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Abstract
Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow research-
ers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. 
Yet, what is meant by “computational model” is understood in many different ways by researchers in different fields of 
neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of 
computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings 
from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the 
mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations 
at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to 
design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a compre-
hensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG 
measurements that may ultimately serve in the development of novel clinical applications.
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Introduction

Electroencephalography (EEG) has applications in many 
fields, spanning from basic neuroscientific research to 
clinical domains. However, despite the technological 

advances in recording precision, the full potential of EEG 
is currently not being exploited. One possible way to do 
so is to use computational models in order to integrate 
findings from electrophysiology, network-level models 
(the level of neuroimaging), and behavior (Franceschiello 
et al. 2018, 2019). The following review has been con-
ceived with the specific goal of targeting a non-expert 
audience. Indeed this does not constitute an exhaustive 
review, but we believe that structuring the contents along 
spatial scales might facilitate the understanding of this 
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broad topic. Furthermore, this review does not cover Brain 
Computer Interfaces (BCIs), first as they constitute an 
independent topic itself at the interface between engineer-
ing and neuroscience (Bulárka and Gontean 2016). Sec-
ondly, the vast majority of BCI works relies on a statistical 
model of the neural signal, often combined with machine 
learning approaches, and thus lie outside the scope of this 
review. Here, our aim is to discuss computational models 
that integrate cellular behavior at different spatial scales 
and make explicit links to EEG empirical data. We refer 
readers interested in BCI to Wolpaw et al. (2000), Schiff 
(2012), Fouad et al. (2015), Bulárka and Gontean (2016), 
and for BCI-based EEG paradigms to Abiri et al. (2019).

A model is defined in terms of a set of equations which 
describe the relationships between variables. Importantly, 
models exist for different spatial scales (Varela et al. 2001; 
Deco et al. 2008; Nunez et al. 2019), spanning from the 
single cell spike train up to macroscopic oscillations. The 
equations are used to simulate how each variable changes 
over time, or, in rare cases, to find analytical solutions 
for the relationships among the variables. The dynamics 
of the resulting time series are also influenced by a set of 
parameters, which can either be estimated from available 
data—for example, a model which simulates the firing of 
a certain neuron type could contain a time constant esti-
mated from recordings on that type of neuron in rodents—
or its value can be varied systematically in an exploratory 
manner. The goal is to produce time series of variables that 
can be compared to real data. In particular, one can simu-
late perturbations to brain activity, be it sensory stimula-
tion, a therapeutic intervention like deep brain stimulation 
(DBS) or a drug, or a structural change due to the onset 
of a pathology, like neurodegeneration or a lesion, and 
predict what would be the resulting alterations observed 
in neural and clinical data.

An important application of EEG models is in the clini-
cal domain. Psychiatric and neurological disorders impact 
a growing portion of the population, both as patients and 
caregivers, and with an enormous cost—both economical 
and humanitarian—to healthcare systems worldwide (Steel 
et al. 2014; Vigo et al. 2016; Feigin et al. 2019). One of the 
main obstacles in advancing patient care is the lack of indi-
vidual diagnosis, prognosis, and treatment planning (Wium-
Andersen et al. 2017). Computational models can be adapted 
to the individual by setting their parameters according to 
available data (i.e. either setting the parameter directly, if 
it is measurable, or looking for the parameter value which 
results in time series whose dynamics match recorded data). 
The adjusted parameter(s) can then be related to clinical 
markers, symptoms, and behavior, allowing for example 
to discriminate between pathologies. Using models in this 
personalized manner could provide additional diagnostic 
features in the form of model parameters and model output, 

eventually assisting clinicians in diagnosis and treatment 
planning.

Another obstacle is a general lack of scientific knowledge 
of disease mechanisms, including the mechanisms by which 
therapies exert their effect. As an example, DBS is a highly 
effective treatment for advanced Parkinsonism, in which 
electric pulses are delivered directly to certain deep brain 
structures via permanently implanted electrodes. Yet, it is 
largely unknown how exactly the applied stimulation man-
ages to suppress motor symptoms such as tremor (Chiken 
and Nambu 2016). This is also because the way in which 
motor symptoms result from the degradation of dopamin-
ergic neurons in the substantia nigra is not fully understood 
(McGregor and Nelson 2019). Besides animal models—
which have their own ethical issues—in silico models are an 
indispensable tool for understanding brain disorders. Com-
bining data available from a patient or group of patients with 
knowledge and hypotheses about mechanisms, a model can 
be generated which can help test these hypotheses.

Last but not least, models are much cheaper than animal 
testing or clinical trials. While models will not replace these 
approaches—at least not in the foreseeable future—they 
could help to formulate more specific hypotheses and thus, 
lead to smaller-scale experiments.

Collecting invasive data is not generally possible in 
humans. EEG (Nunez et al. 2006; Schomer and Lopes Da 
Silva 2012; Biasiucci et al. 2019) is an extremely versatile 
technology which allows non-invasive recording of neural 
activity in behaving humans. EEG is a cheap and portable 
technology, particularly compared to (f)MRI and MEG. 
Apart from these cost-efficiency considerations, EEG, like 
MEG, is a direct measure of the electromagnetic fields gen-
erated by the brain, and allows millisecond-precision record-
ings, thus giving access to rich aspects of brain function 
which can inform models in a way that e.g. fMRI cannot 
(see “Electroencephalography” section for more details). In 
general, using different complementary sources of data to 
construct and validate a model will lead to better model pre-
dictions, as each recording technique has its own strengths 
and weaknesses, and a multimodal approach can balance 
them.

In our opinion, there are mostly two reasons why EEG has 
not been used more extensively in modeling studies, and par-
ticularly in a clinical context. First, there are numerous tech-
nical problems which make the processing and interpretation 
of EEG data challenging. EEG—like MEG—is measured 
on the scalp, and the problem of projecting this 2D-space 
into the 3D-brain space arises (Michel and Brunet 2019). 
While multiple solutions exist for this inverse problem, it is 
unclear which one is the best and under which circumstances 
(Hassan et al. 2014; Mahjoory et al. 2017; Hedrich et al. 
2017). It is important to point out that the goal of source 
reconstruction is not necessarily to mimic the underlying 
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brain activity, but rather to identify the spatial origins of the 
signal recorded at the scalp. The question of what consti-
tutes a “source” is still controversial in this context, and the 
definition depends on the spatial scale (Nunez et al. 2019). 
Thus, source activity has to be interpreted carefully, taking 
into account varying degrees of abstraction. Since this is 
a complex problem involving biophysical mechanisms, we 
leave this topic aside and recommend the review by Nunez 
et al. (2019), which addresses the problem of source locali-
zation by means of computational models of neural activity 
on different spatial scales.

EEG data require extensive preprocessing, e.g. removal of 
artifacts due to movements, eye blinks, etc., but these steps 
are far from being standardized, and many options exist. The 
recently started EEG-BIDS effort (Pernet et al. 2019) is a 
step towards the direction of standardization of EEG data 
and should facilitate, alongside with the much larger amount 
of publicly available data, studies that systematically evalu-
ate the impact of preprocessing steps and compare source 
reconstruction algorithms. As the interest in EEG rises, the 
need to resolve these issues will trigger larger efforts that 
will benefit the entire community.

The second obstacle to a more routine usage of compu-
tational models in EEG research, which we hope to address 
in this review, is that such models usually require an under-
standing of the mathematics involved, if only to be able to 
choose the model that is useful for the desired application. 
Both variables and parameters are not always clearly related 
to quantities which can be measured in a clinical or experi-
mental context, and more generally, models need to be set 
up in such a way that they meet existing clinical demands or 
research questions.

The contribution of this paper is threefold. First, this arti-
cle summarizes computational approaches at different spatial 
scales in EEG, targeting non-experts readers. To the best 
of our knowledge, this paper represents the first review on 
this topic. Second, we will point out several ways in which 
computational models integrate EEG recordings, by using 
biologically relevant variables. Third, we discuss the clinical 
applications of computational models in EEG which have 
been developed. The field is greatly expanding and contains 
promising advancements both from research and clinical 
standpoints. We believe that this overview will make the 
field accessible for a broad audience, and indicate the next 
steps required to push modeling of EEG forward.

Electroencephalography

EEG is a non-invasive neuroimaging technique that meas-
ures the electrical activity of the brain (Nunez et al. 2006; 
Schomer and Lopes Da Silva 2012; Biasiucci et al. 2019). 
EEG recordings have been a driver of research and clinical 

applications in neuroscience and neurology for nearly a 
century. EEG relies on the placement of electrodes on 
the person’s scalp, measuring the postsynaptic potentials 
of pyramidal neurons (Tivadar and Murray 2019; Lopes 
da Silva 2013). EEG does not directly measure the action 
potentials of neurons, though there are some indications of 
high-frequency oscillations being linked to spiking activity 
(Telenczuk et al. 2011).

The neurotransmitter release generated by action poten-
tials, whether excitatory or inhibitory, results in local cur-
rents at the apical dendrites that in turn lead to current 
sources and sinks in the extracellular space around the den-
dritic arbor (i.e. postsynaptic potentials, see Fig. 1, bottom 
right block).

EEG shares sources with the local field potential (LFP), a 
low-pass filtered signal of extracellular measurements which 
represents the summed synaptic activity of local populations 
of neurons. In the neocortex, pyramidal neurons are gener-
ally organized perpendicularly to the cortical surface, with 
apical dendrites toward the pial surface and axons pointing 
inferiorly towards the grey-white matter border. This align-
ment leads to the electrical fields of many neurons being 
summed up to generate a signal that is measurable at the 
scalp (Tivadar and Murray 2019).

Importantly, individual neurons of these populations need 
to be (nearly) synchronously active to be detectable by EEG. 
When such large-scale synchronization occurs, it manifests 
in the EEG as oscillations, i.e. sustained sinusoidal activity 
with a characteristic frequency. The spectral properties of 
these oscillations—evaluated using the power spectrum—
depend on cell types and their connectivity, but they also 
reflect the “brain state” (neurotransmitters, stimuli, disor-
ders, etc.; see also section “Applications of computational 
models of EEG”) (Nunez et al. 2006).

As mentioned above, the electrical activity of the brain is 
recorded by means of electrodes, made of conductive materi-
als, placed at the scalp. The propagation of electrical fields 
takes place due to the conductive properties of brain and 
head tissues, a phenomenon known as volume conduction 
(Kajikawa and Schroeder 2011). The electrodes are con-
nected to an amplifier which boosts the signal. Due to the 
biophysical nature of what is measured, i.e. a voltage—the 
difference of potential able to move charges from one site 
to the other—EEG records the differential measurements 
between an electrode at a specific position on the scalp and 
a reference site. Common analyses in EEG are the study 
of local phenomena such as peaks at specific latencies or 
scalp sites (event-related potentials, ERPs); or the study of 
topography, i.e. the shape of the electric field at the scalp, 
which represents a global brain signature (Murray et al. 
2008). EEG is known for its high temporal resolution. The 
biggest pitfalls of the technique are, on the other hand, the 
low spatial resolution and signal to noise ratio. A clear and 
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exhaustive walk through these topics as well as an over-
view of strengths and pitfalls of using EEG is contained in 
Tivadar and Murray (2019) and for non-experts of the field 
in Biasiucci et al. (2019).

Despite being a measurement of the scalp activity, EEG 
can reveal the underlying neurophysiological mechanisms 

of the brain, and that is what classifies it as brain imaging 
tool. The estimation of the loci of active sources for the 
recorded brain activity at the scalp is called source recon-
struction (Michel et al. 2004). However, the loci can belong 
to areas not necessarily below the considered electrode, a 
pitfall caused by volume conduction. Source reconstruction 

Fig. 1   Electrophysiology of neural activity and EEG at different scales
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is a mathematically ill-posed inverse problem, as the solu-
tion is not unique. However, the addition of biophysical 
constraints to the inverse problem allows to retrieve a solu-
tion, which has been validated by means of intracranial 
recordings (Michel and Murray 2012). Having obtained the 
source activity, one can estimate the functional connectiv-
ity between the sources, i.e. the statistical dependencies 
between brain areas, assumed to indicate their interactions 
(see also Table 1). This can then be complemented with 
neuroanatomical/structural connectivity (Table 1), which 
estimates white matter connections between brain areas.

Computational models stand at the interface between 
the physiology of neurons at different scales (single neu-
ron, population, macro-scale) and perceptual behavior. EEG 
would greatly benefit from the integration of in-silico simu-
lations, as computational models could complement both the 
neurophysiological and behavioral interpretations of EEG 
recordings. In the following sections, we will discuss differ-
ent types of computational models, i.e. the different scales at 
which the neural activity is simulated, how such models can 
be integrated in the analysis of EEG signals, and how such 
models have been used in new clinical applications.

Different types of computational models 
for EEG

A straightforward classification of computational models 
for EEG can be done based on the different scales of neuro-
physiological activity they integrate. For instance, we can 
distinguish three types of models (Fig. 2a): 

1.	 Microscopic models on the level of single cells and 
micro-circuits;

2.	 Mesoscopic models on the level of neural masses and 
neural fields;

3.	 Macroscopic models taking into account the connec-
tome/white matter.

The integration of computational models has greatly 
advanced the field of applications of EEG, both for research 
and clinical purposes.

Computational models for EEG on the level of single 
cells and microcircuits

The purpose of this level of modeling is to address the 
origin of the EEG signal by investigating the relationship 
between its features and electrophysiological mechanisms 
(Fig. 1, column A) with the tools of computational neurosci-
ence. As detailed above, the EEG signal recorded from the 
scalp is the result of the spatial integration of the potential 

fluctuations in the extracellular medium. The EEG signal 
is mainly caused by the same mechanisms that generate 
the local field potential (LFP), i.e. it is driven by synaptic 
activity (Logothetis 2003; Buzsáki et al. 2012) and volume 
conduction (Kajikawa and Schroeder 2011). From the exper-
imental standpoint, local network activity is usually meas-
ured as LFP (mainly in vivo—and rarely in vitro—animal 
data). By virtue of superposition, fluctuations in the LFP, 
and EEG more generally, are signatures of correlated neural 
activity (Pesaran et al. 2018). Cellular and microcircuit mod-
eling are thus aimed at understanding the neurophysiological 
underpinnings of these correlations and the role played by 
cell types, connectivity and other properties in shaping the 
collective activity of neurons.

A primary goal of EEG modeling at the microscopic scale 
is on the one hand to predict the EEG signal generated by 
the summation of local dynamics on the microscopic scale 
and, on the other hand, to reconstruct the microscopic neu-
ral activity underlying the observed EEG. The first goal is 
far from being achieved, and the second is ill-posed due to 
the number of possible circuit and cellular combinations at 
the source level leading to similar EEGs. Implicit to these 
goals is to understand how features of neural circuits, such 
as the architecture, synapses and cell types, contribute to 
the generation of electromagnetic fields and their properties 
in a bottom-up fashion. Despite key insights, many short-
comings limit the interpretability of microcircuit models 
and the establishment of a one-to-one correspondence with 
EEG data. For instance, the contribution of spiking activity 
and correlated cellular fluctuations to LFPs and EEG power 
spectra remains unclear. Most microcircuit models charac-
terize the net local network activity—used as a proxy for 
EEG—using the average firing rate or via the mean somatic 
membrane potential taken amongst populations of cells (of 
various types). Other studies have used a heuristic approach 
and approximated the EEG signal as a linear combination 
of somatic membrane potentials with random coefficients 
to account for both conduction effects and observational 
noise (Herrmann et al. 2016; Lefebvre et al. 2017). As such, 
microcircuit model predictions and experimental data cannot 
always be compared directly.

Cellular multicompartmental models, which oftentimes 
take cellular morphology and spatial configuration into 
consideration, are based on the celebrated Hodgkin-Huxley 
equations, which describe the temporal evolution of ionic 
flux across neuronal membranes (see Catterall et al. (2012), 
for a recent review). Such conductance-based models, which 
possess explicit and spatially distributed representations for 
cellular potentials, facilitate the prediction and/or compari-
son with LFP recordings. In contrast, single compartment 
models are difficult to interpret: while more abstract single 
compartment models such as Poisson neurons or integrate-
and-fire models (Fig. 2a, left) are often used for their relative 
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tractability and computational efficiency to construct more 
elaborate microcircuit models, they generally lack the neuro-
physiological richness to estimate EEG traces. Despite this, 

several computational advancements in recent years inves-
tigated how networks of integrate-and-fire neurons generate 
LFPs, clarifying the microscopic dynamics reflected in the 

Fig. 2   a Illustration of computational models at the three scales 
treated here. Microscopic scale: Simple example of two ( i = 1, 2 ) 
leaky integrate-and-fire (LIF) neurons coupled together, a pyramidal 
neuron making an excitatory synapse to the interneuron, which in 
turn makes an inhibitory synapse to the pyramidal cell. This minimal 
circuit implements feedback inhibition, as the pyramidal cell, when 
activated, will excite the interneuron, which in turn will inhibit it. In 
the equation, Vi is the membrane potential of each of the two cells 
i = 1, 2 ; VL is the leak, or resting potential of the cells; R is a constant 
corresponding to the membrane resistance; Ii is the synaptic input that 
each cell receives from the other, and possibly background input; � 
is the time constant determining how quickly Vi decays. The model 
is simulated by setting a firing threshold, at which, when reached, a 
spike is recorded and Vi is reset to VL . Mesoscopic scale: The Wil-
son–Cowan-model, in which an excitatory (E) and an inhibitory (I) 
population are coupled together. The mean field equations describe 
the mean activity of a large number of neurons. fE and fI are sig-
moid transfer functions whose values indicate how many neurons in 
the population reach firing threshold, and hE/hI are external inputs 
like background noise. wEE and wII are constants correponding to the 
strength of self-excitation/inhibition, and wEI and wIE the strength of 

synaptic coupling between populations. Macroscopic scale: In order 
to simulate long-range interactions between cortical and even subcor-
tical areas, brain network models couple together many mesoscopic 
(“local”) models using the connection weights defined in the empiri-
cal structural connectivity matrix C. The example equation defines 
the Kuramoto model, in which the phase �n of each node n is used 
as a summary of its oscillatory activity around its natural frequency 
� . Each node’s phase depends on the phases of connected nodes p 
taking into account the time delay �np , defined by the distances 
between nodes n and p. k is a global scaling parameter controlling the 
strength of internode connections. b Illustration of a typical modeling 
approach at the macroscopic scale. Activity is simulated for each 
node using the defined macroscopic model, e.g. the Kuramoto model 
from panel a, right. The feature of interest is then computed from this 
activity. Shown here is the functional connectivity, e.g., phase lock-
ing values between nodes (Table  1). This can then be compared to 
the empirical functional connectivity matrix computed in exactly the 
same way from experimental data, e.g. by correlating the entries of 
the matrix. The model fit can be determined depending on parameters 
of the model, e.g. the scaling parameter k or the unit speed, here indi-
cated with “tau”
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EEG signal (Mazzoni et al. 2008, 2010, 2011, 2015; Deco 
et al. 2008; Buehlmann and Deco 2008; Barbieri et al. 2014). 
Such approaches have been used to understand the formation 
of correlated activity patterns in the hippocampus (e.g. oscil-
lations), and their associated spectral fingerprints in the LFP 
(Chatzikalymniou and Skinner 2018). Furthermore, a broad 
range of works modeled the origin of the local field potential 
and how it diffuses via volume conduction to generate the 
EEG signal (Hindriks et al. 2017; Lindén et al. 2011; Mäki-
Marttunen et al. 2019; Skaar et al. 2019; Einevoll et al. 2013; 
Teleńczuk et al. 2017; Bédard and Destexhe 2009).

The key missing element for understanding the link 
between spiking network activity, LFP, and EEG signal, 
is the functional and spatial architecture of the networks. 
In particular, there are two open challenges. The first is to 
understand how the network connectivity affects the model 
dynamics that generate the LFP, and the second is to clarify 
how the spatial arrangement and morphology of neurons 
affect LFP diffusion (Mazzoni et al. 2015).

From this perspective, models of pyramidal cell dynam-
ics and circuits should guide the interpretation of the EEG 
signal. For example, Destexhe and colleagues recently 
addressed the long-debated issue of the relative contribu-
tion of inhibitory and excitatory signals to the extracellular 

signal (Teleńczuk et al. 2019), suggesting that the main 
source of the EEG signal may stem from inhibitory—
rather than excitatory—inputs to pyramidal cells. A recent 
spiking network model (Saponati et al. 2019) incorporates 
the modular architecture of the thalamus, in which sub-
networks connect to different parts of the cortex (Barardi 
et al. 2016). This model was used to show how the propa-
gation of activity from the thalamus shapes gamma oscil-
lations in the cortex.

Computational models at the level of single cells and 
microcircuits have also been instrumental in elucidating 
the mechanisms underlying multiple EEG phenomena. For 
instance, such models were used to better understand EEG 
rhythm changes observed before, during and after anesthe-
sia, using spiking network models (McCarthy et al. 2008; 
Ching et al. 2012) and/or cortical micro-circuit models (Hutt 
et al. 2018). Some of these models have been extended to 
account for the effect of thalamocortical dynamics on EEG 
oscillations (Ching et al. 2010; Hutt et al. 2018), highlight-
ing the key role played by the thalamus on shaping EEG 
dynamics. In addition, microcircuit models have been used 
to understand the EEG response of cortical networks to 
non-invasive brain stimulation (e.g. TACS, TMS), espe-
cially in regard to the interaction between endogenous EEG 

Table 1   Some terminology used in this paper

Functional connectivity (FC) Statistical dependencies between time series recorded from different brain regions or simulated at different nodes. 
Such dependencies are taken to indicate a functional relatedness of the brain regions/nodes. Many measures are avail-
able, for example correlation between amplitude envelopes, phase locking value, imaginary coherence, etc. See for 
example Colclough et al. (2016) for an overview. Note that FC does not establish a causal relationship (Friston 2011)

Structural connectivity (SC) Also known as neuroanatomical, anatomical, or white matter connectivity. Diffusion-weighted MRI (dMRI) is 
able to measure the diffusion of water through brain tissue (Basser et al. 1994). As water diffuses preferably along 
axons rather than across their walls, the orientation of large fiber bundles can be inferred from dMRI via algorithms 
known as fiber tracking (Jones 2010). Note that SC does not take into account local anatomical connections made 
within the gray matter, and that fiber counts or densities do not allow making conclusions about the weight of that 
connection (Jeurissen et al. 2019). Furthermore, fiber tracking algorithms are unable to resolve ambiguities intro-
duces by crossing fibers, and it is difficult to track long fibers

Graph A brain network model, which consists of nodes and edges (Fig. 2a, right), can be formalized as a graph (Bassett and 
Sporns 2017; Sporns 2018). This can be visualized using so-called adjacency matrices, which contain a weight for 
the edge between each pair of nodes (Fig. 2b). In this sense, both FC and SC matrices are adjacency matrices. This 
formalization opens up the analysis of brain networks to the tools of graph analysis. These tools allow for example 
the characterization of the graph/network using many different quantitative measures (Rubinov and Sporns 2010), 
partitioning the graph/network into subnetworks or modules (Bassett and Sporns 2017; Donetti and Munoz 2004), or 
classifying nodes depending on their role in the network (Hagmann et al. 2008)

Random walk A random walk is a random process taking place on the graph in which a “walker” is initiated at a node and pro-
ceeds to another node following existing edges. Edges are selected by the walker with a probability proportional to 
their weight. Such a simulation can be used to approximate the dynamics of spreading activation, and enables the 
researcher to approximate for example the probability that activity will spread from node i to node j given the edges 
that exist between them, or the time that it will take for activity to spread from node i to node j

Laplacian The Laplace operator is ubiquitous in many physical systems and is used to describe standing waves, diffusion, heat 
dispersion, and many other phenomena. For a network, the Laplacian is obtained from the functional or structural 
connectivity matrix (see above). An intuitive interpretation is that it describes the “flow” of activity along the edges

Eigenmodes Many physical systems that consist of interacting elements can vibrate at certain frequencies, for example the string of 
a violin or the vibrating sheets of Chladni (1802). Each system has its own set of frequencies at which it can vibrate, 
determined for example by its shape. Mathematically, these eigenmodes are obtained via eigendecomposition of the 
Laplacian (see above)
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oscillatory activity and stimulation patterns (Herrmann et al. 
2016), in which thalamic interactions were found to play an 
important role (Lefebvre et al. 2017).

Computational models for EEG on the level of neural 
masses and neural fields

In this section we discuss models of population dynamics 
and how they could determine specific features of the elec-
trical activity recorded by EEG (Fig. 1, column B). Mean 
field models describe the average activity of a large popu-
lation of neurons by modeling how the population—as a 
whole—transforms its input currents into an average output 
firing rate (Fig. 2a, middle; for details on how networks of 
spiking neurons are reduced to mean field formulations, see 
Wong and Wang 2006; Deco et al. 2013b; Coombes and 
Byrne 2019; Byrne et al. 2020). If we consider a population 
to be a small portion of the cortex containing pyramidal 
cells, the average activity modelled by the mean field can 
be understood as the LFP. Two types of models can be dis-
tinguished: neural mass models, where variables are a func-
tion of time only, and neural field models, where variables 
are functions of time and space. In this sense, neural field 
models can be seen as an extension of neural mass models, 
by taking into account the continuous shape of cortical tis-
sue and the spatial distribution of neurons. These models 
allow for the description of local lateral inhibition as well as 
local axonal delays (Hutt et al. 2003; Atay and Hutt 2006). 
An important application of neural field models is found in 
phenomenological models of visual hallucinations (Ermen-
trout and Cowan 1979; Bressloff et al. 2001), and they have 
been used to model sleep and anaesthesia (Steyn-Ross et al. 
1999; Bojak and Liley 2005; Hindriks and van Putten 2012; 
Hashemi et al. 2015). Future applications may also involve 
both neural mass and neural field models to describe differ-
ent cortical structures, similarly to the multiscale approach 
proposed in Cattani et al. (2016).

The most popular model on this mesoscopic scale was 
first described by Wilson and Cowan (Wilson and Cowan 
1973; Cowan et al. 2016) (Fig. 2a, middle), and all mean 
field models can be seen as deriving from this form. It con-
sists of an inhibitory and an excitatory population, where 
usually, for the purpose of EEG, it is assumed that the excita-
tory population models pyramidal neurons while the inhibi-
tory population takes the role of interneurons. A variant of 
this model was described in Jansen and Rit (1995) and goes 
back to the “lumped parameter” model by Lopes Da Silva 
et al. (1974). It uses three distinct populations, i.e. a popula-
tion of excitatory interneurons in addition to the two popu-
lations already mentioned. The reason this model has been 
popular in EEG modeling is that it accounts for the observa-
tion that inhibitory and excitatory synapses tend to deliver 
inputs to different parts of the pyramidal cell body (Sotero 

et al. 2007). In addition, thalamocortical loops are thought to 
greatly contribute to the generation of oscillations observed 
in the cortex (Steriade et al. 1993), and an important class of 
neural field models deals with these loops and their depend-
ency on external stimuli (Robinson et al. 2001b, 2002).

The dynamical behavior of models can be manipulated to 
simulate different phenomena by varying their parameters. 
For example, the coupling parameters that determine the 
strength and speed of feedback-inhibition and feedforward-
excitation can be varied (parameters w

IE
 and w

EI
 in Fig. 2a, 

middle), both within and between populations. Also it is 
possible to modify time constants (which govern the decay 
of activity in the local populations) or the strength of back-
ground noise. Changing these parameters in silico can be 
interpreted biologically. For example, in Bojak and Liley 
(2005), the authors describe how a modified neural field 
model reproduces EEG spectra recorded during anaesthe-
sia. The strength of inputs from the thalamus to the cortical 
neural populations was varied within a biologically plausible 
range.

By coupling together more than one model/set of popula-
tions, one can start investigating the effect that delays have 
on neural activity (Jirsa and Haken 1996). In fact, Jansen 
and Rit (1995) coupled together two neural mass models in 
order to simulate the effect of interactions between cortical 
columns on their activity.

Neural mass and neural field models are able to reproduce 
a range of dynamical behaviors that are observed in EEG, 
like oscillations in typical EEG frequency bands (David and 
Friston 2003), phase-amplitude-coupling (Onslow et al. 
2014; Sotero 2016), evoked responses (Jansen et al. 1993; 
Jansen and Rit 1995; David et al. 2005), and power spectra 
(Lopes Da Silva et al. 1974; Robinson et al. 2001b; David 
and Friston 2003; Bojak and Liley 2005; Moran et al. 2007). 
Power spectra are of particular interest in EEG because on 
the one hand, they can be precisely measured due to the high 
temporal resolution, and on the other, they can be thought of 
as a low-dimensional representation of steady-state dynam-
ics. Consequently, much of EEG research focuses on study-
ing shifts in the power spectrum due to task conditions, dif-
ferent cognitive states, or disorders. Of particular interest 
are linearized versions of these models, which make it pos-
sible to estimate the EEG spectrum in an analytical manner 
(Lopes Da Silva et al. 1974; Robinson et al. 2001b; Liley 
et al. 2002; Bojak and Liley 2005; Moran et al. 2007; Van 
Albada et al. 2010). Such solutions are not only more eas-
ily interpretable in terms of the impact of varying different 
parameters and more computationally efficient. They also 
allow the researcher to quantify the contribution of non-
linearities to the observed power spectra, thus tackling the 
question of which level of complexity is necessary in com-
putational modeling of EEG.
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Often, activity simulated by mean field models is 
assumed to be related to local field potentials (Liley et al. 
2002). However, models are usually set up such that the local 
field potential derives directly from the mean firing rate. In 
this way, an important aspect that underlies the EEG signal 
is neglected, namely, the synchrony (coherence) of the fir-
ing within a neural population (as opposed to synchrony 
between populations, which can be studied using e.g. instan-
taneous phase differences (Breakspear et al. 2004)). Phe-
nomena such as event-related synchronization and -desyn-
chronization result from a change in this synchrony rather 
than from a change in firing rate. Recent models (Byrne 
et al. 2017, 2020) propose therefore a link between the firing 
rate and the Kuramoto order parameter, which is a measure 
of how dispersed firing is within a population.

Macroscopic computational models for EEG taking 
into account the connectome

In this section, we review existing literature on macroscopic 
computational models that take into account the connec-
tome and discuss their potential to reveal the generative 
mechanisms of the macroscopic brain activity patterns 
detected with EEG and MEG (Fig. 1, column C). We will 
use the term “brain network models” (BNM) in order to 
clearly distinguish this framework from other approaches to 
whole-brain modeling (Breakspear 2017), e.g. using neural 
field models (Jirsa and Haken 1996; Robinson et al. 1997; 
Coombes et al. 2007) or expansions of the thalamocortical 
models discussed above (Robinson et al. 2001b; Freyer et al. 
2011). We will also leave aside the large body of literature 
on dynamic causal modeling (DCM) (Kiebel et al. 2008; 
Pinotsis et al. 2012), as this deserves a more detailed review 
than the scope of this paper can provide.

Brain network models. In recent years, the interest in 
the human connectome has experienced a boom, creating 
the prolific and successful field of “connectomics”. In the 
framework of connectomics, the brain is conceptualized as a 
network made up of nodes and edges. Each node represents 
a brain region, and nodes are coupled together according 
to a weighted matrix representing the wiring structure of 
the brain (Fig. 2a, right). This so-called structural connec-
tivity matrix (SC) is derived from white matter fiber bun-
dles which connect distant brain regions (Behrens et al. 
2003; Zhang et al. 2010; Hagmann et al. 2008; Sepulcre 
et al. 2010; Wedeen et al. 2012) and are measured using 
diffusion weighted magnetic resonance imaging (dMRI) 
(Table 1). The set of all fiber bundles is called the connec-
tome (Sporns 2011). In practice, brain regions are defined 
according to an existing brain atlas (for example Desikan 
et al. (2006); Hagmann et al. (2008); Glasser et al. (2016)), 
and the weights in the SC matrix are taken as the fiber count 
(number of streamlines found by a fiber tracking algorithm), 

fiber density (number of streamlines divided by region size), 
or, less commonly, some other diffusion imaging-derived 
quantity, e.g. fractional anisotropy (Wedeen et al. 2008; 
Iturria-Medina et al. 2008; Essayed et al. 2017). By cou-
pling brain regions together according to the weights in the 
SC, the activity generated in each region depends also on 
the activity propagated from other regions along the con-
nections given by the SC. Note that in the previous sec-
tion, we already mentioned the possibility of coupling local 
populations. However, in those cases, the coupling is usually 
determined by a kernel which defines a dependency of the 
coupling on the geodesic distance between populations.

BNMs are used to study the role of structural connectivity 
in shaping brain activity patterns. Because this is a complex 
problem that involves the entire brain, it is important to find 
a balance between realism and reduction, so that useful pre-
dictions can be made. In practice, a common simplification 
is to assume that all brain regions are largely identical in 
their dynamical properties (Passingham et al. 2002). This 
reductionist approach keeps the number of parameters at 
a manageable level and still allows to investigate how col-
lective phenomena emerge from the realistic connectivity 
between nodes. In other words, BNMs do not necessarily 
aim at maximizing the fit to the empirically recorded brain 
signals. Rather, the goal is to reproduce specific temporal, 
spatial or spectral features of the empirical data emerging at 
the macroscopic scale whose underlying mechanisms remain 
unclear (Fig. 2b).

Choice of local model. In mathematical terms, brain 
activity is simulated according to a system of coupled dif-
ferential equations. The activity of each node is described by 
a mean-field model, such as the ones described in the section 
“Computational models for EEG on the level of single cells 
and microcircuits”, and coupling between the mean field 
models is parametrized by the empirical SC (Fig. 1a, right).

Importantly, the type of mean-field model used at the 
local level must be selected according to the hypothesis 
being tested. For example, BNMs have proved to be a pow-
erful tool to elucidate the non-linear link between the brain’s 
structural wiring and the functional patterns of brain activity 
captured with resting-state functional magnetic resonance 
imaging (rsfMRI) (Deco et al. 2013a, 2014a; Honey et al. 
2009; Deco et al. 2009; Cabral et al. 2011). However, oscil-
lations in frequency ranges important for M/EEG (2–100 
Hz) are often neglected in studies aiming at reproducing 
correlated fluctuations on the slow time scale of the fMRI 
signal. Thus, despite the insights gained by BNMs to under-
stand rsfMRI signal dynamics, the same models do not nec-
essarily serve to understand M/EEG signals and vice-versa 
(Cabral et al. 2017).

In Cabral et al. (2014), the local model employed includes 
a mechanism for the generation of collective oscillatory 
signals in order to address oscillatory components of M/
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EEG. To model brain-wide interactions between local nodes 
oscillating around a given natural frequency (in this case, 40 
Hz, in the gamma frequency range), the Kuramoto model 
(Kuramoto 2003; Yeung and Strogatz 1999), was extended 
to incorporate realistic brain connectivity (SC) and time 
delays (determined by the lengths of the fibers in the SC (see 
also Finger et al. (2016); Fig. 2a, right). This model shows 
how, for a specific range of parameters, groups of nodes 
(communities) can temporarily synchronize at community-
specific lower frequencies, obeying to universal rules that 
govern the behaviour of coupled oscillators with time delays. 
Thus, the model proposed a mechanism that explains how 
slow global rhythms in the alpha- and beta-range emerge 
from interactions of fast local (gamma) oscillations gener-
ated by neuronal networks.

In contrast, Deco et al. (2019b) used a mean field model 
(Wilson and Cowan 1973; Brunel and Wang 2001; Deco 
and Jirsa 2012; Deco et al. 2014b), which was tuned not to 
exhibit intrinsic oscillations. Because the brain could thus be 
considered as being in a noisy, low-activity state, the number 
of parameters was sufficiently reduced to investigate how 
activation patterns change over time on different time scales. 
Time scales including that of M/EEG (ten to several 100 ms) 
as well as that typical for fMRI (1–3 s) were considered, 
and the question was asked whether there is a time scale 
at which brain dynamics are particularly rich. The authors 
found that both the number of co-activation patterns as well 
as their dynamics were richest when a time scale of 200 ms 
was used. Thus, in this case, co-activation patterns were of 
interest instead of oscillations, and a model suitable for both 
M/EEG and fMRI was chosen.

Emerging class of harmonics-based models. Although 
both the described BNMs as well as DCM (dynamic causal 
modeling) have a long history of success in modeling brain 
activity patterns, they have high-dimensionality, and usu-
ally require local oscillators governed by region-specific 
or spatially-varying model parameters. While this imbues 
such models with rich features capable of recreating com-
plex behavior, they are challenging for some clinical applica-
tions where a small set of global features might be desired to 
assess the effect of disease on network activity.

Nunez (1974) presented pioneering modeling work that 
focuses on the global aspects of brain dynamics, which 
was continuously developed over the last decades (Nunez 
1974, 1989; Nunez and Srinivasan 2006; Nunez et al. 2019). 
The idea at the basis of these models is that global brain 
dynamics can be understood as standing and traveling waves 
constrained by the brain geometry, an idea that remains 
immensely influential.

In order to take advantage of the low-dimensional proper-
ties of such models, some laboratories have recently focused 
on low-dimensional processes involving diffusion or random 
walks (Table 1) on the structural graph (Table 1) instead of 

mean-field models, providing a simpler means of simulating 
functional connectivity (FC). These simpler models were 
able to match or exceed the predictive power of complex 
neural mass models or DCMs in predicting empirical FC 
(Abdelnour et al. 2014). Higher-order walks on graphs have 
also been quite successful; typically these methods involve a 
series expansion of the graph adjacency or Laplacian matri-
ces (Meier et al. 2016; Becker et al. 2018) (Table 1). Not 
surprisingly, the diffusion and series expansion methods 
are closely related, and most of these approaches may be 
interpreted as special cases of each other, as demonstrated 
elegantly in recent studies (Robinson et al. 2016; Deslauri-
ers-Gauthier et al. 2020; Tewarie et al. 2020).

Whether using graph diffusion or series expansion, these 
models of spread naturally employ the so-called eigen-
modes, or harmonics, of graph adjacency or Laplacian 
matrix. Hence these methods were generalized to yield spec-
tral graph models whereby e.g. Laplacian harmonics were 
sufficient to reproduce empirical FC, using only a few eigen-
modes (Galán 2008; Atasoy et al. 2016; Abdelnour et al. 
2018). The Laplacian matrix in particular has a long history 
in graph modeling, and its eigenmodes are the orthonormal 
basis of the network and can thus represent arbitrary patterns 
on the network (Stewart 1999). Such spectral graph models 
are computationally attractive due to low-dimensionality and 
more interpretable analytical solutions. The SC’s Laplacian 
eigenmodes may be thought of as the substrate on which 
functional patterns of the brain are established via a process 
of network transmission (Abdelnour et al. 2018; Atasoy et al. 
2016; Robinson et al. 2016; Preti and Van De Ville 2019; 
Glomb et al. 2020). These models were strikingly successful 
in replicating canonical functional networks, which are sta-
ble large scale circuits made up of functionally distinct brain 
regions distributed across the cortex that were extracted by 
clustering a large fMRI dataset (Yeo et al. 2011).

While spectral graph models have demonstrated ability 
to capture essential steady-state, stationary characteristics 
of real brain activity, they are limited to modeling passive 
spread without oscillatory behavior. Hence they may not 
suitably accommodate a larger repertoire of dynamically-
varying microstates or rich power spectra at higher frequen-
cies typically observed on EEG or MEG. Capturing the rich 
repertoire of brain dynamics would require a full accounting 
of axonal propagation delays as well as local neural popula-
tion dynamics within graph models, as previously advocated 
(Cabral et al. 2011). In O’Connor et al. (2002); O’Connor 
and Robinson (2004), the authors used neural field models 
(Robinson et al. 2001a) to derive relationships between wave 
patterns on the cortical sheet and EEG power spectra. This 
was later extended to spherical geometries (Robinson et al. 
2016; Mukta et al. 2017). Roberts et al. (2019) explored 
traveling waves on the network derived from the SC, and 
Tewarie et al. (2019) successfully modeled band-specific 
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MEG resting-state networks with a combination of delayed 
neural mass models and eigenmodes of the structural net-
work (Tewarie et al. 2019), suggesting delayed interactions 
in a brain’s network give rise to functional patterns con-
strained by structural eigenmodes.

Recently another effort was undertaken to characterize 
wide-band brain activity using graph harmonics in closed 
form (i.e. requiring no time-domain simulations), a rarity 
in the field of computational neuroscience (Raj et al. 2020). 
This “spectral graph model” of brain activity produced 
realistic power spectra that could successfully predict both 
the spatial as well as temporal properties of MEG empiri-
cal recordings (Raj et al. 2020). Intriguingly, the model 
has very few (six) parameters, all of which are global and 
not dependent on local oscillations. This method therefore 
exemplifies the power of graph methods in reproducing more 
complex and rich repertoire of brain activity, while keeping 
to a parsimonious approach that does not require the kinds 
of high-dimensional and non-linear oscillatory models that 
have traditionally held sway.

Applications of computational models 
of EEG

Network oscillations captured through EEG are thought 
to reflect relevant processes for brain function, namely for 
cognition, memory, perception, and consciousness (Ward 
2003). Indeed, oscillatory activity in EEG signals is found to 
change with a wide range of tasks and to exhibit characteris-
tic features across states of consciousness. Moreover, altera-
tions in oscillatory activity can be a sign of a brain disorder, 
with EEG commonly used in research and clinical fields to 
help diagnosis and treatment (Tatum 2014). It is known that 
coherence across sufficiently large brain regions is necessary 
for oscillations to be detectable with EEG. However, the 
mechanisms generating and orchestrating these oscillations 
at the mesoscopic and macroscopic levels remain mostly 
unclear. Following different mechanistic scenarios, physio-
logically and/or theoretically inspired computational models 
have been shown to reproduce characteristic features of EEG 
signals, offering a complementary tool to address healthy 
and disease brain mechanisms, test new clinical hypotheses, 
and explore new surgical strategies in silico. This section 
presents a number of computational works that used mostly 
large-scale network approaches to explain the changes in 
brain activity observed across the spectrum of consciousness 
as well as in neuropsychiatric disorders and epilepsy.

Brain models of consciousness

A variety of models have been employed to elucidate 
the neurophysiological mechanisms underlying different 

physiological brain states, such as wakefulness and deep 
sleep (non-rapid eye movement, NREM) (Robinson et al. 
2002; Hill and Tononi 2005; Roberts and Robinson 2012; 
Cona et al. 2014), and pharmacological conditions, such 
as anesthesia (Steyn-Ross et al. 1999; Sheeba et al. 2008; 
Ching et al. 2010; Hutt and Longtin 2010; Liley et al. 2010; 
Hindriks and van Putten 2012; Ching and Brown 2014; 
Hashemi et al. 2015). Contrasting the activity detected in 
quiet wakeful rest with the activity detected in deep sleep 
and/or anesthesia has been the subject of research of a num-
ber of computational models addressing signatures of con-
sciousness captured both with EEG (Esser et al. 2009; Ching 
et al. 2010) and fMRI (Deco et al. 2018, 2019a). In fact, 
understanding the mechanisms underlying consciousness 
might have crucial implications for the study of disorders 
of consciousness (DoC). DoC refer to a class of clinical 
conditions that may follow a severe brain injury (hypoxic/
ischemic or traumatic brain injury) and include coma, veg-
etative state or unresponsive wakefulness syndrome (VS/
UWS), and minimally conscious state (MCS). Coma has 
been defined as a state of unresponsiveness characterized by 
the absence of arousal (patients lie with their eyes closed) 
and, hence, of awareness. VS/UWS denotes a condition of 
wakefulness with reflex movements but without behavioural 
signs of awareness, while patients in MCS show unequivocal 
signs of interaction with the environment.

The current gold standard for clinical assessment of 
consciousness relies on the Coma Recovery Scale Revised 
(Giacino et al. 2004), which scores the ability of patients 
to behaviourally respond to sensory stimuli or commands. 
However, behavioral-based clinical diagnoses can lead to 
misclassification of MCS as VS/UWS because some patients 
may regain consciousness without recovering their ability 
to understand, move and communicate (Childs et al. 1993; 
Andrews et al. 1996; Schnakers et al. 2009). A great effort 
has been devoted to develop advanced imaging and neu-
rophysiological techniques for assessing covert conscious-
ness and to improve diagnostic and prognostic accuracy 
(Edlow et al. 2017; Bodart et al. 2017; Stender et al. 2014; 
Bruno et al. 2011; Owen and Coleman 2008; Stender et al. 
2016). A novel neurophysiological approach to unravel the 
capacity of the brain to sustain consciousness exploits Tran-
scranial Magnetic Stimulation (TMS) in combination with 
EEG (Rosanova et al. 2018; Casarotto et al. 2016). Spe-
cifically, the EEG response evoked by TMS in conscious 
subjects exhibits complex patterns of activation resulting 
from preserved cortical interactions. In contrast, when 
unconscious patients are stimulated with TMS, the evoked-
response shows a local pattern of activation, similar to the 
one observed in healthy controls during NREM sleep and 
anesthesia.

The perturbational complexity index (PCI) (Casali et al. 
2013) is an electroencephalographic-derived measure that 
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quantifies the dynamical complexity of TMS-evoked EEG 
potentials by means of the Lempel-Ziv compression algo-
rithm, showing high values (low compressibility) for com-
plex chains of activation typical of the awake state, and low 
values (high compressibility) for stereotypical patterns of 
activation typical of sleep and anesthesia. PCI has been 
validated on a benchmark population of 150 conscious and 
unconscious controls and tested on 81 severely brain-injured 
patients (Casarotto et al. 2016), showing an unprecedented 
high sensitivity (94.7%) in discriminating conscious from 
unconscious states.

Although PCI is commonly used to analyze real TMS-
EEG data, it can also be applied to simulated data (Bensaid 
et al. 2019). This recently published modeling approach 
investigates the physiological mechanisms underlying the 
generation of complex or stereotypical TMS-evoked EEG 
responses. The proposed brain network model, named 
COALIA in Bensaid et al. (2019), describes local dynam-
ics as neural masses (Wendling et al. 2002) that include 
populations of pyramidal neurons and three different types 
of interneurons. Each neural mass describes the local 
field activity of one of 66 cortical brain regions (Desikan 
et al. 2006). Neural masses are connected with each other 
through long-range white matter fibers as described above 
(section “Macroscopic computational models for EEG tak-
ing into account the connectome”). EEG signals are then 
simulated as neural mass activity. A systematic compari-
son of the complexity of simulated and real TMS-evoked 
EEG potentials through PCI suggested that the rhythmically 
patterned thalamocortical activity, typical of sleep, plays a 
key role in disrupting the complex patterns of activation 
evoked by TMS (Bensaid et al. 2019). Indeed, this rhythmi-
cal thalamocortical activity results in inhibition within the 
cortex that prevents information from propagating from one 
brain region to another, and thus disrupts functional inte-
gration, i.e. the ability of the brain to integrate information 
originating from different brain regions or groups of brain 
regions (Tononi 1998). Along with functional segregation, 
i.e., the specialization of a brain region to fulfill a certain 
function, functional integration is necessary to generate 
complex time-varying patterns of coordinated cortical activ-
ity that are typical of the awake brain, and thought to sustain 
consciousness and cognitive functions (Tononi et al. 1994; 
Casali et al. 2013; Lord et al. 2017; Demertzi et al. 2019).

Neuropsychiatric disorders

Disruption of integration and segregation balance, which 
is fundamental for consciousness as mentioned in the sec-
tion “Brain models of consciousness”, have been linked also 
to several neuropsychiatric disorders as a result of altered 
structural and functional connectivity (Bassett and Bullmore 
2009; Fornito et al. 2015; Menon 2011; Deco et al. 2015). 

Among neuropsychiatric disorders, as reviewed in Lord et al. 
(2017), Alzheimer’s disease is characterized by a decrease 
in long-range functional connectivity, directly affecting inte-
gration between functional modules of the brain (Stam et al. 
2007; Sanz-Arigita et al. 2010). Schizophrenia has been 
linked to a “subtle randomization” of global functional con-
nectivity, such that the so-called “small-world” character 
of the network is disrupted (Alexander-Bloch et al. 2010; 
Lynall et al. 2010); a small-world network is characterized 
by short path lengths and strong modularity, network proper-
ties that are thought to promote information processing in 
the brain (Bassett and Bullmore 2006) (but see Hilgetag and 
Goulas (2016)). Loss of integration has also been observed 
in schizophrenia (Damaraju et al. 2014).

As explained in the section “Macroscopic omputational 
models for EEG taking into account the connectome”, 
whole-brain computational models provide insights into 
how anatomical connections shape and constrain functional 
connectivity (Honey et al. 2009; Deco et al. 2013a, 2014a). 
Using BNMs, Cabral and colleagues have shown that the 
alterations reported in schizophrenia (Lynall et al. 2010) 
can be explained by a decrease in connectivity between 
brain areas, occurring either at the local or global level and 
encompassing either axonal or synaptic mechanisms, hence 
reinforcing the idea of schizophrenia being the behavioural 
consequence of a multitude of causes disrupting connectiv-
ity between brain areas (Cabral et al. 2012a, b).

However, these models have focused on reproducing 
fMRI findings and are yet to be extended to address altera-
tions in EEG spectral signatures in schizophrenia, namely 
increased EEG gamma-band power and decreased alpha 
power (Uhlhaas and Singer 2013), which, following previ-
ous modeling insights (Cabral et al. 2014), may arise from 
reduced coupling between local gamma-band oscillators. 
Furthermore, BNMs can be employed to test how clinical 
interventions may help to re-establish healthy network prop-
erties such as the balance between integration and segrega-
tion or small-worldness (Deco et al. 2018, 2019a).

Epilepsy

Models have been employed to study pathological altera-
tions of network oscillatory activity related to many dis-
eases, including epilepsy (Wendling 2005; Lytton 2008; 
Stefanescu et al. 2012; Holt and Netoff 2013). Epilepsy is a 
complex disease which impacts 1% of the world population 
and is drug resistant in approximately 30% of cases. Due 
to its intrinsic complexity, epilepsy research has strongly 
benefited, and will do so even more in the future, from an 
in silico environment where hypotheses about brain mecha-
nisms of epileptic seizures can be tested in order to guide 
strategies for surgical, pharmacological and electrical stimu-
lation techniques.
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Focal epilepsy is a prototypical example of a disease that 
involves both local tissue and network properties. Focal epi-
lepsy occurs when seizures originate in one or multiple sites, 
so-called epileptogenic zones (EZ), before recruiting close 
and distal non-epileptogenic areas pertaining to the patho-
logical network. Patients with a history of drug-resistant 
focal epilepsy are candidates for surgery which targets epi-
leptogenic areas and/or critical nodes presumably involved 
in the epileptogenic network. Successful outcomes of these 
procedures critically rely on the ability of clinicians to pre-
cisely identify the EZ.

A promising modeling approach aims at studying focal 
epilepsy through a single-subject virtual brain (Soltesz 
and Staley 2011; Terry et al. 2012; Hutchings et al. 2015; 
Proix et al. 2017; Bansal et al. 2018), bringing together the 
description of how seizures start and end (seizure onset and 
offset, respectively) at a local level (through neural mass 
models) (Robinson et al. 2002; Wendling et al. 2002; Lopes 
da Silva et al. 2003; Breakspear et al. 2006; Jirsa et al. 2014) 
with individual brain connectivity derived from dMRI data. 
In this personalized approach, a patient’s brain is virtually 
reconstructed, such that systematic testing of many surgical 
scenarios is possible. The individual virtual brain approach 
provides clinicians with additional information, helping 
them to identify locations which are responsible for start-
ing or propagating the seizure and whose removal would 
therefore lead to the patient being seizure-free while avoid-
ing functional side effects of removing brain regions and 
connections (Proix et al. 2017; Olmi et al. 2019). Finally, 
in silico approaches involving neurostimulation paradigms 
provide useful insights about how to prevent seizure onset or 
to interrupt the propagation of partial seizure to large brain 
areas (Schiff 2012; Stamoulis 2013; Rich et al. 2020).

Discussion

In this paper we introduced different computational model 
types and their application to EEG, using a simple classifica-
tion by spatial scale. Clearly not all models in the literature 
would necessarily belong to one category, but we believe 
this taxonomy can provide an entry point for non-experts. 
The main motivation behind this review was to identify 
obstacles that stand in the way of applying EEG modeling in 
both a research and clinical context, and to point out future 
directions that could remove these obstacles.

We have pointed out several recent efforts that have 
begun to more closely align models and experimental find-
ings. Such integration of theory and experiment guarantees 
the use of biologically relevant measures within computa-
tional models of EEG, a crucial element if one wishes to 
use EEG models together with acquired data. For example, 
recent microcircuit models address the gap between theory 

and experiment by linking average firing rate—a measure of 
population activity preferred by the modeling community—
and local field potential (LFP)—a measure that is generally 
thought to be a good proxy of the EEG signal (Saponati et al. 
2019); recent mean field models explicitly include the con-
tribution of neural synchronization to the LFP (Byrne et al. 
2020), thereby integrating experimental knowledge about 
how the EEG signal is generated (Lopes da Silva 2013); 
brain network models explore the contribution of empiri-
cally measured connectomes to macroscopic brain activity 
(Cabral et al. 2014); and applications of computational mod-
els already exist that use clinical measures to study e.g. coma 
(Bensaid et al. 2019), epilepsy (Olmi et al. 2019; Proix et al. 
2017), and neuropsychiatric disorders (Spiegler et al. 2016; 
Kunze et al. 2016). Furthermore, some modeling approaches 
focus on providing a simple model for large-scale dynamics, 
making results more interpretable both from a theoretical 
and clinical standpoint (Abdelnour et al. 2018; Raj et al. 
2020).

We have reviewed computational models on three spatial 
scales (Fig. 2a). Each scale models qualitatively different 
biological processes which can be measured using distinct 
recording techniques (Varela et al. 2001) (Fig. 1). While 
EEG records activity at the macro-scale, mechanisms at each 
scale have an impact on the EEG signal and should therefore 
inform its interpretation. Therefore, ideally, scales should be 
combined to provide a complete picture of neural mecha-
nisms underlying EEG activity, something that started to be 
explored for example in the simulation platform The Virtual 
Brain (TVB) (Sanz Leon et al. 2013; Falcon et al. 2016) or 
in studies showing the theoretical relationship between spik-
ing networks and mean field formulations (Wong and Wang 
2006; Deco et al. 2013b; Coombes and Byrne 2019; Byrne 
et al. 2020). Using models in this hierarchical manner is the 
only way to disentangle different contributions to the EEG 
signal without using invasive techniques, i.e., to distinguish 
neural signals (Michel and Murray 2012; Seeber et al. 2019), 
volume conduction (Hindriks et al. 2017; Lindén et al. 2011; 
Mäki-Marttunen et al. 2019; Skaar et al. 2019; Einevoll et al. 
2013; Teleńczuk et al. 2017; Bédard and Destexhe 2009), 
and noise. Furthermore, brain disorders can impact brain 
structure and function on any scale. Using models on mul-
tiple scales is necessary if one wishes to understand how 
pathological changes manifest in clinically measurable EEG 
signals. Such an understanding would also allow to use EEG 
to evaluate clinical interventions that affect the micro- or 
mesoscale (e.g., drugs).

Models can thus play an important role as a “bridge” 
that connects different fields. In translational applications, 
knowledge from basic research can be integrated into a 
model and the model can be designed in such a way that it is 
useful for a clinical application. An example for a successful 
“bridge” is the case of Brain Computer Interfaces. In order 
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to realize multi-scale models, researchers working on animal 
recordings and researchers focusing on non-invasive record-
ings in humans have to come together with modeling experts 
that can incorporate findings from both fields in a model.

As an outlook, EEG modeling could play an important 
part in future endeavors towards precision medicine, or 
“personal health”. Individual brain models could be used 
to integrate different sources of data (EEG, fMRI, ECG, 
etc.) in a “virtual patient”. This could complement data-
driven approaches like connectome fingerprinting [in which 
individuals are identified using their individual connectome 
(Finn et al. 2015; Pallarés et al. 2018; Abbas et al. 2020)]. 
The ultimate goal would be to use this virtual patient to tai-
lor diagnosis and therapies around the needs of the patient 
(Wium-Andersen et al. 2017), reducing the economical 
burden and patient discomfort of clinical analyses and 
hospitalization.
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