. The phosphorylation level of 12 chosen signaling proteins in A2780, A2780cis, SK-OV-3 and OVCAR-3 cell lines.
Cultured cells were harvested, lysed and the level of phosphorylated proteins was determined with Proteome Profiler
Human Phospho-Kinase Array kit. All samples were made in duplicate. The acquired dots were quantified by densitometric
analysis and data are presented as a heat map of the optical density intensity (ODI) of the area under each band’s peak.

The level of total and phosphorylated forms of ERK 1/2, AKT and STAT3 proteins
in all tested cell lines was evaluated with an independent immunoblotting-ECL assay
before subsequent analysis. The antibodies were specifically targeted against total and
phosphorylated forms on threonine, and tyrosine residues (ERK 1/2 pThr202/Tyr204)
or serine residues (AKT Ser473, STAT3 Ser727) were used to visualize the level of these
proteins. As shown in Figure 5a–c, the obtained results confirmed that phosphorylation of
pERK 1/2, AKT pS and STAT3 pS was high in all tested cell lines, being the highest in the
SK-OV-3 cell line and the lowest in the A2780 cell line.

Figure 5. Conts.
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Figure 5. The total and phosphorylation level of ERK 1/2, AKT and STAT3 signaling proteins in A2780, A2780cis, SK-
OV-3 and OVCAR-3 cell lines. Cultured cells were harvested, lysed and the level of total and phosphorylated proteins
was determined with Immunoblotting-ECL method. Representative immunoblots of ERK 1/2 (a), AKT (b), STAT3 (c).
Additionally, β-actin (d) was used as a loading control for all samples. Bands were quantified by densitometric analysis and
data are presented as the optical density intensity (ODI) of the area under each band’s peak ± SD from three independent
experiments (n = 3).

2.5. The Effect of Inhibiting ERK 1/2, AKT and STAT3 Signaling Proteins Activity on the
Expression of SNAIL 1 and SNAIL 2 in Ovarian Cancer Cell Lines

In order to evaluate the possible impact of ERK 1/2, AKT and STAT3 in the regulation
of SNAIL 1 and SNAIL 2 protein level and mRNA level, the pharmacological inhibitors
of these proteins’ activation were used. The authors have chosen PD98059 (inhibitor of
MEK 1/2 activation—the upstream kinases required for ERK 1/2 activation), Triciribine
(AKT inhibitor) and S3I-201 (STAT3 inhibitor). These are most commonly used compounds
with confirmed specificity toward targeted proteins, as indicated by the manufacturer’s
data sheet. In the first step, the effective concentrations of PD98059, Triciribine and S3I-201
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were determined for each cell line. The choice of effective concentration of each compound
was based on their ability to significantly reduce appropriate protein’s phosphorylation
(Immunobloting-ECL), as well as on their cytotoxicity toward ovarian cancer cells (MTT
assay). The concentrations selected for further study were proved to significantly reduce
protein’s phosphorylation by at least 50% (Figure 6a–c). At the same time, their cytotoxicity
did not exceed 30% of dead ovarian cancer cells (Figure 6d). The impact of DMSO (solvent
of tested inhibitors) on cell lines’ viability, at the highest concentration of inhbitors used in
the course of this experiment (approximately 2%) reached cytotoxicity of 8%, 5%, 8% and 7%
for A2780, A2780cis, SK-OV-3 and OVCAR-3, respectively. The final effective concentrations
of every compound, chosen for subsequent study, were as follows: PD98059—50 µM (all
cell lines); Triciribine 50 µM (SK-OV-3 and OVCAR-3) and 100 µM (A2780 and A2780cis);
S3I-201 50 µM (OVCAR-3) and 100 µM (A2780, A2780cis and SK-OV-3). The cytotoxicity of
DMSO, at these final concentrations, amounted for 2.9% (A2780), 0.6% (A2780cis), 1.1%
(SK-OV-3) and 2.6% (OVCAR-3) and was not the main determining factor of cells’ viability.

Figure 6. Conts.
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Figure 6. Determination of effective concentration of PD98059, Triciribine and S3I-201. All cell lines were cultured with PD98059
[25–200 µM] or Triciribine (10–200 µM) or S3I-201 (25–200 µM) or not (control) for 48 h. (a–c) The phosphorylation level of
signaling proteins was determined with Immunoblotting-ECL method. Representative immunoblots of ERK 1/2 (a) or AKT (b)
or STAT3 (c) phosphorylation, along with β-actin level are presented. Bands were quantified by densitometric analysis and data
are presented as the optical density intensity (ODI) of the area under each band’s peak two independent experiments (n = 2). (d)
Cell viability was determined with MTT assay and is presented as the mean percent of cytotoxicity ± SD calculated from three
independent experiments (n = 3).
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Exposing ovarian cancer cell lines to ERK 1/2, AKT and STAT3 inhibitors for 48 h,
resulted in a significant change in SNAIL 1 and SNAIL 2 expression in all ovarian cancer
cell lines, however, this effect depended on the kind of inhibited signaling protein, as well
as on the type of cell line. Obtained data (Figure 7a) clearly indicate that blocking the
activity of ERK 1/2 resulted in a significant reduction in SNAIL 1 and SNAIL 2 level in
SK-OV-3 and OVCAR-3 cell lines, whereas it significantly increased the level of SNAIL
1 (but not SNAIL 2) in A2780 cell line and did not affect the level of these transcription
factors in A2780cis cell line. On the other hand, inhibiting the activity of AKT significantly
decreased amount of SNAIL 1 and SNAIL 2 in A2780 and A2780cis cell lines, whilst not
affecting the level of both evaluated proteins in SK-OV-3 and OVCAR-3 cell lines. The
impact of STAT3 activity inhibition was the most interesting one, since it significantly
reduced the level of SNAIL 1 and SNAIL 2 in all tested cell lines.

Figure 7. The expression of SNAIL 1 and SNAIL 2 in A2780, A2780cis, SK-OV-3 and OVCAR-3 cell lines treated with
inhibitors. All cell lines were cultured with PD98059 (PD) (50 µM) or Triciribine (TRI) (50 or 100 µM) or S3I-201 (S3I) (50 or
100 µM) or not (control) for 48 h. (a) The level of SNAIL 1 and SNAIL 2 was determined with immunobloting-ECL method.
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Representative immunoblots of SNAIL 1 and SNAIL 2 protein level are presented. Additionally, β-actin was used as a
loading control for all samples. Bands were quantified by densitometric analysis and data are presented as the optical
density intensity (ODI) of the area under each band’s peak ± SD from five independent experiments (n = 5). * Statistically
significant change in SNAIL 1 or SNAIL 2 level: PD98059 or Triciribine or S3I-201 vs. control, p ≤ 0.04 (Wilcoxon’s singed
rank test). (b) The expression of SNAI1 and SNAI2 genes was determined with real-time PCR assay. Data are presented as
mean RQ from four independent experiments (n = 4). RQ (relative quantification) represent the fold change of expression
in relation to untreated cells (control) and it was calculated using RQ Data Assist software v1.2 (Applied Biosystems). *
Statistically significant change in SNAI1 or SNAI2 expression: PD98059 or Triciribine or S3I-201 vs. control, p ≤ 0.01 (t-test).

Simultaneous evaluation of SNAI1 and SNAI2 genes expression (Figure 7b) showed that
inhibiting the activity of ERK 1/2, AKT and STAT3 signaling proteins significantly affected
SNAI1 and SNAI2 mRNA level. It is worth mentioning that the acquired data are mostly on
par with the changes observed in SNAIL 1 and SNAIL 2 protein level. The obtained results
indicate that blocking the activity of ERK 1/2 led to a significant drop in the expression of
SNAI1 in the SK-OV-3 cell line, as well as both SNAI1 and SNAI2 in the OVCAR-3 cell line.
On the other hand, it significantly enhanced the expression of both genes in A2780 cell line,
whereas no significant change was observed in the A2780cis cell line. What is more, inhibiting
the activity of AKT resulted in a significant drop in SNAI1 expression in A2780 cells and both
genes in the A2780cis cell line. A significant increase in SNAI1 could be observed in SK-OV-3
and OVCAR-3 cell lines, however, a noticeable decrease in SNAI2 level was present in the
OVCAR-3 cell line. Once again, inhibiting STAT3 activity resulted in a significant drop in
SNAI1 and SNAI2 expression in all tested cell lines.

2.6. The Level of E-Cadherin and N-Cadherin in Ovarian Cancer Cell Lines Exposed to the
Inhibitors of ERK 1/2, AKT and STAT3

In the next part of the research, we wanted to evaluate in what way the changes in
SNAIL 1 and SNAIL 2 expression, caused by inhibitors of significant proteins, affected the
phenotype of tested cell lines. Therefore, we analyzed the surface expression of E-cadherin
and N-cadherin in A2780, A2780cis, SK-OV-3 and OVCAR-3 cell lines exposed to ERK 1/2,
AKT and STAT3 inhibitors for 48 h. Generally, the obtained data indicate that the level of
both cadherins depended on the kind of inhibited signaling protein, as well as on the type
of cell line, and, in most cases, it was related to the expression of SNAIL 1 and SNAIL 2 in
particular cell line.

The results presented in Figure 8a,b indicate that inhibiting ERK 1/2 activity led
to a significant drop in E-cadherin level in A2780 cells with a simultaneous noteworthy
increase in N-cadherin level in both of these cell lines. Conversely, the significant growth
in E-cadherin and drop in N-cadherin expression was observed in SK-OV-3 and OVCAR-3
cell lines. On the other hand, blocking the activity of AKT significantly enhanced E-
cadherin and lowered N-cadherin level in A2780cis cells, but did not affect the expression
of both proteins in A2780, SK-OV-3 and OVCAR-3 cell lines. Interestingly, inhibiting STAT3
activity resulted in a significant increase in E-cadherin expression in all tested cell lines,
accompanied by a significant drop in N-cadherin expression in A2780cis, SK-OV-3 and
OVCAR-3, but not A2780, cells.
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Figure 8. Conts.
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Figure 8. The level of E-cadherin and N-cadherin in A2780, A2780cis, SK-OV-3 and OVCAR-3 cells treated with inhibitors.
All cell lines were cultured with PD98059 (50 µM) or Triciribine (50 or 100 µM) or S3I-201 (50 or 100 µM) or not (control) for
48 h. Surface expression of both cadherins was determined by staining cells with antibodies, targeting either E-cadherin
(Abs conjugated with PE fluorochrome) or N-cadherin (Abs conjugated with Alexa Fluor 488 fluorochrome) and measuring
the intensity of fluorescence with the use of flow cytometry. Representative histograms of E-cadherin (a) or N-cadherin (b)
expression in cells treated with PD98059 or Triciribine or S3I-201 (grey graph) in regard to the E-cadherin or N-cadherin
expression in untreated cells (dashed line graph) are shown. The acquired data are presented as the mean of median
fluorescence intensity (MFI) ± SD from five independent experiments (n = 5). * Statistically significant change in E-cadherin
or N-cadherin level: PD98059 or Triciribine or S3I-201 vs. control, p ≤ 0.03 (Wilcoxon’s singed rank test).
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2.7. The Effect of Inhibiting ERK 1/2, AKT and STAT3 Signaling Proteins Activity on A2780,
A2780cis, SK-OV-3 and OVCAR-3 Cells Response to Cisplatin Treatment

In the last stage of this study, we wanted to determine whether changes in SNAIL 1 and
SNAIL 2 expression, caused by treating ovarian cancer cell lines with PD98059, Triciribine
and S3I-201, in any way alter the cells response to cisplatin. Therefore, we exposed all tested
cell lines to the combination of cisplatin (at the concentration equal to EC50 value for each
cell line) and selected inhibitors for 48 h. The obtained results indicate that the addition
of ERK 1/2 or AKT or STAT3 inhibitors to cisplatin-only treatment, significantly affected
cell sensitivity/resistance to this drug and that effect depended on the kind of inhibited
signaling protein, and on the type of cell line. As it is shown in Figure 9, blocking ERK
1/2 activity resulted in significantly increased A2780 cell viability but, simultaneously, no
changes in cisplatin cytotoxicity to A2780cis, SK-OV-3 and OVCAR-3 cells were observed.
In contrast, inhibiting AKT activity significantly decreased A2780cis and OVCAR-3 cells’
sensitivity to cisplatin, while having no impact on A2780 and SK-OV-3 cells’ viability.
Interestingly, impairing STAT3 activity resulted in significantly increased cisplatin toxicity
to all tested cell lines.

Figure 9. The viability of A2780, A2780cis, SK-OV-3 and OVCAR-3 cells treated with the combination
of cisplatin and inhibitors. All cell lines were cultured with cisplatin (6 or 20 or 32 or 41 µM) alone or
in combination with PD98059 (50 µM) or Triciribine (50 or 100 µM) or S3I-201 (50 or 100 µM) or left
untreated (control) for 48 h. Initially, all cell lines were pre-treated with appropriate inhibitors for 1 h
before addition of cisplatin. Cell viability was determined with MTT assay and is presented as the
mean % of cytotoxicity ± SD from five independent experiments (n = 5). * Statistically significant
change in cell viability: PD98059 + cisplatin or Triciribine + cisplatin or S3I-201 + cisplatin vs. cisplatin,
p ≤ 0.04 (Wilcoxon’s singed rank test).

3. Discussion

Cancer drug resistance is frequently accompanied by EMT in diverse cancers, includ-
ing ovarian [8–11]. The involvement of SNAIL 1 and SNAIL 2 in ovarian cancer cells
chemoresistance, EMT and disease progression has been already established and well de-
scribed [13,26–28]. However, the mechanism of the parallel regulation of chemoresistance
and EMT in ovarian cancer cells is still not well recognized. Therefore, the main goal of
this study was to assess the possible impact of SNAIL 1 and SNAIL 2 expression, regulated
by three selected signaling proteins on EMT markers (cadherins) level in various ovarian
cancer cell lines and their resistance to cisplatin. To the best of our knowledge, this kind of
comparative analysis (few signaling proteins, various ovarian cancer cell lines), performed
in a single set of experiments, has never been reported before.

The ovarian cancer cell lines used in this study proved to differ substantially in
sensitivity to cisplatin. Our data have shown that SK-OV-3 and A2780cis cell lines are
characterized with the highest cisplatin resistance, which is up to six-fold greater than
the resistance of A2780 cells—the most cisplatin-sensitive cell line. Similar observations
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regarding cisplatin sensitivity/resistance have been made by other investigators [29,30]. At
this point, it is essential to emphasize that the A2780cis cell line differs from SK-OV-3 and
OVCAR-3 cells in terms of chemoresistance acquisition. According to cell line datasheets,
A2780cis cells have an acquired chemoresistance, developed artificially by chronic exposure
to cisplatin. SK-OV-3 and OVCAR-3 cell lines, on the other hand, underwent epigenetic
changes, allowing them to disseminate from primary tumor to ascites, thus developing the
chemoresistance termed as intrinsic. This may significantly affect various cells’ properties.
Moreover, it is worth to mention that presented cell lines also differ in place of origin, with
A2780 and A2780cis cells originating from ovary tissue, while SK-OV-3 and OVCAR-3 cells
originating from ascites [31]. This may be an important factor, determining cells’ metastatic
potential. In our previous study, we reported that both SK-OV-3 and OVCAR-3 cells have
the ability to migrate through matrigels [32].

The evaluation of SNAIL 1 and SNAIL 2 expression in tested ovarian cancer cell lines
indicate that there are significant differences between particular cell lines in terms of the
level of these transcription factors. The fact that the protein and mRNA levels of SNAIL 1
are the highest in chemoresistant A2780cis and SK-OV-3 cell lines, while SNAIL 2 is the
highest in cthe isplatin-sensitive, yet dynamically growing, A2780 cell line, may suggest that
SNAIL 1 but not SNAIL 2 is related with ovarian cancer cell resistance to chemotherapeutic
agent. This seems to confirm the observations made by Sonego et al. [33], which indicated
that the regulation of SNAIL 1 protein stability affected cisplatin resistance in SK-OV-3 and
OVCAR-3 cell lines. Similarly, the involvement of SNAIL 1 in cisplatin resistance was also
described in cell lines of other cancer types, such as lung adenocarcinoma, as well as head
and neck squamous cancer [34,35]. The possible reason for difference in the involvement
of both transcription factors in cisplatin resistance can be explained by the fact that one of
the specific targets for SNAIL 1, but not SNAIL 2 or SNAIL 3, is phosphatase and tensin
homolog deleted in chromosome 10 (PTEN) [20]. PTEN is a well-known tumor suppressor
involved in the regulation of PI3K/AKT signaling pathway, cell cycle and induction of
apoptosis. The repression of PTEN activity by SNAIL 1 contributes to cells’ resistance to
apoptosis, as well as the development of resistance to platinum compounds [36,37].

In order to define the epithelial or mesenchymal phenotype of each cell line, we analyzed
the basal expression of well-known EMT markers, like E-cadherin and N-cadherin [38] on the
surface of ovarian cancer cells used in this study. The loss of E-cadherin with simultaneous
up-regulation of N-cadherin is called a “cadherin switch” and it is driven primarily by
transcription factors, such as SNAIL, TWIST or ZEB, which negatively modulate E-cadherin
expression. This phenomenon is defined as a key feature of the EMT process [39].

The obtained results indicate that OVCAR-3 and A2780 cells are characterized by
a high level of E-cadherin, whereas the highest N-cadherin expression was present in
SK-OV-3 and A2780cis cell lines. A study performed by Yang et al. [40], with the use
of A2780 and A2780/DDP (cisplatin-resistant) cell lines, also characterized A2780 as E-
cadherin-high/N-cadherin-low and A2780/DDP as E-cadherin-low/N-cadherin-high cells.
Similarly, Rosso et al. [41] noticed low E-cadherin/high N-cadherin expression in the
SK-OV-3 cell line, which confirms our own findings. Moreover, E- and N-cadherin reflects
these cells’ migration capacity. As was shown by Ruibin et al. [42] and Wang et al. [43],
A2780 cells were less motile and invasive than chemoresistant A2780-M cells (derived from
the A2780 cell line) and SK-OV-3 cells. Furthermore, in our own study, we have shown
that SK-OV-3 cells can migrate through a matrigel to a much higher extent that OVCAR-3
cells [37]. Therefore, on the basis of ours and other results, it could be suggested that
highly cisplatin-resistant SK-OV-3 and A2780cis cells have a higher invasive potential than
other tested cell lines. It is also important to underline that those two cell lines are also
characterized by the highest SNAIL 1 expression, indicating that its elevated level is related
to increased EMT markers’ level and the chemoresistance of ovarian cancer cells.

In further study, we have decided to focus on the involvement of three effector
proteins (ERK 1/2, AKT and STAT3) in the SNAILs-dependent induction of EMT markers
(assessment of cadherins level), as well as in the chemoresistance of ovarian cancer cells. We
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decided to choose ERK 1/2, AKT and STAT3, since their expression and activity are usually
enhanced in ovarian cancer [23,44,45]. Moreover, they are involved in the induction
of ovarian cancer cells EMT [46–48], as well as in their response to chemioterapeutic
drugs [49–51]. The strategy of inhibiting ERK 1/2, AKT and STAT3 activity is extensively
studied in various cancers, as these proteins are believed to be essential in overcoming
the invasiveness and chemoresistance of cancer cells [12,14,24,45,52,53]. Nevertheless, the
impact of selected proteins on SNAIL 1 and SNAIL 2 expression, and, in consequence,
their modulation of ovarian cancer’s metastatic potential and chemoresistance in a SNAIL-
dependent manner, is still unclear. It is also worth noting that we were aiming at the
proteins, in which activity is high but, at the same time, differs among tested cell lines (such
as STAT3 and to the less extent ERK 1/2). As cell lines used in this study are characterized
by different origins and properties regarding cisplatin resistance and invasive potential, the
importance of selected proteins’ activity could vary for each cell line. We wanted to verify
whether the observed differences affect these proteins’ impact the expression of SNAIL
transcription factors. Our study has shown that the inhibition of ERK 1/2, AKT and STAT3
activity significantly affected the expression of SNAIL 1 and SNAIL 2 as well as the levels
of E-cadherin and N-cadherin in various ovarian cancer cell lines. Moreover, inhibiting
the activity of selected signaling proteins also significantly changed cells’ sensitivity to
cisplatin. However, the final effect of these modulations depended on the type of signaling
protein and varied between different types of ovarian cancer cell lines.

We have observed that impairment of ERK 1/2 signaling resulted in a drop in SNAIL
1 and SNAIL 2 expression in SK-OV-3 and OVCAR-3 cell lines (originating from ascites),
along with the enhanced level of E-cadherin and diminished level of N-cadherin. On the
other hand, no significant alteration in the level of both SNAILs as well as cadherins was
observed in cisplatin-resistant A2780 cells (originating from ovary tissue). Interestingly, a
significant increase in SNAIL 1 level was observed in cisplatin-sensitive, tissue-derived
A2780 cells, accompanied by a drop in E-cadherin expression and up-regulated N-cadherin.
Furthermore, blocking ERK 1/2 activity increased resistance to cisplatin in A2780 cells, but
it did not affect the A2780cis, SK-OV-3 and OVCAR-3 cells’ response to this chemothera-
peutic agent. Since there are not as many comparative reports regarding ERK 1/2–SNAIL
interactions in ovarian cancer model, it is hard to directly evaluate and compare our data
with others. Nevertheless, there are some very interesting reports which may shed some
light on this assumption. For instance, Latifi et al. [54] reported that blocking ERK 1/2
signaling suppressed SNAIL-induced EMT in cisplatin-resistant OVCA-433 cell line, origi-
nating from ascites. Moreover, Cheng et al. [55] pointed at a significant downregulation
in SNAIL and N-cadherin in the SK-OV-3 cell line, as a result of the drop in ERK 1/2
activity. What is more, Sawada et al. [56] has shown that reduced activity of ERK 1/2,
related to the loss of E-cadherin in A2780, SK-OV-3 and OVCAR-5 cells, indicating that
the activation of these kinases is cadherin-dependent. The contribution of these kinases
to cancer progression and chemoresistance has been described in many types of cancer,
including ovarian cancer [57], and some of the studies suggest that this mechanism of
action is SNAIL-dependent [58]; however, this has not been fully confirmed to daye. Based
on the presented data, it is possible to assume that the expression of SNAIL transcription
factors is at least partially regulated by ERK 1/2 activity. Considering the fact that the
presented cell lines differ substantially in the basal level of E-cadherin and N-cadherin
expression (as described above), the site of their origin, and their resistance to cisplatin, it
may be suggested that the involvement of ERK 1/2 proteins in the regulation of SNAIL 1
and SNAIL 2 expression is tightly related to EMT marker level and the intrinsic resistance
of ovarian cancer cells to chemotherapeutic agents.

Blocking AKT activity, on the other hand, significantly reduced SNAIL 1 and SNAIL 2
level in ovary-tissue-derived A2780 and A2780cis cell lines, regardless of their resistance to
cisplatin, while it had no effect on these transcription factors in SK-OV-3 and OVCAR-3
cells, which are resistant to cisplatin and originate from ascites. However, the upregula-
tion of E-cadherin and down-regulation of N-cadherin was noticed only in A2780cis cells.
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Interestingly, the significant increase in sensitivity to cisplatin was observed in chemore-
sistant A2780cis and OVCAR-3 cell lines. It has been shown that the downregulation of
AKT activity led to a drop in SNAIL expression and the invasiveness of A2780 cells [47].
Interestingly, in contradiction to our results, this phenomenon has also been observed in
SK-OV-3, OVCA-433, OVCAR-4 and OVCAR-5, all of which are cisplatin-resistant and
originate from ascites. However, it is important to point out that most of these studies
have described a different approach in affecting the PI3K/AKT signaling pathway and
focused on targeting ATM serine threonine protein kinase [47], Wip1 phosphatase [59] or
chemokine receptor CXCR7 [46] rather than AKT itself, which could be the reason why we
and others have observed different results. Moreover, the study of Deng et al. [60] seems
to confirm our own observation, pointing out that inhibition of the PI3K/AKT signaling
pathway inhibited EMT and reduced the invasiveness of A2780cis cells, making them more
sensitive to cisplatin. Taken together, our and others data suggest that AKT-dependent
downregulation of SNAIL 1 and SNAIL 2 expression in ovarian cancer cells is not necessar-
ily determined by their resistance to cisplatin but rather by their place of origin. However,
the reduction in EMT markers and sensitization to cisplatin, due to impaired AKT activity,
was mainly observed in chemoresistant cells. Thus, this may indicate that the mechanism of
this action may not only depend on SNAIL expression, as was suggested by Liu et al. [61],
who has shown that the blocking activity of AKT inhibited the EMT and invasiveness of
SK-OV-3 and OVCAR-3 cells in a TWIST-dependent manner.

Our data indicated that neither resistance to cisplatin nor basal migration potential
(along with the site of origin) mattered in the case of STAT3 activity, the inhibition of
which significantly reduced SNAIL 1 and SNAIL 2 expression, altered cadherin level and
sensitized all tested ovarian cancer cell lines to cisplatin. Similar observations were made
by Ma et al. [62], who has shown that A2780 and SK-OV-3 cells transfected with STAT3
decoy oligodeoxynucleotide complexes were characterized by no STAT3 activity, SNAIL
downregulation and the inhibition of cell invasion. Likewise, Liang et al. [63] indicated
the downregulation of SNAIL transcription factors, E-cadherin and Vimentin in SK-OV-3
and OVCA429 transfects with silenced STAT3. Moreover, in the same study, they also
described that the lack of STAT3 activity promoted sensitivity to cisplatin. To date, there are
no available data showing the impact of direct STAT3 inhibitors on SNAIL 1 and SNAIL 2
expression and/or the induction of EMT in various ovarian cancer cell lines. Nevertheless,
the compounds directly inhibiting STAT3 significantly reduced SNAIL expression and
diminished EMT in osteosarcoma cells [64] and colorectal cancer [65]. The discussed results
indicate the universal character of STAT3 in the maintenance of both SNAIL 1 and SNAIL
2 expression in ovarian cancer cell lines, independently of cells’ origin, basal invasive
potential or their resistance to cisplatin.

The presented results, although mainly observational, suggest that SNAIL 1 and
SNAIL 2 have a potentially important role in the regulation of ovarian cancer chemoresis-
tance. We believe that our data are not without merit, as this kind of screening has never
been reported before for ovarian cancer. Moreover, this research points at the necessity of
using possibly the most diverse ovarian cancer model, since the obtained data may heavily
depend on the type of cancer cell line. Thus, it is crucial to at least attempt to reflect the
high heterogeneity of ovarian cancer to see the full spectrum of possible interactions.

4. Materials and Methods
4.1. Reagents and Antibodies

Trypsin 0.05% EDTA solution, RPMI 1640 medium with 2 mM L-glutamine and 1 mM
sodium pyruvate, CL-Xposure film and Dulbecco’s phosphate buffered saline (D-PBS) were
purchased from Gibco (Thermo Fisher Scientific, Foster City, CA, USA). Heat-inactivated fetal
bovine serum (FBS) was obtained from EURx (Gdansk, Poland). 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT), cis/diammineplatinum(II) dichloride, dimethyl
sulfoxide (DMSO), PD98059, Triciribine, S3I-201, phenylmethylsulfonyl fluoride (PMSF),
EGTA, Tris, Tween 20, bromophenyl blue, ethanol, 2-propanol and penicillin/streptomycin
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were purchased from Sigma-Aldrich (Merck, Germany). Proteome Profiler Human Phospho-
Kinase Array was purchased from R&D biosystems (Minnepolis, CA, USA). RIPA lysis
buffer, superBlock Blocking Buffer in TBS, 10 × Tris-glycine-SDS buffer, Halt protease and
phosphatase inhibitor cocktail and ECL Western Blotting substrate kit were obtained from
Thermo Fisher Scientific (USA). A DC protein assay kit, 10% SDS-PAGE mini-protean precast
TGX gel, trans-blot turbo transfer pack PVDF and precision plus protein western C standard
were obtained from BioRad (Hercules, CA, USA). TRIzol® Reagent, TaqMan® Universal PCR
Master Mix, Maxima First Strand cDNA Synthesis Kit and TaqMan® Gene Expression Assays
for β-actin, GAPDH, SNAI1 and SNAI2 were bought from Life Technologies (Thermo Fisher
Scientific, Foster City, CA, USA). Antibodies, mouse anti-SNAIL1 monoclonal IgG, rabbit
anti-SNAIL2 monoclonal IgG, were purchased from Cell Signaling Technology (Danvers,
MA, USA). Rabbit polyclonal IgG anti-AKT/PKB, rabbit monoclonal IgG anti-pAKT/PKB
[Ser-473], mouse monoclonal IgG anti-STAT3, rabbit polyclonal IgG anti-pSTAT3 [Ser-727],
HRP-conjugated goat anti-rabbit IgG (H+L), HRP-conjugated goat anti-mouse IgG (H+L),
were purchased from Invitrogen (Thermo Fisher Scientific, Foster City, CA, USA). Mouse IgG
anti-β actin antibody was purchased from Sigma-Aldrich (Merck, Germany). Mouse anti-
human CD324 (E-cadherin) PE, mouse anti-human CD325 (N-cadherin) Alexa Fluor 488 and
mouse IgG1 κ isotype control Alexa Fluor 488 were purchased from BD pharmingen (Franklin
Lakes, NJ, USA). Mouse IgG1 κ isotype control PE was purchased from R&D biosystems
(Minneapolis, CA, USA).

4.2. Cell Lines Culture and Treatment

Four cell lines were investigated in this study: A2780 and A2780cis cell lines (pur-
chased from ECACC General cell collection (Salisbury, UK)), as well as SK-OV-3 and
OVCAR-3 (purchased from ATCC (Manassas, VA, USA)). All cell lines are of epithelial
origin and characterize with adherent growth in the form of a monolayer. A2780cis, SK-
OV-3 and OVCAR-3 cell lines are classified as cisplatin-resistant, while the A2780 cell line
is classified as cisplatin-sensitive. Moreover, A2780 and A2780cis originate from ovary
tissue, whereas SK-OV-3 and OVCAR-3 were collected from ascites. Cells were cultured
in RPMI 1640 medium with 2 mM L-glutamine, 1 mM sodium pyruvate, 10% FBS (20%
of FBS in case of OVCAR-3 cells), as well as 100 U of penicillin and 10 mg of penicillin.
Cells were passaged every 2–3 days by trypsinization (Trypsin 0.05% EDTA solution) for
10–15 min (37 ◦C, 5% CO2) and subsequent centrifugation (200 g, 5 min, room tempera-
ture). Cisplatin was added to the A2780cis cell line (at a concentration of 1 µM) every 2–3
passages to retain its resistance to this drug. Before every experiment, cell viability was
assessed with by trypan blue exclusion (>95%). All cell lines were regularly tested with
PlasmoTest—Mycoplasma detection kit (Invivogen, San Diego, CA, USA) and were proved
to be Mycoplasma-free. For all experiments, cells were harvested in the exponential growth
phase and at 90% of confluence.

All cell lines were suspended in growth medium (RPMI 1640, 2 mM L-glutamine, 1 mM
sodium pyruvate, 10% FBS, as well as 100 U of penicillin and 10 mg of penicillin) and seeded
on 96-well plates (MTT assay) or 24-well plates (phospho-kinase array, Immunobloting-ECL,
real time PCR) at a concentration of 5 × 104 cells/well or 1 × 106 cells/well, respectively.
Cells were cultured for 24 h to allow them to attach to the surface of the wells (37 ◦C, 5%
CO2). For the phospho-kinase array, cell cultures were harvested at this point. For the
remaining assays, medium was replaced and cisplatin at concentrations of 1, 2, 5, 10, 20,
40, 60, 80, 100, 200 µM, or PD98059 at concentrations of 25, 50, 100, 200 µM or Triciribine at
concentrations of 10, 25, 50, 100 µM, or S3I-201 at concentrations of 25, 50, 100, 200 µM were
added to the cells for 48 h, or cells were left untreated. For some experiments, the cell lines
were pretreated with PD98059 or Triciribine or S3I-201 for 1 h before adding the cisplatin.
Cell lines were then used in the MTT assay, Immunobloting-ECL or real-time PCR.
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4.3. Human Phospho-Kinase Array—Proteome Profiling

Cells were harvested and lysed according to the manufacturer’s protocol—proteome
profiler R&D (USA). In short, cells were rinsed with PBS, centrifuged and solubilized in
lysis buffer at 1 × 107 cell/mL for 30 min at 2–8 ◦C and centrifuged at 14,000× g for 5 min.
Supernatants were transferred to clean Eppendorf tubes and kept at −80 ◦C until further
analysis. Prior to the experiment, the amount of protein in each sample was measured with a
DC protein assay kit. The membranes included in the kit were blocked with an appropriate
blocking buffer for 1 h at room temperature, and next, an equal amount of protein for each
tested cell line was added to membranes and they were incubated overnight at 2–8 ◦C.
Membranes were then washed three times with wash buffer and incubated with a detection
antibody cocktail for 2 h at room temperature. Afterwards, membranes were washed three
times with a wash buffer and a chemi reagent mix was added to each membrane for 1 min.
Next, membranes were exposed to X-ray film and the obtained protein dots were analyzed
with FluoroChem MultiImage FC Cabinet (Alpha Innotech, San Leonardo, CA, USA), and
their densitometry was measured with Alpha Ease FC software 3.1.2. Data are presented as
optical density intensity (ODI) of the area under each dot’s peak.

4.4. MTT Assay

After treating cells with PD98059 or Triciribine, or S3I-201, or cisplatin, or a combina-
tion of PD98059 or Triciribine, or S3I-201 and cisplatin, supernatants were removed and
100 µl of MTT solution (2 mg/mL) was added to each well. Cells were incubated for 2–3 h
at 37 ◦C with a 5% CO2, MTT was then gently removed, and 200 µl of 2-propanol was
added. Plates were kept on rock platform for 15 min and absorbance was measured with
the Multiskan RC plate reader (Labsystem, Helsinki, Finland) with a dual wavelength
of 595 and 630 nm using Genesis Lite software. Cell line viability is presented as the
percentage of cytotoxicity, calculated according to the formula

Cytotoxicity % =

(
1 −

(
optical density of sample
optical density of control

))
× 100

EC50 values for each cell line were calculated by plotting a dose–response curve with
the use of a GraphPad Prism 8 for Windows. Cisplatin in concentration equal to EC50 value
was used to determine the impact of PD98059 or Triciribine or S3I-201 treatment on cells’
response to cisplatin.

4.5. Immunobloting ECL

Cell lines treated with PD98059 or Triciribine, or S3I-201, or left untreated, were gently
harvested from 24-well plates, centrifuged (14,000× g, 2 min) and lysed with RIPA lysis buffer
with the addition of 1 mM PMSF and 1% of Halt protease and phosphatase inhibition cocktail
for 30 min on ice. The samples were centrifuged at 14,000× g for 5 min; next, supernatants
were transferred to clean Eppendorf tubes and kept in −80 ◦C until further analysis. The
amount of protein was measured with a DC protein assay kit for each sample. The lysates with
equal level of proteins were put on a 10% SDS-PAGE mini-protean TGX gel for electrophoresis.
Next, proteins were transferred to PVDF membranes using a Trans-Blot Turbo Transfer
System (BioRad, Hercules, CA, USA) at 2.5 A for 10 min at room temperature. Afterwards,
PVDF membranes were blocked with SuperBlock blocking buffer at a rocking platform for
30 min at room temperature, and then they were blotted with mouse monoclonal anti-SNAIL1
(1:1000), rabbit monoclonal anti-SNAIL2 (1:1000) or mouse anti-β-actin (1:4000) antibody for
1 h at room temperature. Next, membranes were washed five times (2 × TBS buffer with
Tween 20) and blotted with HRP-conjugated goat anti-rabbit IgG (1:4000) or HRP-conjugated
goat anti-mouse IgG (1:4000) for 1 h at room temperature. Subsequently, membranes were
again washed five times (2 × TBS buffer with Tween 20) and shortly incubated with ECL
Western Blotting Substrate in order to detect the selected proteins. Proteins were visualized
by exposing membranes to X-ray films and densitometric analysis of blots was performed
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with FluoroChem MultiImage FC Cabinet. The results are presented as the optical density
intensity (ODI) of the area under each band’s peak.

4.6. Total RNA Isolation and Real-Time PCR Analysis

Total RNA was isolated from cells using TRIzol®Reagent (Life Technologies, Thermo
Fisher Scientific, Foster City, CA, USA). Isolation was performed according to the man-
ufacturer procedures. Next, the quality control of isolated RNA was conducted on the
Nanodrop with ND 1000 Software (Thermo Fisher Scientific, Waltham, MA, USA). RNA
(5 µg) was processed directly to cDNA synthesis using Maxima First Strand cDNA Syn-
thesis Kit for RT-qPCR (Life Technologies), according to the manufacturer’s manual. The
expression of human β-actin, GAPDH, SNAI1 and SNAI2 was quantified using TaqMan
Gene Expression Assays by real-time PCR, using ABI 7900-HT detection system (Applied
Biosystems, Thermo Fisher Scientific, Foster City, CA, USA), according to the manufac-
turer’s protocol. Briefly, equal amounts of cDNA were amplified in triplicate for all TaqMan
Assays in MicroAmp 96-well plates (Applied Biosystems). Each sample was supplemented
with 1 µL of 20 × TaqMan Assay, made up to 20 µL using TaqMan 2 × Universal PCR
Master Mix (with AmpErase UNG) and processed in the following steps: 50 ◦C—2 min,
95 ◦C—10 min, (95 ◦C—15 sec, 60 ◦C—60 sec) for up to 50 cycles. Each assay had controls
with no template cDNA. The signal was collected at the endpoint of every cycle. Rela-
tive quantitation of gene expression was calculated using the comparative CT (∆∆CT)
method [66]. The obtained data were analyzed with ABI 7900-HT (RQ manager soft-
ware v1.2) and DataAssist software v3.01 and presented either as the relative RQ value,
which represents the fold change in gene expression normalized to the reference genes
(β-actin and GAPDH), or absolute 2−∆CT value, which represents the absolute value of
mRNA level of each evaluated gene in a particular cell line.

4.7. Flow Cytometry

Cell lines treated with PD98059 or Triciribine, or S3I-201, or left untreated were gently
harvested from 24-well plates, centrifuged (200 g, 5 min, room temperature) and suspended
in PBS with 2 mM EDTA and 0.5% BSA (1 × 105 cells/100 µL). Cells were stained with
E-cadherin-PE or N-cadherin-Alexa Fluor 488 antibody or the appropriate isotype control
for 30 min in the dark, at room temperature, according to the manufacturer’s protocol.
Afterwards, cells were washed once with PBS/2 mM EDTA and cells were resuspended in
PBS/2 mM EDTA. Forward light scatter (FSC) and sideward light scatter (SSC) parameters
were used to identify each ovarian cancer cell line population and to gate out debris. All
samples were analyzed using a FACS BD LSR II flow cytometer (Becton Dickinson, Franklin
Lakes, NJ, USA) equipped with BD FACS Diva Software. The results were analyzed with
FlowJo v10.7.1 software (FlowJo, Becton Dickinson, Franklin Lakes, NJ, USA) and are
presented as the median fluorescence intensity (MFI), which reflects the surface expression
of the target proteins.

4.8. Statistical Analysis

Statistical evaluation of obtained results (presented as the mean ± SD) has been
performed using data from either four or five different experiments, depending on the
chosen statistical test. RT-PCR data were calculated by t-test with the use of DataAssist
software v3.01 (Thermo Fisher Scientific, Waltham, MA, USA). The rest of the results
were firstly analyzed with Shapiro–Wilk test to assess the normality of distribution and,
according to these results, the nonparametric Wilcoxon’s singed rank test or Mann–Whitney
U test were applied with the use of Statistica v13.0 for Windows (StatSoft, Krakow, Poland).
Statistical significance was defined as p ≤ 0.05.
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5. Conclusions

Our study indicates that SNAIL 1, but not necessarily SNAIL 2, may be involved in the
ovarian cancer chemoresistance. Furthermore, STAT3 proved to be the most essential and
universal factor determining the expression of SNAIL 1 and SNAIL 2 in ovarian cancer cells,
regardless of their resistance to cisplatin or place of origin. Inhibiting STAT3 activity led to
the so-called “cadherin switch”, as well as enhanced sensitivity to cisplatin in all tested
cell lines. This may affect cells’ ability to undergo EMT as well as enhance cytotoxicity
of chemotherapeutic agents. Our data encourage further, more thorough, investigation
of SNAIL 1 and SNAIL 2 implications in cancer cells’ invasive behavior and resistance
to chemotherapeutics, as well as searching for the potential agents responsible for the
regulation of these transcription factors.
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