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Simple Summary: In this review, we focus on recent advances in the detection and quantification
of tumor cell heterogeneity and genomic instability of CTCs and the contribution of chromosome
instability studies to genetic heterogeneity in CTCs at the single-CTC level.

Abstract: Circulating tumor cells (CTCs) can promote distant metastases and can be obtained through
minimally invasive liquid biopsy for clinical assessment in cancer patients. Having both genomic
heterogeneity and instability as common features, the genetic characterization of CTCs can serve as
a powerful tool for a better understanding of the molecular changes occurring at tumor initiation
and during tumor progression/metastasis. In this review, we will highlight recent advances in the
detection and quantification of tumor cell heterogeneity and genomic instability in CTCs. We will
focus on the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the
single-CTC level by discussing data from different cancer subtypes and their impact on diagnosis and
precision medicine.
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1. Introduction

Tumor metastasis, a major causative event involved in cancer mortality, is preceded by the
appearance of circulating tumor cells (CTCs) in the blood. CTCs can be obtained through a minimally
invasive liquid biopsy regardless of whether they are derived from the primary tumor or from metastatic
sites. CTCs analyses can provide important information for disease monitoring and contribute to
precise and personalized management for cancer patients. Beyond clinical applications, CTCs can
be used as predictive biomarkers of tumor progression, patient survival, and metastatic potential.
Genetic tumor heterogeneity and genomic instability are common features of CTCs, with chromosomal
instability (CIN) being the most common form of genomic instability in cancer cells. The analysis of
CIN in CTCs allows for the tracking of the genetic alterations that gave rise to the tumor and contribute
to the detection of subpopulations that comprise intratumor heterogeneity. In this review, we will
conceptualize chromosomal instability and tumor heterogeneity, discuss methods for CTCs enrichment
and isolation, and outline techniques used to assess chromosome instability in CTCs. We will also
highlight recent advances in the detection and quantification of tumor cell heterogeneity and genomic
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instability of CTCs. We will focus on the contribution of chromosome instability studies of CTCs at the
single-cell level and discuss data from studies of different types of cancer.

2. Circulating Tumor Cells (CTCs)

Tumor metastasis is associated with high mortality in cancer and is preceded by the presence of
CTCs in the blood [1]. CTCs are rare cells (1 per 106–107 leukocytes) in the peripheral bloodstream [2,3].
Genetic modifications in CTCs allow these cells to intravasate into blood and lymphatic vessels and
to metastasize into other tissues and organs [4]. The first study to describe CTCs in the blood of
cancer patients was performed by Ashworth in 1869 [5,6]. His findings raised the possibility that CTCs
could be used as a valuable, minimally invasive “liquid biopsy” for clinical staging in cancer patients.
Initial studies showed that the presence of CTCs is associated with short survival [6–8] and explored
the use of CTCs as predictive biomarkers of tumor progression and metastases as well as patient
survival [1,6,9–11], even in early stages of the disease [12,13]. CTCs analysis can also be implemented
to improve the understanding of the genetic changes that occur in primary tumor cells that lead to
extravasation and cancer progression [1,4,12].

CTCs Isolation and Detection Studies

Baccelli et al. (2013), using the CellSearch system, the only clinically validated, FDA-approved
system for identification, isolation, and enumeration of CTCs, showed that only 1.43% of breast cancer
patients had more than 500 CTCs per 7.5 mL of blood [4,14]. This study also highlighted an important
feature of CTCs: these cells have a diameter that is three to four times larger than that of normal blood
cells and capillaries [1,9]. This means that only extremely small and/or pliable CTCs can circulate
in the blood [4]. Therefore, for the identification and collection of CTCs in reasonable numbers,
several innovative detection and enrichment technologies have been developed. Most of these take
advantage of CTCs’ physical and biological properties [11]. CTCs can be enriched either positively or
negatively based on biological properties such as expression of cell surface protein markers or physical
characteristics such as size, density, deformability, or electrical charge [15].

Lianidou and Pantel (2018) reviewed current methodologies for CTC isolation, enumeration,
and detection, and addressed clinical applications of CTC analysis in breast and prostate cancers [16].
Regardless of the isolation method used, the detection of these cells is confirmed in some cases by
(1) visualization of an intact nucleus using a DNA binding fluorescent stain, DAPI (4′,6-diamidino-
2-phenylindole); (2) expression of cytokeratin and other epithelial or specific cell surface markers such
as SNAIL and ALDH1 (used to isolate CTCs in colon cancer); and/or (3) absence of expression of a
white blood cell marker, such as CD45—the leukocyte-common antigen gene [1,17–19].

CTCs have also been detected by the expression of combined epithelial markers such as EPCAM and
cytokeratin (CK), which are expressed on normal epithelial cells and carcinomas but are absent on blood
leukocytes [20]. These surface markers can be employed to distinguish cancer cells from normal blood
cells [21]. The drawback of this approach is known as the epithelial-to-mesenchymal transition (EMT).
EMT is a reversible and transitory process that enables a cell with an epithelial phenotype to switch
to a mesenchymal or fibroblastoid cellular phenotype [3]. EMT is involved in an increased epithelial
tumor cell migration capacity, invasion, dissemination, plasticity, and immune resistance. It enhances
the ability of cancer cells to become CTCs and survive in the bloodstream. EMT can also reduce
the expression of epithelial markers [21]. Reduced EPCAM expression of some CTCs has prompted
the importance of identifying and validating new CTC markers [22–24]. Cayrefourcq et al. (2015)
found that colon CTCs co-expressed SNAIL, ALDH1, and CD133 with EPCAM and cytokeratin [23].
Baccelli et al. (2013) showed that breast cancer CTCs, xenografted into immunodeficient mice, expressed
EPCAM and cytokeratins along with CD44, CD47, and MET oncoprotein [14]. This combination
turned out to be a strong indicator of both decreased progression-free survival and overall survival in
patients with metastatic breast cancer. Baccelli et al. (2013) also demonstrated substantial interpatient
CTC heterogeneity. They found EPCAM-negative and EPCAM low expression in breast cancer CTCs,



Cancers 2020, 12, 3001 3 of 22

underlining the weakness of EPCAM-based isolation methods [14]. Furthermore, Dong et al. (2020)
found different phenotypic cell surface markers (CK +/EpCAM-, CK-/EpCAM +, CK +/EPCAM +) in
CTCs from prostate cancer patients isolated by two different methods that do not depend on cell surface
expression markers [25]. They used a selection-free platform known as Rarecyte and a size-based
platform named FAST [25]. Rienbensahm et al. (2019) also compared the efficiency of EPCAM
isolation and they found that CTCs were detected in 47.7% of the patients after EpCAM-dependent
enrichment, in 32.6% after EpCAM-independent enrichment, and in 63.6% with both enrichment
methods combined [26].

Ye et al. (2019) analyzed CTCs from 19 different carcinomas in different stages and found that
EpCAM expression was more frequent in CTCs than vimentin expression [27]. Vimentin is a member
of the intermediate filament family of proteins and a marker of EMT [28]. Interestingly, the expression
of vimentin was observed mostly in small CTCs rather than in large ones [27]. Small CTCs are closely
associated with EMT and responsible for relapse and cancer metastasis [29]. Comaills et al. (2016)
showed that epithelial cells, which failed to undergo proliferation arrest during EMT, presented mitotic
abnormalities and aneuploidy (presence of an abnormal number of chromosomes in a cell) [30].
This higher level of genetic instability was correlated with an increased expression of mesenchymal
markers [30].

3. Genetic and Chromosome Instability

Genetic heterogeneity and genomic instability are common features of CTCs in almost all human
cancers [4,31]. Genomic instability refers to an increased tendency of genetic alterations likely to
develop during cell division [32]. The accumulation of changes is a driving force for the development,
transformation, and progression of tumor cells and results in intratumoral cell heterogeneity [1,32,33].
Small structural variations such as base pair mutation and microsatellite instability (MSI) or significant
chromosome structural variations such as changes in chromosome number or structure (duplication,
deletion, and translocation) are markers of genomic or chromosomal instability (CIN).

CIN is defined as a high rate of change in the structure and/or number of chromosomes over
time [31,34]. It involves gain and/or loss of whole chromosomes or chromosome fragments. It was
first described over a century ago and was linked to tumorigenesis [31,35]. Experimental evidence
suggests that CIN enables tumor cells to progress and to adapt selectively to different environmental
pressures. Aneuploidy, a consequence of CIN, has been implicated in tumorigenesis [35–37] based
on the increased rates of malignancy found in patients with global or mosaic aneuploidies [38–40].
Detection of CIN requires the determination of chromosome mis-segregation rates. Cells derived
from CIN precursors show high levels of variation in chromosome content in contrast to cells derived
from stable precursors [41]. To measure the rate of change in chromosome number as a measure of
chromosomal instability in colorectal cancer cell lines, Lengauer et al. (1997) performed fluorescence
in situ hybridization (FISH) with a panel of centromeric probes and microsatellite analysis [42].
The authors discovered that tumor cell lines without microsatellite instability exhibited CIN through
defects in chromosome segregation with alterations in excess of 10−2 gain or loss per chromosome
per generation [42]. This chromosomal instability was shown to be dominant and was confirmed by
introducing a single copy of chromosomes in a stable colorectal tumor cell line [42].

A high rate of chromosomal instability in tumor clones has been reported in other malignancies
such as breast and lung cancers [43,44]. Increased expression of mitotic checkpoint genes in
breast cancer, increased microtubule assembly rates in colorectal cancer, and deviant kinetochore
microtubule dynamics have also been reported to contribute to chromosomal instability and cancer
development [45–47].

Different gene networks are essential to control cell survival and genome integrity in normal
cells. Alterations that involve activation or inactivation of any of these key genes can initiate CIN [41].
An important example of a gene involved in the CIN phenotype is TP53. Several studies have linked the
CIN phenotype with the inactivation or mutation of TP53 [44,48–53]. TP53 is a tumor-suppressor gene



Cancers 2020, 12, 3001 4 of 22

that encodes a nuclear phosphoprotein important in the control of normal cell proliferation, repair of
DNA damage, and apoptosis [54]. Genetic alterations in TP53 are found in 60% of human malignant
tumors [41,54–56]. Many other proteins have also been associated with CIN, such as APC, BRCA1,
Bub3, and EB1, among others [57–60]. These proteins were summarized by Thompson et al. (2010)
along with the possible mechanisms connecting them to the loss of mitotic fidelity in tumor cells and
other cell functions [41].

CIN analysis involves the determination of chromosome mis-segregation rates through whole
chromosome analysis (FISH with centromeric probes or whole chromosome paints). Analysis of the
genes involved in cell cycle control (molecular analysis such as PCR or sequencing for DNA repair
genes, mitotic checkpoint genes, etc.) is also used to detect CIN. In all these scenarios, the required
tumor cell material is obtained by tumor biopsy—an invasive, costly, and sometimes unfeasible
procedure [3], hence the increasing interest in CTC studies. Since CTCs can reflect the chromosomal
instability of the primary tumors from which they arise, they allow the identification of relevant
biomarkers [3]. This minimally invasive approach can be visualized in Figure 1.

3.1. CTCs Data Analysis

In general, CIN analyses are performed using techniques such as FISH, Q-FISH, and next-generation
sequencing (analysis of copy number alterations). Recently, CTC platforms such Epic Sciences and
RareCyte associated with bioinformatics have allowed the development of different approaches
to be used for CTC data analysis in chromosomal instability and genetic heterogeneity [61–65].
Schonhoft et al. (2020) developed a computer vision-based biomarker to detect CIN in CTCs
from patients with progressing metastatic castration-resistant prostate cancer (mCRPC) [65].
This image-based algorithm utilizes CTC image features (direct sequencing and morphology)
detected by the Epic Sciences platform to predict the presence of a high (nine or more) versus
low (eight or fewer) large-scale transitions (LST) number in a single cell [65]. LST are genomic
alterations defined as chromosomal breakages of at least 10 Mb of chromosomal gains or losses [65–67].
Jendrisak et al. 2020 used the same image-based algorithm to develop a similar CTC-based technology
for triple negative breast cancer to identify HRD-like phenotypes [66]. Camptom et al. (2015) [64]
characterized the performance of the AccuCyte-CyteFinder system, an integrated technology platform
with highly sensitive visual identification and retrieval of individual CTCs from microscopic slides for
molecular analysis (after automated immunofluorescence staining for epithelial markers), developed by
RareCyte [63,64]. The AccuCyte-CyteFinder provided high-resolution images that allowed the
identification of CTCs from prostate, lung, and breast cancer cell lines by morphologic and phenotypic
features [64]. Kaldjian et al. (2015) [68] used the same platform, AccuCyte-CyteFinder, to identify CTCs
in advanced prostate cancer patients and compare CTC counts with the FDA-cleared CellSearch system
(system based on automated immuno-magnetic capture of EpCAM-expressing cells, followed by
staining for DNA and cytokeratin to verify that captured cells are nucleated and epithelial in
origin) [62,64,68]. The AccuCyte-CyteFinder was able to identify equivalent or greater numbers of
CTCs found by the CellSearch system [68]. Aguilar-Avelar et al. (2019) described the design and
construction of a fully automated high-throughput fluorescence microscope that enables the recognition,
imaging, and classification of CTCs in a blood sample that were labeled by immunostaining [69].
The microscope hardware accurately discriminated CTCs among cells present in blood and the
hardware efficiently captured light emitted from unstained cells while the fluorescence signals were
used to automatically classify and precisely identify CTCs on a sample by thousands of background
cells [69].
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Figure 1. Steps required to obtain circulating tumor cells (CTCs) for chromosomal instability (CIN)
analyses and techniques used to characterize chromosome instability. Collection of peripheral
blood followed by isolation and enrichment of CTCs based on biological properties (expression of
protein markers) or physical properties (size, density, deformability, or electrical charges). After that,
CIN analysis can be performed using techniques such as fluorescence in situ hybridization (FISH),
whole-exome sequencing, Quantitative fluorescence in situ hybridization (Q-FISH), and next-generation
sequencing, among others.
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3.2. Chromosome Instability in CTCs

Manier et al. (2018) compared enriched CTCs with cell-free DNA (cfDNA) [22]. They matched
tumor biopsies of 13 patients with multiple myeloma (MM), using whole-exome sequencing (WES),
and were able to capture the mutational landscape in the bone marrow, thus providing a comprehensive
profile of the clonal heterogeneity and tumor evolution in MM [22]. The combination of CTC analysis
and cfDNA was able to detect almost all of the clonal mutations identified in the bone marrow myeloma
cells. Manier et al. (2018) also identified recurrent mutated genes, such as KRAS, NRAS, BRAF,
and TP53, as well as pan-cancer mutations, somatic copy number alterations (1p and 13q deletion, gain
of 1q and 11q), and even subclones not identified in the bone marrow [22]. Further, they confirmed
that CD138 selection is an important, simple, and quick step towards enriching MM CTCs. They also
showed the potential of sequential sample analysis of CTCs by WES to screen disease response and
progression during therapy and track future clonal evolution in patients with MM. The similarities
between biopsies and CTCs’ genetic background are consistent with two previous reports in breast
cancer [53,54]. A high degree of similarity was found in copy number variations (gain of 1q and 8q,
and losses of 6q, 8p, distal 11q and 17p) among all analyzed tumor samples of breast cancer (primary
tumor, metastasis, CTCs, and cfDNA) [70].

Anantharaman et al. (2016) characterized the expression of the programmed death-ligand 1 (PD-L1)
protein [71], which, when expressed in cancer cells, is associated with evasion of immune surveillance
and eradication [55]. They analyzed CTCs from patients with muscle invasive and metastatic bladder
cancer [71]. The cells, identified by immunofluorescence and genetic characterization (FISH), showed a
significant number of genomic aberrations, amplifications, and deletions in multiple chromosomes
(1, 2, 6, 17, 18, 20, 21, X, and Y). Xu et al. (2017) used negative enriching immunofluorescence and
fluorescence in situ hybridization of chromosome 8 (NE-iFISH) in CTCs from pancreatic cancer
patients [72]. They sought to identify CTCs, analyze the chromosomal instability of chromosome 8,
and verify the correlation between aneuploidy and prognosis. Patients with CTCs < 3 (monosomic or
diploid) chromosome 8 had not only an increased one-year survival but also a higher overall survival
when compared to patients with CTCs ≥ 3 (triploid, tetraploid or polyploid) [72]. Similar results were
found by Liu et al. (2017) in CTCs of pancreatic ductal adenocarcinoma [73] and by Qiu et al. (2018)
in CTCs from thyroid cancer [74]. Chromosome 8 aneuploidy was associated with poor response to
radioactive iodine (131I) treatment and worse prognosis in thyroid cancer [74].

Zhang et al. (2018) used subtraction enrichment and an immunostaining-fluorescence in situ
hybridization (SE-iFISH) automatic testing system to detect and characterize CTCs in nasopharyngeal
carcinoma (NPC) [75]. They found that aneuploidy of chromosome 8 in CTCs was related to
chemotherapeutic efficacy [75]. In another study using the same technique, Chen et al. (2019) showed
that in newly diagnosed esophageal cancer patients, before and after chemotherapy, non-triploid tumors
had a significantly greater clinical response when compared to triploid tumors [76]. This suggests
that non-triploid tumors are more sensitive to chemotherapy and that this might serve as a marker to
predict chemotherapeutic efficacy [76]. Ye et al. (2019) also used (SE-iFISH) in CTCs from 19 different
carcinomas [27]. They found that the total number of CTCs, tetraploid chromosome 8, polyploid
chromosome 8, and large CTCs were more frequent in patients with advanced stage cancer (III and IV)
when compared to stage I or II [27].

Genetic alterations in CTCs are also a common feature in non-small-cell lung cancer (NSCLC).
Different studies have identified mutations in oncogenes associated with tumor growth, such as
EGFR mutations, ALK gene rearrangement, and alterations in the copy number of ROS-1 and
rearrangements [77–81]. All these mutations can lead to the development of CIN. NSCLC CTCs also
display substantial heterogeneity of genetic rearrangements, accompanied by a high level of CIN.
A high level of CIN is related to increased risk of relapse or death in NSCLC patients, as well as to
acquired resistance to ALK inhibitor in ALK-rearranged tumors [82,83]. Carter et al. (2017) emphasized
the importance of monitoring CIN in CTCs through the classification of chemosensitive versus
chemorefractory small-cell lung cancer (SCLC) patients using copy number aberrations (CNAs) [84].
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They demonstrated that CTCs could be useful for the identification of drug resistance biomarkers and
expanded our knowledge of tumor heterogeneity driven by genomic instability.

Malihi et al. (2020) analyzed single CTCs from 47 patients with and without aggressive variant
prostate cancer (AVPC) [85]. Their results indicated that 42.6% of patients had two or more concurrent
losses of tumor-suppressor genes (PTEN, RB1, and TP53) in at least one CTC. This finding was
associated with poor survival and increased genomic instability. Loss of the tumor-suppressor genes
PTEN, RB1, and TP53 was correlated with increased androgen receptor (AR) expression, BRCA2 gene
loss, and gains in chromosomal regions where PTK2, MYC, and NCOA2 genes are localized [85].
A comparative analysis of copy number alterations in primary tumor tissue and CTCs (from the same
patient) was performed by Gao et al. (2017) and showed that copy number alterations affecting MYC
and PTEN genes were present in all CTCs but not in all matched tissue samples [86]. Lim et al. (2019),
using single-cell analysis of CTCs, found the following genomic alterations: microsatellite instability
in BAT 25, NR21, and NR24 genes; CNAs alteration (amplification or deletion) in HER2, AR, CDK8,
and EGFR; and insertions or deletions at the single-nucleotide level in the genes TP53, BRAF, KRAS,
and PIK3CA [87]. Such mutations are not described in the Catalogue of Somatic Mutations in Cancer
(COSMIC) database [87,88] and are not found in tissue biopsies [88,89]. These specific alterations
were suggested to be involved in CTC phenotypes and provide them with intravasation competency,
increased migration/motility, enhanced cell–cell interactions, interaction with platelet, and blood
immune cells and resistance to therapy. Such alterations are also linked to CTCs subpopulation and
cancer cells phenotypes (cells resistance, metastasis, aggressiveness) [87,90,91].

Another way to characterize CIN and tumor heterogeneity is by studying alterations in telomeres.
Telomeres are tandem repeated DNA sequences at the end of chromosomes [92]. The nuclei of
cancer cells exhibit telomeric aggregates (TAs) and aberrant telomeric clusters that result in altered 3D
telomeric organization in the nuclear space [93–95]. Telomere dysfunction has been associated with
CIN in different cancer types and the degree of telomeric disorganization can be used to predict the
aggressiveness and progression of tumors [96–98]. The characterization of subpopulations of CTCs
in different types of cancer (colon, prostate, breast, and melanoma), using 3D quantitative analysis
of telomeric profiles by quantitative-FISH, was first performed by Awe et al. (2013) [99]. Different
subpopulations of CTCs were identified based on their 3D telomeric profiles. In addition, the study
showed that changes in the telomere architecture appear to be cancer-specific. CTCs from prostate
patients, breast cancer, and melanoma tend to have more telomere aggregates, while CTCs from
colon and lung cancer have a significant increase in the number of telomeres [99]. Other studies have
indicated that telomere signatures can change over time and during treatment, suggesting marked
heterogeneity [13,100]. Julius et al. (2014) collected repeated samples within six-month intervals
defined as stable, mildly changing, and significantly altered 3D profiles indicative of disease stability
versus progression [100]. Most recently, Drachenberg et al. (2019) and Wark et al. (2019) assessed the
individual pretreatment risk of progression in intermediate-risk and high-risk prostate cancer patients
undergoing radiation and hormone deprivation therapies, respectively [101,102]. They identified
disease heterogeneity among a clinically homogeneous group of prostate cancer patients. In both
studies, the telomere profiling divided the patients into three subgroups with different risks of
aggressive disease, which suggests differences in therapeutic responses [101,102].

3.3. Chromosome Instability and Metastasis Development

In addition to whole chromosomal instability and heterogeneity, other genetic modifications
may influence the development of tumors and metastasis. These include genetic amplifications,
translocations, or DNA repair deficiencies [103–105]. The first two involve structural changes in specific
genes or chromosomal regions (i.e., BCR/ABL fusion in chronic myelogenous leukemia [106]) while
DNA repair deficiencies can affect multiple genes in the cell [104]. DNA repair deficiencies can lead to
gene sequences modifications, translation error of proteins, activation of oncogenes or inactivation of
tumor-suppressor genes [104,105], and consequently tumor evolution and metastasis [103,104].
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Circulating tumor cells are tumor-derived pioneers responsible for the metastatic spread of
cancer. High levels of genomic instability and an increased frequency of genetic alterations have been
described to fuel metastasis development, even without chemotherapy selection pressure [31,107].
Cancer therapeutic approaches that use DNA damage-inducing agents (taxanes, anthracyclines,
platinum compounds) induce apoptosis, overloading the DNA damage response machinery. However,
a high rate of DNA damage could also enhance the selection for resistant phenotypes with a high
mutational burden [108–110].

In triple negative breast cancer patients, Witzel et al. (2018) described that the reactivation of
HER2 represents a marker for metastatic progression. HER2-positive CTCs that were not hormone
receptor-expressing were detected at higher frequency in patients with metastatic disease when
compared to early-stage patients [110,111]. Powell et al. (2016) reported that p53-deficiecy promotes
tumor growth, increases in tumor cell shedding into the blood, and enhanced metastasis [112].
Riebensahm et al. (2019) identified alterations in notch (gain of NOTCH3) and PI3K (gain of PDPK1)
pathways by CNA profiles of CTCs, and alterations in cell cycle regulators such as TP53, RB1,
and CDKN2A, as well in genes belonging to the PI3K pathway (PTEN, PIK3CA) and chromatin
remodeling (ARID1A) by CTC mutations analysis [26].

In prostate cancer, the degree of phenotypic heterogeneity was considered important in metastatic
prostate cancer, marked by a multitude of non-canonical subtypes like CK-negative cells, small CTCs,
and CTC clusters [113,114]. Importantly, low CTC heterogeneity was associated with better survival
with second-line anti-androgen therapy [115,116]. In pretreatment samples, AR copy number gains or
point mutations (T878A or L702H) identified in ctDNA were associated with shorter progression-free
survival [117]. In addition, the detection of the AR-V7 transcript, a constitutively active AR splice
variant lacking the ligand-binding domain, was associated with worse clinical outcome, drug resistance,
and disease progression [114,118].

Interestingly, Losi et al. (2005) observed a reduction in intratumoral genetic heterogeneity from
early to advanced stages in colorectal adenocarcinomas. They noticed a 60 to 20% reduction in cells
with the K-ras mutation and 70 to 20% reduction in cells with the p53 mutation in advanced stages [119].
In non-small-cell lung cancer (NSCLC), EGFR mutations, ALK gene rearrangement, and alterations in
the copy number of ROS-1 were related to increased risk of relapse or death in NSCLC patients, as well
as to acquired resistance to ALK inhibitor in ALK-rearranged tumors [77–83].

It is evident that normal cells and primary tumor cells go through genetic changes that allow
them to disseminate and metastasize to distant organs. It is also apparent that tumor cells with CIN
produce a heterogeneous population of cells that are able to escape control mechanisms and allow
them to selectively adapt to new microenvironments and become resistant to treatment [36]. Tumor cell
heterogeneity makes disease monitoring difficult and therapeutic targeting challenging. In this regard,
the analysis of CIN in CTCs provides the opportunity to track genetic changes similar to those found
in biopsy analyses and to unmask disease heterogeneity.

4. Tumor and CTCs Heterogeneity

Intratumor heterogeneity refers to a tumor that contains cells with diverse molecular
constitutions [3]. The cell-to-cell heterogeneity in such a tumor can be at the morphological, genomic,
transcriptional, and/or protein expression level [3]. The presence of tumor heterogeneity is responsible
for different proliferation levels, aggressiveness, and tumor progression of individual cells or cell
clones within a single tumor. Tumor heterogeneity directly influences the diagnosis, prognosis of
patients, and treatment options [3,120].

Tumor heterogeneity can be both spatial and temporal [3]. The intra-patient heterogeneity at
diagnosis is defined as spatial tumor heterogeneity and reflects differences within a single tumor
or between the primary tumor and a metastasis [121–123]. Studies designed to monitor tumor
progression/evolution and drug resistance mechanisms have revealed the emergence of tumor-resistant
subclones [3]. Small changes acquired during disease progression and treatment are referred to as
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temporal tumor heterogeneity [124,125]. A schematic representation of tumor progression illustrating
the difference between spatial and temporal tumor heterogeneity can be seen in Figure 2.Cancers 2020, 12, x FOR PEER REVIEW 9 of 21 
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Figure 2. A schematic representation of tumor progression explaining the difference between spatial
and temporal tumor heterogeneity. During tumor progression, cells of primary tumor undergo genetic
modifications allowing CTCs to intravasate into blood and lymphatic vessels and to disseminate to
potential metastatic sites. Tumor cells with CIN produce a heterogeneous population of cells that can
escape cell integrity control mechanisms, to adapt to other microenvironments and become resistant to
treatments. Spatial heterogeneity reflects differences within a single tumor or between the primary
tumor and metastasis. Temporal heterogeneity reflects the emergence of low-frequency tumor subclones
and dynamic changes acquired during treatment or secondary gene alterations of tumor cells during
disease progression (adapted from Jamal-Hanjani et al. (2015) [126]).

There are two theories to explain tumor heterogeneity. The first one is based on the existence of
cancer stem cells. Cancer stem cells are tumor progenitor cells that exhibit unlimited self-renewal
capacity coupled with the ability to differentiate [127,128]. The second theory is based on the influence of
environmental factors, cell selection, and the Darwinian mode of evolution [129]. Tumor heterogeneity
could, therefore, result from those two different but related processes [3,34] in which (1) heterogeneity
is a consequence of genetic instability, caused by the accumulation of genetic alterations in cancer stem
cells leading to clonal diversity; and (2) heterogeneity is a consequence of differential expression of
genes in response to environmental stress. Therefore, studies targeting the characterization of tumor
heterogeneity should count on techniques that are able to identify genetic alterations and/or evaluate
the expression of important genes for tumor biology and tumor responsiveness.

A large number of technologies have been developed to characterize CIN and genetic heterogeneity in
CTCs, including whole genome amplification (WGA), high-throughput or “next-generation sequencing”
(NGS), single-cell sequencing (SCS), microarray-based comparative genomic hybridization (array-CGH),
and techniques based on FISH, like quantitative FISH (Q-FISH) [3,98,130]. A comprehensive compilation
of published studies using CIN to characterize tumor heterogeneity is presented in Table 1.
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Heitzer et al. (2013) performed a study using array-CGH and NGS in primary tumors, metastatic
lesions, and CTCs of colorectal cancer patients [88]. Among the genes analyzed (68 in total),
they identified the genes KRAS, APC, and PIK3CA as commonly mutated between primary tumors,
metastatic lesions, and CTCs [88]. Other studies have reported similar results regarding the degree of
mutational concordance between tumor tissues (primary tumors and metastasis) and CTCs [131–133].
However, some discrepancies have also been observed mainly at the subclonal level [134,135].
The concordance rate of HER-2 expression between CTCs and tumor tissues from breast cancer
ranged from 53 to 89% [136,137]. This difference is even higher in non-metastatic breast cancers [138].
Interestingly, CTCs exhibit more heterogeneity, including low-frequency clones, than other samples
analyzed, such as cfDNA and biopsy [139]. Indeed, it is still unclear how many CTCs should be
analyzed to cover all heterogeneity found in this cell population [140].

Tumor heterogeneity is the main reason for different responses to treatment [139,141].
Lowes et al. (2016) and other studies suggested that tumor heterogeneity is the result of genomic
instability along with selective treatment pressure [141–143]. This genomic instability results in changes
in the genotype of cells, disease progression, and often resistance to treatment [144]. Evidence of
low-frequency mutations and subclones prior to or after treatment in patients who acquired treatment
resistance has been observed in many types of cancer. For example, epidermal growth factor receptor
(EGFR) T790M mutation and MET amplification appear at low frequency prior to treatment (<1% of
cells), but are detected at a greater frequency in NSCLC patients CTCs after tyrosine kinase inhibitor
(TKI) therapy [145]. This heterogeneity was observed throughout the progression of the disease [146].
Maheswaran et al. (2008) also observed multiple EGFR-activating mutations in CTCs and a trend
towards the predominance of specific subclones during treatment [78].



Cancers 2020, 12, 3001 11 of 22

Table 1. Studies of chromosome instability (CIN) analyses that contribute to the characterization of spatial or temporal tumor heterogeneity. Spatial heterogeneity
reflects differences within a single tumor or between the primary tumor and metastasis and temporal heterogeneity reflects the presence of low-frequency tumor
subclones and dynamic changes in cellular biomarkers of tumor cells during disease progression. CTCs: circulating tumor cells.

Type of Cancer Author Reference Evaluated Cells Techniques Results and Conclusion Heterogeneity

Pancreatic cancer
[72] CTCs negative enriched immunofluorescence and

fluorescence in situ hybridization (NE-iFISH)
chromosomal instability of chromosome 8, and verified

correlation between aneuploid CTC and prognosis. spatial

[73] CTCs fluorescence in situ hybridization (FISH),
next-generation sequencing (NGS)

chromosomal instability of chromosome 8, and verified the
correlation between aneuploid CTC and prognosis. spatial

MM [22] CTCs, cfDNA,
and biopsies whole-exome sequencing (WES)

identified in CTCs clonal mutations identified in the bone
marrow biopsy and even other subclones not identified in the

bone marrow
spatial

Breast cancer

[70] primary tumor, metastasis,
CTCs, and cfDNA

whole-exome sequencing (WES), exome,
and deep sequencing

high degree of similarities of copy number changes (gain of 1q
and 8q, and losses of 6q, 8p, distal 11q and 17p), among all

analyzed tumor samples
spatial, temporal

[15] metastasis, CTCs and
cfDNA review similarities in the mutational landscape spatial, temporal

[136,137] CTCs and tumor tissues fluorescence in situ hybridization (FISH),
reverse transcription, and multiplex-PCR

clear heterogeneity in the expression of HER-2 between CTCs
and tumor tissues spatial

[26] tumor tissue, brain
mestatasis, and CTCs next-generation sequencing (NGS)

found chromosomal aberrations with a high genomic clonality
and mutations in pathways potentially important in brain

metastasis formation
spatial

Colon, prostate, breast,
and melanoma [99] CTCs 3D quantitative analysis of telomeres characterized subpopulations of CTCs in based on telomere

intensity. spatial

Prostate cancer

[100] CTCs 3D quantitative analysis of telomeres characterized genomic instability and heterogeneity in CTCs
based in 3D telomeres signatures spatial

[101,102] CTCs 3D quantitative analysis of telomeres 3D telomeres signatures divided the patients into three
subgroups with different risks of aggressive disease temporal

[140] CTCs
3D quantitative analysis of telomeres to laser
microdissection and single-cell whole-exome

sequencing (WES)

characterized genomic instability and heterogeneity based on
genetic variation and copy number alteration (CNAs) profiles spatial

Colorectal cancer
[88]

primary tumors,
metastatic lesions,

and CTCs

array-CGH and next-generation sequencing
(NGS) profile of the mutation spectrum spatial

[131–133] CTCs and tumor tissues PCR-RFLP or allele-specific PCR, Sanger
sequencing, and high-resolution melt

degree of mutational concordance between tumor tissues
and CTCs spatial
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Table 1. Cont.

Type of Cancer Author Reference Evaluated Cells Techniques Results and Conclusion Heterogeneity

Muscle invasive (MIBC)
and metastatic (mBCa)

bladder cancer
[71] CTCs fluorescence in situ hybridization (FISH),

next-generation sequencing (NGS)

significant number of genomic aberrations consistent with
malignant origin and previous findings of heterogeneity of

intratumoral DNA ploidy
spatial

Small-cell lung cancer
(SCLC) [84] CTCs analysis of copy number aberrations (CNAs) classification of chemosensitive versus chemorefractory

SCLC patients spatial, temporal

Non-small-cell lung
cancer (NSCLC)

[145] CTCs and metastases next-generation sequencing (NGS)
EGFR mutation and MET at a low frequency prior to anti-EGFR

treatment, but detected in high frequency in CTCs after TKI
therapy or in patients with acquired TKI resistance

temporal

[78] CTCs and metastases allele-specific PCR
multiple EGFR activating mutations in CTCs and a trend

towards the predominant evolution of subclones
during treatment

temporal

[81] CTCs and metastases

filter-adapted-fluorescence in situ
hybridization (FA-FISH), DNA content

quantification, and chromosome
enumeration

alterations in the copy number of ROS-1 rearrangements in
CTCs showed temporal heterogeneity during treatment

with crizotinib
temporal

[77–81] CTCs

multiplex gene-specific PCR and TaqMan
allele-specific PCR, fluorescence in situ

hybridization (FISH), filter-adapted
fluorescence in situ hybridization (FA-FISH)

CTCs display substantial rearrangement heterogeneity
accompanied by a high level of CIN spatial, temporal

Differentiated thyroid
cancer (DTC) [74] CTCs negative enriched immunofluorescence and

fluorescence in situ hybridization (NE-iFISH)
aneuploidy of chromosome 8 associated with poor response to

131I treatment and worse prognosis temporal

Nasopharyngeal
carcinoma (NPC) [75] CTCs

subtraction enrichment and
immunostaining-fluorescence in situ

hybridization (SE-iFISH)

aneuploidy of chromosome 8 in CTCs was dramatically related
to chemotherapeutic efficacy temporal

Esophageal cancer [76] CTCs
subtraction enrichment and

immunostaining-fluorescence in situ
hybridization (SE-iFISH)

patients with non-triploidy of chromosome 8 are more sensitive
to chemotherapy temporal

19 different carcinomas [27] CTCs
subtraction enrichment and

immunostaining-fluorescence in situ
hybridization (SE-iFISH)

total number of CTCs, tetraploid chromosome 8, polyploid
chromosome 8, CTM (Circulating tumor microemboli),

and large CTCs were statistically higher in patients with
advanced stage cancer

temporal

Aggressive variant
prostate cancer (AVPC) [85] CTCs analysis of copy number aberrations (CNAs)

42.6% of patients had concurrent two or more losses of
tumor-suppressor genes in at least 1 CTC in association with

poor survival and increased genomic instability
Temporal

Colon cancer [86] primary tumor and CTCs
analysis of copy number aberrations (CNAs)

and single-cell structural variant
(SV) analyses

CNAs affecting the MYC gene and the PTEN gene were present
in all CTCs, but observed only in some primary tumor cells.

Formation of anomalous CNAs in multiple chromosome
regions is a result of a complex rearrangement followed by

gene amplification

Spatial
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5. CTCs Information in Clinical Practice

The ability to assess the mutational changes in real time and over the course of therapy is critically
important. In clinical practice, CTCs represent a real-time, minimally invasive alternative source of
tumor material. CTCs can be used to assess the landscape of primary and metastatic tumor in the body
over time by sampling the blood serially over the course of treatment [147]. CTCs information can be
used to monitor disease progression and to predict treatment response. The analysis of CTCs can also
be used to select patients for targeted therapies [77,147].

A number of studies have reported the presence of ALK-translocated CTCs in blood from NSCLC
patients [80,147,148]. Provencio et al., 2017, used CTCs for the dynamic monitoring of NSCLC patients
with ALK rearrangement, as an example [80]. Recently, Pailler et al. (2019) demonstrated that many
genes involved in the RTK-KRAS and TP53 pathways were found in patients with crizotinib resistance,
showing the clinical utility of CTCs to identify therapeutic resistance mutations in ALK-rearranged
patients and for treatment decisions [148].

In prostate cancer, CTC enumeration remains the most extensively validated prognostic marker to
date [114], but other clinically relevant phenotypes like androgen receptor (AR) localization or the
presence of the AR-V7 splice variant are also in clinical practice. Antonarakis et al. (2014) [149] showed
that AR splice variants, in particular AR variant 7 (AR-V7), are strongly associated with primary
resistance to abiraterone and enzalutamide therapy in men with CRPC. Recently, another author
showed the importance of CTC–based AR-V7 detection as a treatment selection biomarker in CRPC.
In AR-V7–positive men, taxanes appear to be more efficient than enzalutamide or abiraterone therapy,
while in AR-V7–negative men, taxanes and enzalutamide or abiraterone might have comparable
efficacy [118]. Morrison and Goldkorn (2020) summarized the most recent developments for liquid
biopsies in advanced prostate cancer with an emphasis on clinical utility for personalized medicine of
CTC enumeration, CTC characterization, and next-generation sequencing of CTCs [114].

In breast cancer, Diamantopoulou et al. (2020) evaluated, in a clinical trial, the cardiac glycosides’
effects on CTC clusters in breast cancer patients with progressive disease [150]. Cardiac glycosides
are used to dissociate CTC clusters from patient-derived CTCs and prevent spontaneous CTC cluster
formation in mouse models [151]. Interestingly, the dissociation of CTC clusters by cardiac glycosides
not only resulted in molecular changes that decreased their stem-like traits but also suppressed their
direct metastatic ability in preclinical in vivo models [151]. Additional clinical trials have used CTCs’
molecular features such PDL-1 expression in non-small-cell lung cancer and HER2 level in metastatic
breast cancer as biomarkers for the identification of high-risk patients [110,150,152].

Clearly, CTCs analysis has important predictive and prognostic value with a strong potential
for early cancer diagnosis, screening, and therapeutic decisions. CIN studies using CTCs showed
to be fundamental in unmasking disease heterogeneity. However, for the use of CTCs in the clinic,
most of the validated biomarkers used for diagnosis and prognosis in tissue biopsies still need to be
confirmed [138]. Further, cancer disease heterogeneity represents a challenge for the standardization
of dynamic monitoring analysis, adding to the fact that CTCs are present in very low concentration in
peripheral blood and this concentration varies according to cancer type and disease stage. For this
reason, most studies with CTCs are performed in cancer advanced stages. In some cases, the CTC low
detection rate makes necessary the use of other liquid biopsy strategies such as ctDNA as an integrated
analysis for results confirmation and to cover the gaps. Lastly, the use of AR-V7 splice variant detection
in the clinic for metastatic prostate cancer confirms the value of CTC information and highlights the
possibility that many other CTCs biomarkers are just waiting to be uncovered.

6. Conclusions

Chromosomal instability and genetic heterogeneity studies are essential for understanding the
initiation, evolution, and progression of cancer. Several authors have used CTC analysis for the
identification and validation of new cancer markers. They have also used CTCs to track genetic changes
acquired during tumor growth and development and to monitor disease progression and resistance
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to treatment. In this context, CTCs can serve as a surrogate biomarker of the spectrum of molecular
characteristics that exist within a tumor. With certain advantages and limitations, CTC analyses can
add important predictive and prognostic value.
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