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Abstract: The calculations of the dimensionless layer monomer density profiles for a dilute solution
of phantom ideal ring polymer chains and star polymers with f = 4 arms in a Θ-solvent confined
in a slit geometry of two parallel walls with repulsive surfaces and for the mixed case of one
repulsive and the other inert surface were performed. Furthermore, taking into account the Derjaguin
approximation, the dimensionless layer monomer density profiles for phantom ideal ring polymer
chains and star polymers immersed in a solution of big colloidal particles with different adsorbing
or repelling properties with respect to polymers were calculated. The density-force relation for the
above-mentioned cases was analyzed, and the universal amplitude ratio B was obtained. Taking
into account the small sphere expansion allowed obtaining the monomer density profiles for a dilute
solution of phantom ideal ring polymers immersed in a solution of small spherical particles, or nano-
particles of finite size, which are much smaller than the polymer size and the other characteristic
mesoscopic length of the system. We performed molecular dynamics simulations of a dilute solution
of linear, ring, and star-shaped polymers with N = 300, 300 (360), and 1201 (4 × 300 + 1-star polymer
with four arms) beads accordingly. The obtained analytical and numerical results for phantom ring
and star polymers are compared with the results for linear polymer chains in confined geometries.

Keywords: critical phenomena; surface effects; renormalization group; polymers

1. Introduction

The investigation of polymer adsorption on surfaces, as well as polymer-colloid
mixtures or polymer solutions with nano-particles has attracted much interest during the
last few decades because of the broad practical application in materials science technology
and medicine in the context of better understanding of drug delivery systems, as well
as for biological and fundamental reasons such as the prevention of virus fusion with
host cells [1–5]. We can distinguish two cases that usually lead to qualitatively different
results during the analysis of the microscopic interactions in polymer-colloid or in polymer
nano-particle mixtures. The first case results from the situation when polymers can adsorb
on the colloidal or nano-particles, and it leads to the protection of particles from flocculation
and to the stabilization of suspensions [6,7]. In the second case, we have to deal with a
mixture of colloidal or nano-particles and free nonadsorbing polymers, which results in
the so-called depletion effect [8] when polymers are expelled from the region between two
particles or between a particle and a surface of the wall due to entropic reasons. In this
case, an unbalanced pressure from the outside pushes colloidal particles or nano-particles
to a wall or two particles towards each other. In such a situation, the key role is played by
the depletion potential, which gives rise to the depletion force between colloidal particles
or nano-particles, as well as between particles and a surface of the wall, respectively. We
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can assume that the magnitude of this depletion force depends on the concentration of
polymer solutions, the effective size of polymer coils, the topology of polymer chains, as
well as the size and the shape of the colloidal or nano-particles and the width of their
separation. In a series of papers [8–10], the measurements of the depletion force, which
arises between a wall and a single particle immersed in a dilute solution of nonionic
polymer chains in a good solvent, were performed. The depletion force enters into a
complex force balance with other intercolloidal interactions, such as Derjaguin, Landau,
Vervey and Overbeek theory (DLVO), hydrophobic interaction, and hydration [4,5,11].
During a long period, the interaction between linear polymers and colloidal particles
was investigated in the framework of an idealized physical model of non-deformable
hard spheres proposed by Asakura and Oosawa [12,13]. The problem is that the common
Asakura–Oosawa approximation modeling the polymer coils as hard spheres appears to be
virtually inadequate for small particles and fails by about 10% for large particles because
long polymers are flexible objects and cannot be modeled as hard spheres. One should also
bear in mind that flexible linear polymer chains interacting with colloidal particles have
been investigated in the framework of the phenomenological scaling theory [14–17], by
means of integral equation techniques [18–20], via the self-consistent field theory [21,22], a
dimensionally regularized continuum version of the field theory with minimal subtraction
of poles in ε-expansion, where ε = 4− d (d is the dimensionality of space) [23–26], and
in a series of our papers [27–31] via the massive field theory approach and Derjaguin
approximation [32] for the case of two walls with repulsive surfaces, two walls with inert
surfaces, and for the mixed situation of one repulsive and the other inert surface.

Our results obtained in [27] for a dilute solution of linear polymer chains showed that
the depletion force is attractive in both cases: for the slit of two parallel walls with repulsive
surfaces and for one repulsive and the other inert surface (where the adsorption threshold
occurs). The value of the depletion force in the case of one repulsive and the other inert
surface is smaller than in the case of two repulsive surfaces, and in the case of two inert
surfaces, the depletion force becomes repulsive in the case of a dilute solution of real linear
polymer chains with the excluded volume interaction (EVI) in a good solvent. This result is
very important for practical reasons, because it means that in such systems, we observe the
reduction of the static friction, and as a result, such systems can be used for producing new
types of nano- and micro-mechanical devices. The calculation of the depletion force was
performed by numerical methods [33,34] using the model of random walk (RW) for ideal
linear polymer chain in a Θ-solvent and the model of self-avoiding walks (SAWs) for a real
polymer chain with the EVI in a good solvent confined inside the slit of two repulsive walls.
The validity of the universal density-force relation proposed by Joanny, Leibler, and de
Gennes [14] for the different cases of a dilute solution of linear polymer chains in confined
geometries, as well as for the case of a semi-dilute solution of free linear polymers in a half
space and for the case of polymer in a half space containing a mesoscopic colloidal particle
of arbitrary shape was confirmed in [24]. The above-mentioned universal density-force
relation was verified by simulation methods using an off-lattice bead-spring model of a
polymer chain trapped between two parallel repulsive walls [33] and by the lattice Monte
Carlo (MC) algorithm on a regular cubic lattice in three dimensions [34]. It should be
mentioned that in a series of our papers [28,29], the universal density-force relation for a
dilute solution of linear ideal and real polymers with the EVI in a good solvent immersed
in a slit geometry of two parallel walls with repulsive surfaces, one repulsive and the
other inert surface, as well as in the case of a dilute polymer solution of linear polymer
chains confined in a semi-infinite space containing the mesoscopic spherical colloidal
particle of big radius was analyzed by analogy, as was proposed by Eisenriegler [24],
and the corresponding universal amplitude ratio was obtained in the framework of the
massive field theory approach directly in fixed space dimensions d = 3 up to one-loop
order. The interaction of long flexible nonadsorbing linear polymers with mesoscopic
colloidal particles of big and small size and a different shape was the subject of a series of
papers [25,35]. The obtained results for long flexible linear polymer chains indicate that
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focusing on such systems leads to universal results that are independent of microscopic
details and are free of non-universal model parameters and depend only on the shapes of
particles and the ratios of three characteristic lengths of the system such as the radius of the
particle, the polymer size, and the distance between the particle and the wall or between
two particles, respectively.

In a series of the atomic force spectroscopy (AFM) experiments [36,37], it was shown
that the biopolymers such as DNA very often present a ring topology. One of the exam-
ples is that of Escherichia coli (E. coli) bacteria, which is not a linear polymer, but has a
ring topology [38], and on the other hand, it is resistant to a wide spectrum of antibiotics.
The biopolymers of the DNA of some viruses such as bacteriophages λ that infect and
destroy E. coli bacteria oscillate between a linear and ring topology, as was shown in a
series of papers [39,40]. The linear form of DNA is encountered in mature viruses; however,
the inside of the host cell DNA of bacteriophages adopts a ring topology [41]. Such an
investigation is important in the context of understanding the processes that lead to the de-
struction of E. coli bacteria with the help of bacteriophages λ and in the context of creating
phage-therapy, which is an alternative way to antibiotic treatment, especially in the case of
bacteria that demonstrate high resistance to antibiotics. Confinement and chain topology
play a significant role in the shaping of individual chromosomes and in the process of their
segregation, as was shown in [42].

It should be mentioned that the investigation of the statistical mechanical properties
of ring polymer chains was the subject of a series of papers (see [31,37,40,43–50] and the
literature cited there). The mean-squared radius of gyration and the scaling behavior in the
average size for ring polymers for several nontrivial knots such as 01, 31, 41, 31#31, and 31#41
were evaluated in [51]. The ring polymers with more complex knots with a finite number
of monomers N are more compact and have a smaller radius of gyration, and this decreases
their ability to spread out under confinement, as was established in [44]. In accordance
with this, such investigations are important for the polymers with a long, but finite number
of monomers, especially in the case of oligomers. On the other hand, in the limit N → ∞,
the difference in the average size of ring polymers with different knots decreases relatively
with the increasing of the degree of polymerization proportionally to N1/ν, where ν is the
Flory exponent. The numerical results based on the MC simulations [47] suggest that the
knotted ring polymers will exert higher entropic forces on the walls of the confining slit
than unknotted or linear polymers. The molecular dynamics simulations performed in [40]
allowed obtaining the entropic force exerted on the walls arising from the confinement
to a slit of a knotted ring and the monomer density profiles in the case of two repulsive
walls. The results obtained in [40] showed that in the case of a narrow slit, more complex
knot types in a ring polymer exert higher forces on the confining walls of the slit in
comparison to unknotted polymer chains of the same length, and for relatively wide slits,
the opposite situation takes place. Recently, advanced MC simulation techniques [52] were
used in order to study the effect of nanoslit confinement on the topological properties
of the circular model DNA, which was modeled as a semiflexible polymer chain. They
showed that the knotting probability has strong slit width dependence. The investigation
of the influence of topological constraints on the free energy and metric properties of an
ideal ring polymer without excluded volume effects or attractive interactions confined in a
narrow slit were performed in [53] using off-lattice MC simulations. The occurrence and
behavior of polymer knots were studied extensively in a series of recent papers based on
MC simulations [54–57]. For example, in [54], numerical simulations were used in order
to show that the effective stiffening of DNA by the nematic arrangement promotes the
formation of torus knots in phage capsids. It should be also noted that the conservation of
the knot topology in simulations of ring polymers depends on the knotting probability of
the knot, as was shown in [57] by the use of the self-avoiding polygons (SAPs) method.

Computational investigations of the good solvent solution properties of knotted rings
with minimal crossing number mc in the range between zero and nine, as well as in the case
of star polymers with the number of arms in the region between two and 20 were performed
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by combining MD simulation and path-integral calculations [58]. The basic configuration
properties, i.e., the radius of gyration, hydrodynamic radius, as well as intrinsic viscosity,
were analyzed [58], and the performed simulations indicated that the configurational
properties of knotted rings and star polymers in a good solvent show a similar decrease
with the increasing minimal crossing number and the number of arms of the star polymers.
Therefore, in accordance with this, the comparison of the analytical calculation results of the
statistical properties of ring polymers and star polymers is a very interesting task. It should
be mentioned that deeper understanding of the statistical and conformation properties of
star polymers is important since it is connected with the investigation of micellar and other
polymeric surfactant systems [59,60], as well as networks [61,62]. As discussed in one of
the latest reviews [63], the star polymers have a wide application for the production of new
functional materials and can be used in nanotechnology and biological sciences as drug,
gene, or siRNA/DNA vectors [63].

The series of our recent papers [31,64,65] connected with the investigation of the
influence of the polymer chain topology on the depletion interaction potentials and the
depletion forces indicate that polymer chains with the ring topology behave completely
in a different way than linear polymer chains in confined geometries. For example, we
obtained in [65] that in the case of a dilute solution of ideal ring polymer chains in a slit
geometry of two parallel walls with mixed boundary conditions, the depletion force is
repulsive in contrast to the case of a dilute solution of linear polymer chains (see [27]). The
explanation of the above-mentioned result for the depletion force can be connected with
the assumption that topological effects in this case start to play a crucial role. In this context,
it is very important to investigate the monomer density profiles for a dilute solution of
ring polymer chains in a slit geometry of two parallel walls with both repulsive surfaces
and especially in the case of mixed boundary conditions with one repulsive and the other
inert surface where the adsorption threshold occurs. On the other hand, it is interesting
to investigate the behavior of a dilute solution of ring polymer chains and star polymers
immersed in a solution of mesoscopic colloidal particles of a big size or nano-particles
with a small, but finite size with different adsorbing or repelling properties with respect to
polymers and discuss the validity of the density force relation in this case. As mentioned
above, the other interesting task is the comparison of the analytical calculation of the
statistical properties of ring polymers with different topologies and star polymers with
different numbers of arms and with the same molecular mass. Unfortunately, the analytical
understanding of the processes that take place in the case of immersing a dilute solution
of ring polymer chains and star polymers in confined geometries with mixed boundary
conditions is still incomplete and requires deeper investigation, especially in the context of
the monomer density profiles and the depletion force calculations. In accordance with this,
the above-mentioned investigation is the subject of the present paper.

2. The Model and the Polymer-Magnet Analogy

We consider a dilute solution of ring polymer chains confined in a slit geometry of
two parallel walls with repulsive surfaces or mixed walls when one wall has a repulsive
surface and the other one has an inert one and allow for the exchange of polymer coils
between the slit and the reservoir. In such a situation, the polymer solution in the slit is in
equilibrium contact with an equivalent solution in the reservoir outside the slit. We assume
that the solution of polymers is sufficiently dilute; thus, the interchain interactions and the
overlapping between different polymers can be neglected, and it is sufficient to consider
the behavior of a single polymer chain. As is known, the behavior of a long flexible ideal
polymer chain can be described by the model of a random walk (RW) on a regular lattice,
and it corresponds to the case of the Gaussian ideal chain in a Θ-solvent [15–17,66,67].
The behavior of a real polymer chain with the excluded volume interaction (EVI) for the
temperatures above the Θ-point can be described by the model of self-avoiding walks
(SAWs) [15–17]. The situation when the solvent temperature is below the Θ-temperature
corresponds to a poor solvent condition where polymer coils tend to collapse [68,69].
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As was noted some time ago by de Gennes [15–17] and by Barber et al. [70], there
is a formal analogy of the polymer adsorption problem to the equivalent problem in the
semi-infinite φ4 O(n)-vector model of a magnet with a free surface [71–73]. Taking into
consideration the well-known correspondence between the statistics of long flexible poly-
mer chains and the critical behavior of magnetic systems developed by de Gennes [15–17]
we can use powerful field theory methods and techniques for the investigation of poly-
mer problems. Taking into account the Derjaguin approximation [32] and small sphere
expansion [74–76], we consider the interaction of ring polymers with big mesoscopic
colloidal particles and small colloidal or nano- particles of fixed size and show how the
methods of field theory with boundaries [27,77] allow explaining the basic properties of
polymer-colloid mixtures and polymer-induced interactions between the particles. As
was mentioned by Eisenriegler [76], even in the case of ideal chains, integrating out the
polymer degrees of freedom is a nontrivial task in the presence of the colloidal particles,
and in accordance with this, the application of the field theory methods and techniques is
very useful.

One of the most convenient models for analytical calculations is an Edwards-type
model for a dilute polymer solution, which allows for an expansion in terms of the excluded
volume interactions and conformable for a field-theoretical treatment via the polymer-
magnet analogy developed by de Gennes [15–17]. The configuration of one polymer in
the framework of this model is given by a path x(s) in d-dimensional space V ∈ <d

parametrized by a surface variable 0 ≤ s ≤ L0 in the continuum limit when the length
of each step is decreasing l → 0 with a fixed “Gaussian surface” L0 = Nl2, where L0
has the dimension of length squared and is proportional to the degree of polymerization
(total number of monomers) N of the polymer chain. The Hamiltonian H of the model is
given by:

H(x(s))
kBT

=
1
2

∫ L0

0
ds(ẋ(s))2 +

∫
V

ddxU(x)ρ(x) + Hint(x(s)), (1)

where ẋ(s) = dx(s)
ds and Hint allows describing the interactions between any two monomers

of a real polymer chain with the EVI potential U2(x, x′). Our analytical calculations are
concentrated on the investigation of the Gaussian ideal ring and star polymers in a Θ-
solvent confined in a slit geometry of two parallel walls with different boundary conditions.
The second term in (1) corresponds to one-body interaction potential U(x), where U(x)→
U(z) − µ̄(x) and µ̄(x) is a chemical potential. As was noted by de Gennes [15–17], in
the continuum limit l → 0, we can assume: U(z) = cδ(z), for z ≥ 0, where the value c
corresponds to the adsorption energy divided by kBT (or the surface enhancement constant
in the field theoretical treatment). It should be mentioned that ρ(x) =

∫ L0
0 dsδ(x− x(s)) is

the monomer density at point x. In the framework of this formalism, the partition function
is calculated as a functional integral (see Appendix A):

Zc(x′, L0|x, 0) =
∫

D[x(s)]e−
H(x(s))

kBT , (2)

where x(L0) = x′, x(0) = x, and x(s) ∈ V. The symbol D[x(s)] includes normalization
such that Zc(x′, L0|x, 0) = 1 for the Gaussian ideal chain without interaction Hint. The
partition function (2) satisfies the boundary conditions:

∂zZc(x′, L0|x, 0)|z=0 = cZc(x′, L0|x, 0)|z=0. (3)

Taking into account the polymer-magnet analogy developed by de Gennes [15–17],
the continuous chain model (1) can be mapped onto a corresponding field theory by a
Laplace transform in the Gaussian variables L0 to conjugate chemical potentials µ0:

G(2)(x, x′) =
∫ ∞

0
dL0e−µ0L0 Zc(x′, L0|x, 0). (4)
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On the other hand, the Laplace transformed function G(2)(x, x′) can be expressed as the
n → 0 limit of the functional integral over vector fields ~φ(x) with n components φi(x),
i = 1, ..., n and x = (r, z):

G(2)(x, x′) =
∫

D[~φ(x)]e−H[~φ], (5)

with the Landau–Ginzburg–Wilson HamiltonianH(~φ) describing the system in the semi-
infinite (j = 1) or confined geometry of two parallel walls (j = 1, 2):

H[~φ] =
∫

ddx
{

1
2
(
∇~φ
)2

+ µ0
2

2
~φ2
}

+∑2
j=1

cj0
2

∫
dd−1r~φ2,

(6)

where the conjugate chemical potential µ0 is the “bare mass” in field-theoretical treatment.
The deviation from the adsorption threshold is characterized by the value c ∝ (T − Ta)/Ta
(where Ta is the adsorption temperature), which changes sign at the transition between the
adsorbed (the normal transition, c < 0) and the non-adsorbed state (ordinary transition,
c > 0) [28,77]. The value c plays the role of a critical parameter. The value 1/N plays
the role of a critical parameter analogous to the reduced critical temperature in magnetic
systems. The multicritical phenomenon takes place at the adsorption threshold for long
flexible infinite polymer chains, where 1/N → 0 and c→ 0.

The two-point correlation function Gµ0,c(x, x′) can be interpreted as the usual correla-
tion function < ~φ(x)~φ(x′) > of the model Equation (6). We assume that the walls in a slit
are located at the distance L from one another in the z-direction such that the surface of
the bottom wall is located at z = 0 and the surface of the upper wall is located at z = L.
The surfaces of the system are characterized by a certain surface enhancement constant cj0 ,
where j = 1, 2.

The interaction between ring polymer chain and the surfaces of the walls is imple-
mented by the different boundary conditions. In the case of two walls with repulsive
surfaces (where the segment partition function and thus the partition function for the
whole polymer chain tends to zero as any segment approaches the surface of the walls),
Dirichlet-Dirichlet boundary conditions (D-D b.c.) take place:

~φ(r, 0) = ~φ(r, L) = 0 or c1 → +∞, c2 → +∞, (7)

and for the mixed case of one repulsive and one inert surface, the Dirichlet–Neumann
boundary conditions (D-N b.c.) are:

~φ(r, 0) = 0,
∂~φ(r, z)

∂z
|z=L = 0 or c1 → +∞, c2 = 0. (8)

Thus, the partition function Z(x, x′) of a single polymer chain with two ends fixed at
x and x′ is connected with the two-point correlation function G(2)(x, x′) =< ~φ(x)~φ(x′) >
of the order parameter densities φ(x) and φ(x′) in a Ginzburg–Landau–Wilson model via
the inverse Laplace transform µ2

0 → L0:

Z(x, x′; N, v0) = ILµ2
0→L0

(< ~φ(x)~φ(x′) > |n→0) (9)

in the limit, where the number of components n tends to zero.
The fundamental two-point correlation function of the free theory corresponding to the

effective Landau-Ginzburg-Wilson (LGW) Hamiltonian (6) in a mixed momentum-space
(p, z) representation is:

G(2)
ij (p, p′; z, z′) = (2π)d−1δijδ(p + p′) G̃‖(p; z, z′; µ0, c10 , c20 , L) , (10)



Entropy 2021, 23, 242 7 of 24

where the free propagator G̃‖(p; z, z′; µ0, c10 , c20 , L) of the model Equation (6) was obtained
in [27] and is presented in Appendix B.

In the present paper, we focus our attention on the investigation of a dilute solution of
phantom ring polymer chains, i.e., ring polymer chains where we perform the summation
over all possible knot structures. In the case of a ring polymer chain, the ends x = (r, z)
and x′ = (r′, z′) in the partition function Equation (9) should coincide. In accordance with
this, we assume that x′ = x + ∆x and consider the limit ∆x→ 0. It should be mentioned
that ∆x is proportional to l, and taking into account that we consider a continuous limit,
when the length of each step is decreasing l → 0, our assumption ∆x→ 0 is realistic. As
was shown by Eisenriegler [76,78], the scaling behavior of the phantom ring polymer chain
partition function with x = x′ = 0 in the infinite space in the limit N → ∞ is characterized
by the negative power law exponent:

Z(0, 0; N) ∼ eNl2tc N−dν,

because d and ν have positive values and demonstrate different behavior than the linear
polymer chain.

The most common parameter in polymer physics to denote the polymer chain size that
is observable in experiments is the radius of gyration Rg. For example, for linear polymer

chains, the following relation takes place: < R2
g >= χ2

d
<R2

x>
2 , where χd is a universal

numerical prefactor depending on the dimension d of the system (see Refs. [78–80]), and
Rx is the projection of the end to end distance R onto the direction of the x axis. In the case
of ideal polymer chains, one has χ2

d = d
3 , and for d = 3, in the case of ideal ring polymer

chains, the following relation takes place: < R2
g >= Nl2

12 , which can be rewritten formally
in the form < R2

g >→< R2
x > /4 in order to keep similar notations as for linear polymer

chain [65]. The mean-squared radius of gyration Rg for star polymer chains is [81]:

< R2
g >=

Nl2

6 f
(3− 2

f
), (11)

and can be rewritten respectively in the form: < R2
g >→ 5

16 < R2
x >.

3. The Monomer Density and the Density-Force Relation for Ring Polymers

We consider the layer monomer densities ρλ(z̃) defined by:

ρλ(z̃)dz̃ =
(2Rg)1/ν

N
dNλ(z̃), (12)

where the value dNλ(z̃) means the number of monomers in the layer between z̃ and z̃ + dz̃.
Furthermore, ρλ(z̃) is obtained from monomer density ρ(r̃, z̃) after integration over the
d− 1 components parallel to the wall [24]. The scaling dimensions of ρ(r̃, z̃) are l1/ν−d and
equal the ordinary dimensions of the quantity:

Ψ(x̃) =
(2Rg)1/ν

2L0
Φ2(x̃). (13)

In general, the monomer density of a single polymer chain trapped between two
parallel walls can be obtained in the following way (see [24]):

< ρ(x̃) >=
ILµ2

0→L0
< Ψ(x̃) · ~φ(x)~φ(x′) >ww

ILµ2
0→L0

< ~φ(x)~φ(x′) >ww
(14)

in the limit n→ 0. The average <>ww in Equation (14) denotes a statistical average for a
Ginzburg–Landau field theory in the space between two walls. The dot in Equation (14)
means the usual cumulant average, and IL is the inverse Laplace transform µ2

0 → L0.
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Taking into account the normalization condition:
∫

ddx̃ < ρ(x̃) >= (2Rg)1/ν, the
property:∫ L

0
dz̃
∫

dd−1 r̃IL < Ψ(r̃, z̃) · ~φ(x)~φ(x′) >ww= (2Rg)
1/νIL < ~φ(x)~φ(x′) >ww, (15)

takes place.
It should be noted that near the repulsive wall with the Dirichlet b.c., the short-distance

expansion of Φ2 can be used [24,72,78,82], and it assumes:

Ψ(r̃, z̃)→ Bz̃1/ν [Φ⊥(r̃)]
2

2
, (16)

for the distances l � z̃. The surface operator [Φ⊥(r̃)]2
2 with Φ⊥ = ∂Φ(r̃,z̃)

∂z̃ |z̃=0 is the compo-
nent of the stress tensor perpendicular to the walls.

Taking into account the shift identity [73,78] in the case of two parallel walls situated at
distance L from each other for the layer monomer density ρλ(z̃) of the phantom ideal ring
polymer in accordance with Equations (14) and (16), the universal density-force relation
can be obtained for the region l � z̃� Rg and can be written in a form similar to the case
of linear polymer chains [24]:

< ρλ(z̃) >= Bz̃1/ν f
kBT

, (17)

where:

f
kBT

= lim
∆x→0

d
dL

ln[IL
∫

ddx < ~φ(x)~φ(x + ∆x) >ww] (18)

is the force per area that the polymer chain exerts on the walls. As was mentioned above,
in the case of the ring polymer chain, during the calculations, we consider the limit ∆x→ 0.
Accordingly, it is impossible to get the results for ring polymers directly from the results for
linear polymer chains. Thus, this leads to the modification of the calculation scheme, which
is connected with the reduction of some part of the integration during the calculation of
the corresponding correlation function. The universal amplitude B is identified via scaling
relations for the monomer density and force and is: B = limx→0x−1/νX(x, y)/Y(y), where
X and Y are universal functions by analogy, as was proposed for linear polymer chains
(see [24]).

After performing the Fourier transform in the direction parallel to the surfaces and
integration over all possible positions of the ring polymer inside the slit with the D-D b.c.
for the layer monomer density of the phantom ideal ring polymer, we obtained in the limit
y & 1 (see Appendix C) the following result:

< ρ
(DD)
λ (z̃) > =

(2Rg)1/ν

L0

IL
∫ L

0 dzG(; z, z̃)G(; z̃, z)

IL
∫ L

0 dzG(; z, z)

≈ 2
z̃1/ν

L
(1 +

√
π

2y
+

π

4y2 +
π3/2

8y3 + O(e−4y2
)),

(19)

where y = L/(2Rg). After taking into account the result for the reduced force per unit area,
which the dilute polymer solution of ring polymers exerts on the walls in the limit y & 1:

f (DD)

kBT
≈ 1

L
(1 +

√
π

2y
+

π

4y2 +
π3/2

8y3 + O(e−4y2
)) (20)

and the result for the Flory exponent ν = 1/2 at d = 3 dimensions for ideal ring polymers,
we come to the conclusion that the universal amplitude ratio B in the universal density-
force relation in the case of phantom ideal ring polymer chains is equal to two and coincides
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with the result for the amplitude ratio in the case of the linear polymer chain [24,28,29].
Nevertheless, upon the different behavior of the layer monomer density profiles and forces
for ring polymers (see Equations (19) and (20)) and for linear polymers [24,28,29], the
universal amplitude ratio B in the density-force relation is the same. As one can see from
Equation (19) in the limit y→ ∞, the result for the layer monomer density of phantom ideal
ring polymers in confined geometry coincides with the result for linear polymer chains
(see [28,29]). The results of the calculations of the layer monomer density profiles for the
case of the ideal ring polymer chain with different topological structures 01, 31, 61, 91, 121
confined in a slit geometry of two parallel walls with repulsive surfaces (D-D b.c.), as well
as one repulsive and one inert surface (D-N b.c.) are presented in Figure 1 and Table 1,
respectively (see also Appendix C). These knots belong to the family of torus knots. Cp is a
standard notation [30], where C gives the minimum number of crossings in any projection
onto a plane, the essential crossings. The index p is used to distinguish knots with equal C.

As it is possible to see from Figure 1, the more complicated topological structure
results in reducing the layer monomer density profiles in the region between two repulsive
surfaces. A similar behavior of the layer monomer densities is observed in the case of one
repulsive and the other inert surface. As one can see from Table 1, the more complicated
topological structure leads to reducing the layer monomer density profiles near the surface
with the adsorption threshold (inert surface with the Neumann b.c.). The monomer density
profiles of ring polymers with a complicated topological structure near adsorbing or
inert surfaces behave in a different way than for the case of linear polymer chains. A
complicated topological structure prevents the polymer from adsorption on the surface
and leads to the decreasing of the monomer density in the region near the adsorbing
surface or the surface with the adsorption threshold. As is possible to see from Table 1,
the result for the monomer density as a function of z∗ for the ring polymer with the 01
topology is smaller than the result for the linear chain and bigger than the results for ring
polymers with the more complicated topology 31, 61, 91, 121. This means that due to the
complicated topology of ring polymers and the presence of the topological constraints,
a smaller number of monomers can be found near the adsorbing surface. It should be
mentioned that in the case of two repulsive surfaces, the layer monomer density achieves
the maximum in the middle of the slit, and in the case of one repulsive and the other
one inert surface, the maximum is situated near the inert surface where the adsorption
threshold takes place. The results presented in Figure 1 and Table 1 for the layer monomer
density profiles of the ideal ring polymer chain of N = 300 monomers with different
topological structures 01, 31, 61, 91, 121 are obtained for the respective values of the radius
of gyration: Rr

g(01) = 10.65± 0.01(l), Rr
g(31) = 9.01± 0.01(l), Rr

g(61) = 7.78± 0.01(l),
Rr

g(91) = 7.28± 0.01(l), and Rr
g(121) = 6.9± 0.01(l), and for linear polymer chain with

Rl
g = 14.2± 0.01. It should be mentioned that the above-mentioned results for the radius of

gyration of the polymer chain with N = 300 monomers were obtained in the framework of
the bead-spring model using the molecular dynamic simulations by Matthews et al. in [40].

Taking into account the Derjaguin approximation [32], we performed the calculation
of the layer monomer density profiles in the case when we have a dilute polymer solution
of ring polymers in a solution of big colloidal particles with different adsorbing or repelling
properties with respect to the polymers. In connection with this, we discus two cases of
immersing a dilute polymer solution of ring polymers in confined geometries: (1) between
a wall and a big colloidal particle; (2) between two big colloidal particles with different
boundary conditions, D-D b.c. and D-N b.c.
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Figure 1. The dimensionless value of the layer monomer density < ρ
(DD)
λ (z∗) > L1−1/ν profiles

for the ideal ring polymer chain in a slit of two parallel walls with repulsive surfaces (Dirichlet-
Dirichlet boundary conditions (D-D b.c.)) as a function of z∗ = z̃/L for different values of the radius
of gyration. In the case of two repulsive surfaces, the maximum is at L/2. The calculations are
performed for L = 25.

Table 1. The dimensionless value of the layer monomer density < ρ
(DN)
λ (z∗) > L1−1/ν profiles for

the ideal ring polymer chain confined in a slit geometry of two parallel walls with one repulsive
and the other inert surface (Dirichlet–Neumann boundary conditions (D-N b.c.)) as a function of
z∗ = z̃/L (see Appendix B). The calculations are performed for L = 20.

z∗ 0.0 0.2 0.4 0.6 0.8 1.0

Rl
g 0.0 0.09252 0.37007 0.83267 1.48030 2.31296

Rr
g(01) 0.0 0.08709 0.33417 0.74126 1.30834 2.03543

Rr
g(31) 0.0 0.08119 0.32239 0.72358 1.28477 2.00597

Rr
g(61) 0.0 0.08016 0.32033 0.72049 1.28065 2.00082

Rr
g(91) 0.0 0.08006 0.32011 0.72017 1.28022 2.00028

Rr
g(121) 0.0 0.08002 0.32004 0.72006 1.28009 2.00011

The Derjaguin approximation [32], which describes the sphere by a superposition of
fringes with the local distance from the wall L(r‖) = a + r2

‖/(2R), can be applied for the
case of a spherical mesoscopic colloidal particle with radius R much larger than the distance
from its closest point “a” to the surface and much larger than the radius of gyration Rg of
the ring polymer. Immersing the big spherical colloidal particle in the polymer solution
confined in a semi-infinite space changes the force exerted on the wall by the value ∆ f .
The depletion interaction of the particle with the wall can be obtained as the difference
between the forces with and without the particle. The above-mentioned arguments and the
density-force relation Equation (17) allow us to write the expression for the layer monomer
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density of a dilute polymer solution of ring polymers in a semi-infinite geometry containing
a spherical particle of a big radius in the form:

< ρλ(z̃) >wp= Bz̃1/ν(
∆ f
kBT

+ nB), (21)

by analogy, as was proposed for the case of linear polymer chains in [28,29]. Here, nB = Ñ/V
is the polymer density in the bulk far from the wall, and Ñ is the number of polymer chains
in a solution. The depletion interaction potential for a dilute solution of ring polymers
between the particle and the wall can be obtained according to [27,28]:

φdepl(a)
nBkBT

= 8πRR2
g

∫ ∞

a
2Rg

dyΘr,id(y), (22)

and it allows us to calculate the force ∆ f = −dφdepl(a)/da. The Θr,id(y) in Equation (22) is
the dimensionless scaling function of the free energy of a dilute solution of ring polymers
confined in a slit geometry (see [65]). Taking into account that Θr,id(y) = ∓2ye−2y2

, where
the sign “−” corresponds to D-D b.c. and “+” corresponds to D-N b.c., the layer monomer
density of a dilute polymer solution of ring polymers in a semi-infinite space containing a
spherical particle of a big radius can be obtained:

< ρλ(z̃) >r= B
z̃1/ν

L
(1∓ 4aπR̃e

−a2

2R2
g ), (23)

where A = 1, R̃ = R, and nB = 1/(LA) for the case of a dilute polymer solution of ring
polymers between a wall and a big colloidal particle of radius R; R̃ = R1R2

R1+R2
for the case of

two colloidal particles of different sizes with radius R1 6= R2. It should be mentioned that
the sign “−” in Equation (23) refers to the case of two repulsive surfaces with the D-D b.c.,
and the sign “+” corresponds to the case of one repulsive and one inert surface with the
D-N b.c.

We can see that the layer monomer density depends not only on Rg, but also on the
size of the mesoscopic particle and its distance from the wall. From Equation (23), we can
see that in the case when we have two particles of the same size, the respective contribution
to the layer monomer density profiles from immersing the particles becomes twice smaller
than in the case when we have one particle near the wall.

We can compare the obtained results for the layer monomer density profiles of a dilute
solution of ideal ring polymers confined in a solution of colloidal particles of big size with
the results obtained for linear polymer chains obtained in [28]. In this respect, we should
mention that in [28], there was a typographical error in Equations (2.28) and (2.29)) for the
layer monomer density profiles < ρλ(z̃) >wp of linear polymers in a semi-infinite space
containing spherical particle of a big radius, but the final results presented in Figure 2a,b
were correct (see [28]). For the case of a dilute solution of linear polymer chains in a
semi-infinite space containing a mesoscopic spherical particle of a big size the monomer,
the density profiles should be written in the form:

< ρλ(z̃) >wp= B
z̃1/ν

L
(1 + 2πRRxΘ(

a
Rx

)), (24)

which is in agreement with our previous results for the dimensionless values of the de-
pletion interaction potential and the depletion force, published recently in [31,50]. Here,
the value Rx corresponds to the value of the end-to-end distance for the linear polymer
chain, and the values Θ( a

Rx
) for the dimensionless depletion interaction potential of ideal

and real linear polymer chains with the excluded volume interaction (EVI) were calculated
in [27]. Taking into account the above-mentioned arguments for the layer monomer density
profiles of a dilute solution of ideal linear polymer chains confined in a solution of colloidal
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particles of a big size in accordance with [27] after the substitution of the expressions for
Θ( a

Rx
) in (24), we obtain in the case of the D-D b.c.:

< ρ
(DD)
λ (z̃) >l= B

z̃1/ν

L
(1 + 8aπR̃([er f c[

a√
2Rx

]− Rx

a

√
2
π

e
− a2

2R2
x ]

− 2[er f c[
√

2a
Rx

]− Rx

a
√

2π
e
−2a2

R2
x ])),

(25)

and for the D-N b.c., the following expression takes place:

< ρ
(DN)
λ (z̃) >l= B

z̃1/ν

l
(1 + 8aπR̃(er f c[

√
2a

Rx
]− Rx

a
√

2π
e
− 2a2

R2
x )). (26)

The comparison of the obtained results for 2πΘ( a
Rx
) according to Equations (23)–(26) in

the case of a dilute solution of ideal ring polymers and a solution of ideal linear polymers im-
mersed in a solution of mesoscopic colloidal particles of a big size are presented in Figure 2a,b
for the case of the D-D b.c. and the D-N b.c., respectively.
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Figure 2. The dimensionless values of the contribution 2πΘ( a
Rx
) to the normalized layer monomer

density ρλ(z̃) in the solution of big colloidal particles for the case of ideal linear, ring, and star
polymers: (a) the case of the Dirichlet b.c.; (b) the case of the Neumann b.c.

4. Small Sphere and Wall Interaction

Let us consider the opposite case of a small spherical colloidal particle (or nano-particle)
with radius R, which is much smaller than the distance of the particle zs = L + (R/2) from
the wall and much smaller than the polymer size Rx (or Rg for ring polymer chains). The
effect of the presence of the particle on the polymer chain can be described in terms of a
δ-function potential that weakly repels the monomers and is located at the center of the
particle, as was proposed by Eisenriegler for the case of linear polymer chains (see [76]). It
assumes that the Boltzmann weight Ws for the chain that arises from the presence of the
small sphere can be written in the form:

Ws[x]→ 1− ÃRd− 1
ν ρ(xs), (27)

where the amplitude Ã is universal [25,83] and for the case of ideal polymer chain in
d = 3 dimensions is: Ã = 2π. The modified monomer density ρ(x) can be written in the
form [76]:

ρ(x) =
Ñ

∑
k=1

R1/ν
x
N

N

∑
j=1

δ(x− xk,j). (28)

For free polymer chains in a half space, the following equation [76]:

< ρ(x) >( f ,h)= nBR1/ν
x M(z/Rx), (29)
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where M(z/Rx) is the bulk normalized monomer density in the half space without the
sphere. Taking into account the above-mentioned relation Equation (29), the universal
relation in Equation (17) can be written in the form [24]:

M(z/Rx)

z1/ν
=

B
R1/ν

x
, (30)

where we took into account that the pressure on the wall f /A according to the ideal gas
law is equal to the pressure in the bulk: nBkBT.

Immersing a small spherical particle with R� zs, Rx in a polymer solution in the half
space changes the polymer free energy per kBT by [76]:

F
kBT

= −{W − 1}( f ,h) = AR1/ν
x Rd−(1/ν)nB M(zs/Rx), (31)

where the small sphere expansion Equation (27) was taken into account. The results for
the normalized monomer density M(zs/Rg), where Rg = Rx/2 for ideal ring polymer
chains in the case of a wall with a surface at the Dirichlet b.c. (D b.c.) and a surface at the
Neumann b.c. (N b.c.), are presented in Figure 3a,b, respectively.
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Figure 3. The dimensionless value of the normalized monomer density M(zs/Rg), where Rg = Rx/2
for ideal ring polymer chains: (a) the case of the Dirichlet b.c.; (b) the case of the Neumann b.c.

The free energy of interaction δF between a small spherical particle and the wall
follows from F on subtracting its value for infinite distance, i.e., at zs → ∞ (see [76]):

δF = F− lim
zs→∞

F. (32)

Taking into account that M(zs → ∞) = 1 for the free energy of interaction between the
particle and the wall, the following equation can be obtained (see [76]):

δF = −nBkBTÃR1/ν
x Rd−1/ν(1−M(zs/Rx)). (33)

Thus, the result for the force δ f
nBkBT , which arises in a dilute polymer solution between a

small spherical particle with radius R� zs, Rx and the wall, is:

δ f /(nBkBT) = −∂zs δF = −ÃR1/ν
x Rd−1/ν∂zs M(zs/Rx). (34)

Taking into account the above-mentioned arguments by analogy with [76], we ob-
tained the results for the force δ f

nBkBT at d = 3, which arises in a dilute solution of ideal
linear polymer chains between a small spherical particle with radius R� zs, Rx and the
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wall with a surface at the Neumann b.c. and a surface at the Dirichlet b.c., respectively:

δ f (N)
l

nBkBT
= 0,

δ f (D)
l

nBkBT
= −8πRzs + O(z2

s ). (35)

The results for the force in the case of a dilute solution of ring polymer chains at d = 3 are
the following:

δ f (N)
r

nBkBT
= 8πRzs + O(z2

s ),
δ f (D)

r
nBkBT

= −8πRzs + O(z2
s ). (36)

It should be mentioned that the result in Equation (35) for the force in the case of a small
colloidal particle (or nano-particle) near the wall with the surface at the Neumann b.c.
indicates that a dilute polymer solution of ideal linear polymer chains behaves in such a
way that it does not feel this small particle. This result is in agreement with our previous
result for a dilute solution of linear polymer chains in a slit of two parallel walls with both
inert surfaces at the N-N b.c. [27] and the result for the case of a dilute solution of ideal
linear polymer chains in a solution of big colloidal particles with the D-D b.c. [31]. As
it is possible to see from the obtained results (see Equations (35) and (36)), in the case of
a dilute solution of linear or ring polymers immersed between a small colloidal particle
(or nano-particle) with radius R � zs, Rx and the wall with the surface at the Dirichlet
b.c., the respective depletion force is attractive. This result assumes that polymer chains
tend to escape from the space between a small particle and a wall with the surface at the
Dirichlet b.c., and this leads to an unbalanced pressure from the outside and the attraction
between a small colloidal particle (or nano-particle) and the wall. In the case when we
consider a dilute solution of ideal ring polymer chains confined in a solution of small
colloidal particles (or nano-particles) near the wall with the surface at the Neumann b.c.,
we observe that the polymer adsorbs on the wall, and this leads to the repulsion between
small particles and the wall. This result is in agreement with our previous predictions for a
dilute polymer solution of ring polymers in a slit geometry of two parallel mixed walls
with one surface at the Neumann b.c. and the other one at the Dirichlet b.c. (see [65]), as
well as with the result for a dilute solution of ideal ring polymer chains in a solution of big
colloidal particles with mixed boundary conditions (D-N b.c.) [31,50].

5. Star Polymers

In the case of a dilute solution of star polymers with the number of f = 4 arms in a
Θ-solvent immersed in a confined geometry like a slit of two parallel walls, the respective
correlation function G f

st(µ0) should be modified and can be written in the form:

G f
st(µ0) =<

n

∑
j1,...,j f =1

Ti1,...,i f φi1(x0)...φ
i f (x0)φ

j1(x1)...φ
j f (x f ) >

Hst
n→0, (37)

where the Hamiltonian Hst[~φ] has a form:

Hst[~φ] = ∑
f
a=1

∫
ddx
{

1
2
(
∇~φa

)2
+

µ2
0,a
2
~φa

2
}

+∑
f
a=1 ∑2

j=1
cj0,a

2

∫
dd−1r~φa

2
.

We consider a dilute solution of star polymers with four arms immersed into a slit
geometry of two parallel walls, and in the field theory, the star vertex is related to the local
composite operator (see [84]) appearing in Equation (37):

(φ)
f
st(x) = Ti1,...,i f φi1(x)...φi f (x), (38)
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where Ti1,...,i f is a traceless symmetric SO(n) tensor fulfilling the condition:

m

∑
i=1

Ti,i,i3,...,i f = 0. (39)

Taking into account the above-mentioned arguments of the calculation of the free
energy of the system, the respective partition function Z f

‖,st of the star polymer of f = 4
arms immersed in a slit geometry of two parallel walls at a distance L should be normalized
on the partition function Zst of one star polymer in the same volume V without walls.
Following the scheme, proposed in [27] for the case of a dilute solution of linear polymers,
we can obtain the results for the dimensionless depletion interaction potential:

Θ(y)(DD)
st = −(61

7
+

1584
175

y2)

√
5
π

e−
4y2

5 + (
155

7
+

10, 272
175

y2)

√
5
π

e−
16y2

5 + ..., (40)

as well as the dimensionless depletion force:

Γ(y)(DD)
st = (

91
5
− 1584

25
y2)

√
5
π

8y
35

e−
4
5 y2

+ (
133
5

+
12, 672

25
y2)

√
5
π

32y
35

e−
16
5 y2

+ ..., (41)

in the case of a dilute solution of star polymers with four arms in a slit of two parallel walls
with the D-D b.c. In the case of two parallel walls with one repulsive and the other inert
surface, which corresponds to the D-N b.c., we obtain respectively:

Θ(y)(DN)
st = −(61

14
+

3168
175

y2)

√
5
π

e−
16
5 y2

+ ..., (42)

and:

Γ(y)(DN)
st = (

208
5
− 101, 376y2

175
)

√
5
π

y
5

e−
16y2

5 + .... (43)

The results of the calculations of the dimensionless depletion interaction poten-
tials Θ(y)(DD)

st and Θ(y)(DN)
st , as well as the dimensionless depletion forces Γ(y)(DD)

st and

Γ(y)(DN)
st and the comparison with the corresponding values for the linear and ring poly-

mers are presented in Figures 4 and 5, respectively.
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Figure 4. The dimensionless values of the depletion interaction potentials: (a) Θ(y)(DD) and
(b) Θ(y)(DN) for the case of a linear, a ring, and a star polymer with four arms.
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Figure 5. The dimensionless values of the dimensionless depletion forces: (a) Γ(y)(DD) and
(b) Γ(y)(DN) for the case of a linear, a ring, and a star polymer with four arms.

Taking into account the Derjaguin approximation [32], the monomer density profiles
of a dilute polymer solution of star polymers immersed between a wall and a big colloidal
particle or in the case of two big colloidal particles of different sizes with different adsorbing
and repelling properties with respect to polymers can be obtained. For example, in the case
when both surfaces are repulsive for star polymers (the D-D b.c. case), we obtain:

< ρ
(DD)
λ (z̃) >st= B

z̃1/ν

L
(1− 2

√
5πR̃a[(

61Rx

7a
+

1584
175

a
Rx

)e
− 4a2

5R2
x

− (
155Rx

7a
+

10, 272
175

a
Rx

)e
− 16a2

5R2
x ]),

(44)

and in the case when one surface is at the adsorption threshold and the other one is
repulsive, which corresponds to the case of the D-N b.c., we have:

< ρ
(DN)
λ (z̃) >st= B

z̃1/ν

L
(1− 2

√
5πR̃a[(

61Rx

14a
+

3168
175

a
Rx

)e
− 16a2

5R2
x ]). (45)

The comparison of the results Equations (44) and (45) obtained for the layer monomer
density profiles of a dilute solution of star polymers with f = 4 arms with the results
obtained for ring polymers Equation (23) and linear polymers Equations (25) and (26) im-
mersed in a solution of mesoscopic colloidal particles of a big size with different adsorbing
and repelling properties with respect to polymers are presented in Figure 2a,b, respectively.

6. Molecular Dynamic Simulations of Linear, Ring, and Star-Shaped Polymers in a Slit

We created a computer program in C++ for the simulations of polymers in a slit.
We performed molecular dynamics simulations of a dilute solution of linear, ring, and
star-shaped polymers consisting of N = 300, 300, and 1201 (4 × 300+1-star with four
arms) monomers accordingly. The starting configuration was chosen in such a way, that
monomers were placed on the ideal line, ring, or star. The interaction of the neighbor-
ing monomers was modeled by the finite extensible nonlinear elastic (FENE) (attractive
part) and the Weeks-Chandler-Andersen (WCA) (repulsive part) potentials. The selected
potential, which tends to infinity as R → ∞ and has one minimum, ensures that all se-
lected topologies are preserved during the simulations. Additionally, we take into account
the long-range interactions (the 12-6 Lennard–Jones potential) between monomers along
the chain. Before the data acquisition, we equilibrated the whole system. We used the
Verlet integration scheme with ∆t = 0.005 and the velocity scaling thermostat, which
helped to keep the temperature T = 1 constant. All simulations were equilibrated for
teq = 500, followed by data collection for tdata from 500 to 3500. First, to establish the
radius of gyration Rg, we performed 10 simulations for each polymer shape. We obtained
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Rg = 14.65(47) for linear, Rg = 10.91(15) for ring, and Rg = 29.43(68) for star polymers.
Then, we performed simulations for polymers between two walls with L separation, which
was set to either 2Rg or Rg/2. The interaction of the monomers with the walls was modeled
by the 9-3 Lennard–Jones potential with a variable cut-off. The potential cut-off was set
to 1.2 (repulsive walls) or 10 (attractive walls). Depending on the separation of the walls
and their type, the monomer density profiles were calculated as average values of up to
10 independent simulations. The separations of the walls were normalized to one. All
the monomer densities were then normalized as:

∫ 1
0 ρ(z)dz =

Rg
L to compare the results

regardless of the length of the polymers. Additionally, we performed similar molecular
dynamics simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel
Simulator) for ring polymers consisting of 360 beads. The simulation model was set up
similarly to our own program. The monomer densities were taken from 10 separate simu-
lations. The results of the simulations can be seen in Figure 6a,b denoted as ringl in the
legend. The results obtained with both numerical methods (our program and LAMMPS),
in spite of different numbers of monomers, represent the same qualitative behavior.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

(a)

 

 

(N
D

) (z
)

z

 linear
 ring
 ringl
 star

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

(b)

 

 

(N
D

) (z
)

z

 linear
 ring
 ring

l
 star

Figure 6. The monomer density profiles ρ(z) of linear, ring, and star-shaped polymers between
attractive and repulsive walls corresponding to Neumann-Dirichlet (ND) b.c. with the separation of
(a) L = 2Rg (wide slit) and (b) L = Rg/2 (narrow slit).

For the case of two repulsive walls with separation L = 2Rg (wide slit), we observed
that the monomer density profiles for star polymers are higher than the results for linear
and ring polymers in the middle of the slit and near the walls (Figure 7a). As one can see
from Figure 7b, the situation looks completely different in the case of a narrow slit. In this
case, the monomer density profiles for ring polymers are higher than the results for linear
and star polymers in the middle of the slit. This can be attributed to the different topologies
of polymers, as well as their corresponding Rg values. It should be mentioned that the
behavior of the profiles near the walls is opposite.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

(a)

 

 

(D
D

) (z
)

z

 linear
 ring
 star

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

(b)

 

 

D
D

z

z

 linear
 ring
 star

Figure 7. The monomer density profiles ρ(z) of linear, ring, and star-shaped polymers between two
repulsive walls corresponding to Dirichlet-Dirichlet (DD) b.c. with the separation of (a) L = 2Rg

(wide slit) and (b) L = Rg/2 (narrow slit).
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In the case of one attractive and one repulsive wall (Figure 7a,b, we observed that the
monomer density profiles for star polymers are higher than the results for linear and ring
polymers. Furthermore, the maxima of peaks for the above-mentioned cases are shifted
for wide and narrow slits. We observed in the case of wide-slit polymers that they are not
influenced by the presence of the repulsive wall. The situation is different in the case of
the narrow slit, where the positions and shapes of peaks are shifted when compared to the
wide slit.

Figure 8a,b presents the result for two attractive walls. The resulting monomer density
profiles indicate that the polymer tends to stay near the attractive walls in a similar way as
in the previous case for the wide slit region. The biggest difference is observed in the case
of the narrow slit where a non-zero monomer density is observed in the middle of the slit,
especially for ring polymers.
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Figure 8. The monomer density profiles ρ(z) of linear, ring, ringl , and star-shaped polymers between
two attractive walls corresponding to Neumann-Neumann (NN) b.c. with the separation of (a)
L = 2Rg (wide slit) and (b) L = Rg/2 (narrow slit).

As one can see from Figures 6a–8b, the topological and entropic effects play a crucial
role in the monomer density profiles near the walls. The obtained numerical results (see
Figures 6a and 7a) for two repulsive walls, as well as for the case of one attractive and the
other repulsive wall are in good qualitative agreement with our analytical results presented
in Figure 1 and Table 1 for the above-mentioned cases.

7. Summary

In the present paper, the investigation of a dilute solution of ideal ring polymer chains,
as well as a dilute solution of star polymers with f = 4 arms in a Θ-solvent immersed in
confined geometries like the slit of two parallel walls and in a solution of big and small
spherical colloidal particles with different adsorbing and repelling properties with respect
to polymers was performed.

The layer monomer density profiles < ρλ(z̃) > of a dilute solution of ideal ring
polymer chains immersed in a slit geometry of two parallel walls with repulsive sur-
faces, as well as in the case of one repulsive and the other inert surface were obtained. It
should be mentioned that in the case of two repulsive surfaces, the maximum of the layer
monomer density is in the middle of the slit at L/2. In the case of one repulsive and the
other inert surface, the maximum of the layer monomer density is near the distant wall
with the inert surface, where the adsorption threshold takes place. As one can see from
Equations (19), (A6), and (A9), Figure 1, and Table 1, the monomer density profiles of ring
polymers depend on the value y = L/(2Rg). The smaller radius of gyration corresponds to
the more complicated topological structure. It leads to the decreasing of the layer monomer
density with increasing the complexity of the topological structure in the region between
two repulsive surfaces, as well as in the region near the surface where the adsorption
threshold takes place in the case of mixed surfaces. We have come to the conclusion that
the complicated topological structure of ring polymers prevents them from adsorption on
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the surface and leads to the decreasing of the layer monomer density in the region near the
adsorbing surface.

We obtained (see Equations (19), (20), (25), and (26)) that regardless of the different
behaviors of the layer monomer density profiles and forces for ring polymers and for
linear polymers, the universal amplitude ratio B in the density-force relation is the same
as for linear polymer chains and equals two. Taking into consideration the Derjaguin
approximation, the layer monomer density profiles of a dilute polymer solution of ring
polymers confined in a semi-infinite space containing the mesoscopic spherical particle of
a big radius R and two big spherical particles (such that Ri � Rg and Ri � a with i = 1, 2)
for the case of the D-N b.c. and D-D b.c. were obtained. We can see that the layer monomer
density depends on the radius of gyration of ring polymers, the size of the mesoscopic
particle, and the distance between the wall and particle or between two particles.

We obtained that the relation between the monomer density profiles of ring polymer
chains with knot type 01 to the monomer density profiles of ideal linear polymer chains
in the case of two parallel walls with repulsive surfaces, as well as with one repulsive
and the other inert surface is equal to one. Our analytical results are in good qualitative
agreement with the previous predictions obtained for a bead-spring model using molecular
dynamic simulations by Matthews et al. [40] for two repulsive surfaces, as well as with our
numerical results presented in Figures 6a and 7a for the case of two repulsive walls and
one attractive and the other repulsive wall. We come to the conclusion that topological and
entropic effects play a crucial role in the monomer density profiles in confined geometries.

In the case when we consider a dilute solution of ring polymers at Θ-temperature
immersed in a solution of small colloidal particles and the wall with the surface at the
Neumann b.c., we observed that polymers adsorb on the wall. The results in the case of a
dilute solution of ring or linear polymers at the Dirichlet b.c. show that polymer chains
tend to escape from the space between the wall and a small particle or nano-particle.

We investigated a dilute solution of linear and ring polymers at Θ-temperature im-
mersed in a solution of small colloidal particles. In the case of a small colloidal particle
(or nano-particle) near the wall with the surface at the Neumann b.c., we obtain that the
force is equal to zero for a dilute solution of linear polymer chains, and this indicates that
a dilute polymer solution is not influenced by the presence of the wall. In the case when
we consider a dilute solution of ideal ring polymer chains confined in a solution of small
colloidal particles (or nano-particles) near the wall with the surface at the Neumann b.c.,
we observe that polymer adsorbs on the wall, and this leads to the repulsion between small
particles and the wall. The above-mentioned result is in agreement with the result for a
dilute solution of ideal ring polymer chains in a solution of big colloidal particles with
mixed boundary conditions (D-N b.c.) [31,50].

As one can see from the obtained results (see Equations (35) and (36)), in the case of a
dilute solution of linear or ring polymers immersed in a solution of small colloidal particles
(or nano-particles) with radius R � zs, Rx and the wall with the surface at the Dirichlet
b.c., the respective depletion force becomes attractive. This result assumes that linear, as
well as ring polymers tend to escape from the space between a small particle and the wall
with the surface at the Dirichlet b.c., and this leads to an unbalanced pressure from the
outside and the attraction between a small colloidal particle (or nano-particle) and the wall.

We obtained the dimensionless depletion interaction potentials, as well as the dimen-
sionless depletion forces for the case of a dilute solution of star polymers with f = 4 arms
immersed in a slit geometry of two parallel walls with repulsive surfaces and with one
repulsive and the other inert surface. The obtained results (see Figure 5a,b) indicate that
the depletion force in both cases for a dilute solution of star polymers is attractive, but
bigger than the respective forces for linear and ring polymer chains in the case of two
repulsive surfaces. It should be mentioned that the depletion force in the case of one
repulsive and the other inert surface is smaller than in the case of two repulsive surfaces
and demonstrates the opposite behavior in the case of a dilute solution of ring polymer
chains in confined geometries of two parallel walls with mixed surfaces.



Entropy 2021, 23, 242 20 of 24

The obtained results indicate that a dilute solution of ring and star polymer chains
can be used for the production of new functional materials because the behavior of these
solutions depends on the topology of polymers, as well as on the nature and geometry of
confined surfaces. These properties can find wide application in nanotechnology, as well
as in biotechnology for drug and gene transmission. We observe that in a narrow slit, ring
polymers behave similarly to linear polymers, and this allows us to understand the process
of the transmission of DNA from λ-bacteriophages to E. coli bacterial cells. In a wide
slit region, the behavior of ring polymers depends on the complexity of the topological
structure, and in the case of mixed walls with different adsorbing or repelling properties
with respect to polymers, we observe that such polymers start to adsorb on the attractive
surface; this leads to the repulsive forces and, as a consequence, to the destruction of the
bacterial cell.
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Appendix A

As is well known [85], in the continuous chain limit l → 0, N → ∞ with fixed
L0 = Nl2, the partition function in (2) can be expressed as:

Zc(x′, L0|x, 0) = Σαe−Eα L0 φ∗α(x
′)φα(x), (A1)

where the φα are a complete set of orthonormalized eigenfunctions (i.e., < φα|φα′ >= δαα′

of a Schrödinger equation:
[−∆ + U(x)]φα(x) = Eαφα. (A2)

In accordance with Σαφ∗α(x′)φα(x) = δ(x′− x) in the case L0 → 0, Zc(x′, L0|x, 0) = δ(x′− x)
takes place. The eigenfunctions extend much farther from the wall than the potential
U. The partition function in Equation (2) fulfills boundary condition (3). As was shown
in [15–17], the continuous chain model in Equation (2) can be mapped onto a corresponding
field theory by a Laplace transform in the Gaussian variables L0 to conjugate chemical
potentials µ0:

G(2)(x, x′) =
∫ ∞

0
dL0e−µ0L0 Zc(x′, L0|x, 0) = Σα(µ0 + Eα)

−1φ∗α(x
′)φα(x). (A3)

One the other hand, the Laplace transformed function G(2)(x, x′) can be expressed as the
n → 0 limit of the functional integral over vector fields ~φ(x) with n components φi(x),
i = 1, ..., n and x = (r, z):

G(2)(x, x′) =
∫

D[~φ(x)]e−H[~φ] (A4)
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with the Landau–Ginzburg–Wilson HamiltonianH(~φ) describing the system in the semi-
infinite (j = 1) or confined geometry of two parallel walls (j = 1, 2).

In our calculations, we use the polymer-magnet analogy developed by de Gennes [15–17],
which means that we concentrate on the calculations of the correlation function G(2)(x, x′)
according to Equation (5) with the LGW Hamiltonian by analogy, as was proposed in [27].

In our calculations, we use the polymer-magnet analogy developed by de Gennes [15–17]
and by Barber et al. [70] for the investigation of the critical behavior of polymers near the
surface and in the case of slit geometry. This means that we concentrate on the calculations
of the correlation function G(2)(x, x′) according to Equation (5) with the Landau–Ginzburg–
Wilson Hamiltonian by analogy, as was proposed in [27].

Appendix B

The free propagator of the model (6) obtained in [27] is:

G̃‖(p; z, z′; µ0, c10 , c20 , L) =
1

2κ0
((κ2

0 + κ0(c10 + c20) + c10 c20)e
κ0L

− (κ2
0 − κ0(c10 + c20) + c10 c20)e

−κ0L)−1

((κ2
0 + κ0(c10 + c20) + c10 c20)e

κ0(L−|z−z′ |)

+ (κ2
0 − κ0(c10 + c20) + c10 c20)e

−κ0(L−|z−z′ |)

+ (κ2
0 + κ0(c20 − c10)− c10 c20)e

κ0(L−z−z′)

+ (κ2
0 − κ0(c20 − c10)− c10 c20)e

−κ0(L−z−z′)),

(A5)

with κ0 =
√

p2 + µ2
0, where p is the value of the parallel momentum associated with d− 1

translationally invariant directions in the system.
In the case when L → ∞ and 0 ≤ z � L (or 0 � z ≤ L), the free propagator in

Equation (A5)) reproduces the correspondent free propagator of the semi-infinite model
(see [27,77]) with the surface situated at z = 0 and the surface enhancement constant c10 or
at z = L with c20 . Thus, for infinitely large wall separations, the slit system decomposes
into two half-space systems [27].

Appendix C

After performing the Fourier transform in the direction parallel to the surfaces and
integrated with all possible positions of the ring polymer inside the slit with the D-D b.c.
for the layer monomer density of the phantom ideal ring polymer, we obtain:

< ρ
(DD)
λ (z̃) > =

(2Rg)1/ν

L0

IL
∫ L

0 dzG(; z, z̃)G(; z̃, z)

IL
∫ L

0 dzG(; z, z)

≈ 2
z̃1/ν

L
(1 + 2e−4y2

+ 2e−16y2
)

(1 + 2e−4y2
+ 2e−16y2

)−
√

π
2y

+ O(e−4y2
)

(A6)

Taking into account that we consider the d = 3 dimensional case and in the wide slit limit
with y & 1, from Equation (A6), we obtain the result presented in Equation (19). For the
sake of convenience, the result in Equations (A6) and (19) at d = 3 dimensions with ν = 1/2
can be written in the form:

< ρ
(DD)
λ (z∗) > L−1 ≈ 2(z∗)2(1 +

√
π

2y
+

π

4y2 +
π3/2

8y3 + O(e−4y2
) + ...), (A7)

where z∗ = z̃
L .
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The corresponding result for the layer monomer density of the phantom ideal ring
polymer inside the slit with the D-N b.c. is:

< ρ
(DN)
λ (z̃) > =

(2Rg)1/ν

L0

IL
∫ L

0 dzG(; z, z̃)G(; z̃, z)

IL
∫ L

0 dzG(; z, z)

≈ 2
z̃1/ν

L
+

z̃
y2

(e−4y2 − e−16y2
)

(1− 2e−4y2
+ 2e−16y2

)
,

(A8)

which in the limit y & 1 at d = 3 dimensions and with ν = 1/2 leads to the result:

< ρ
(DN)
λ (z∗) > L−1 ≈ 2(z∗)2 +

z∗

y2 (e
−4y2

+ 2e−8y2
+ 4e−12y2 − e−16y2

+ ...). (A9)
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