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Abstract: Human norovirus (HuNoV) infection is a major cause of gastroenteritis all over the world.
Despite this, these non-enveloped RNA viruses are poorly characterized due to the lack of robust
and widely available HuNoV culture systems. The two published systems (B cell line and stem
cell-derived enteroids) support replication of HuNoVs but the levels of replication are not sufficient
for the generation of highly purified virus stocks or the development of culture-based quantification
assays. Therefore, improvement of HuNoV in vitro replication is still needed. Murine norovirus
and other caliciviruses have provided insights into norovirus replication that paved the way for
the development of the current HuNoV culture systems and may also aid in the improvement of
these systems. This review will highlight ways in which previous research guided and impacted the
development of HuNoV culture systems and discuss ways in which more recent discoveries might be
utilized to improve the quality of the HuNoV in vitro replication.

Keywords: human norovirus; murine norovirus; human intestinal enteroids; norovirus replication;
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1. Introduction

Human noroviruses (HuNoVs) are one of the most common causes of gastroenteritis. These
viruses are responsible for ~200,000 deaths in children below five years of age in developing countries
and are estimated to cause 685 million infections globally on an annual basis [1,2]. Along with inducing
morbidity and mortality by diarrhea, these viruses also have a massive economic impact resulting
in approximately $60 billion each year in healthcare costs and missed worker productivity in the
U.S. alone [3,4]. Human noroviruses are second only to rotavirus, which annually causes death by
dehydration during gastroenteritis in about 215,000 children below the age of five around the world [5].
The introduction of a live, attenuated rotavirus vaccine in 2006 played a pivotal role in diminishing the
disease burden of this pathogen [6,7], especially in developed countries, leading to human norovirus
becoming a more dominant cause of gastrointestinal illness due to the absence of licensed norovirus
vaccines or therapeutics [8–10].

Despite the discovery of Norwalk virus in 1972 and the global impact of human norovirus infections,
the development of the first in vitro cell culture systems for this pathogen took over 40 years [11,12].
The lack of multigenerational passaging systems in HuNoV has led to a scant understanding of
infection mechanisms and prevented traditional methods of vaccine development and specifically the
development of live, attenuated vaccines [13]. The research that led to the successful development of
the first-generation culture systems for HuNoV was guided by key discoveries made in related viral
pathogens. Likewise, improvements in the currently available HuNoV culture systems will likely spring
from the increasingly collaborative nature of scientific research and the joint efforts of researchers in
multiple fields.

The currently available HuNoV culture systems each utilize a different cell type that supports
replication of the virus. The first system to be published uses a transformed B cell line (BJAB) for viral

Viruses 2019, 11, 547; doi:10.3390/v11060547 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
http://www.mdpi.com/1999-4915/11/6/547?type=check_update&version=1
http://dx.doi.org/10.3390/v11060547
http://www.mdpi.com/journal/viruses


Viruses 2019, 11, 547 2 of 13

replication, and the second system employs intestinal epithelial cells in the form of stem cell-derived
enteroids [12,14]. While the development of these systems has been an exciting breakthrough in the
norovirus field, there is still a need to improve in vitro replication of these viruses. A primary area
of needed improvement is the viral titers produced by both cell types. Other cultivable caliciviruses
typically yield 100,000–1,000,000-fold increases in viral titer, while the B cell and enteroid systems
produce 30–100 fold or 30–1000 fold increases, respectively [12,14–17]. Extensive passaging of HuNoV
is also not yet possible with either of the published systems, which, at most, support viral replication
out to the fourth passage [12,14]. The inability to generate highly concentrated viral stocks as well as
lab-adapted HuNoV strains would provide a significant advancement in the ability to research viral
pathogenesis as well as aid in the development of antiviral drugs and vaccines.

Human noroviruses belong to the family Caliciviridae and several of the cultivable viruses
within this family have provided valuable insights for the development of first-generation HuNoV
systems. The genus Norovirus is subdivided into seven genogroups known to infect human, murine,
canine, feline, and bovine host species among others [18]. Human noroviruses are highly diverse and
categorized into three genogroups: GI (9 genotypes), GII (20 genotypes), GIV (1 genotype). Strains of
the GII.4 genotype have been the most common cause of norovirus-induced gastroenteritis worldwide,
however, in recent years we have seen the emergence of GII.17 and GII.2 strains to cause the majority
of norovirus illness [19]. Porcine enteric caliciviruses (PEC), which are sapoviruses, have aided in the
development of HuNoV cultivation in epithelial cells, while murine norovirus (MNV), has been crucial
in the development of the B cell system.

The genetic diversity of HuNoVs is also reflected in cellular interactions at the molecular level.
A cellular factor recognized to play a fundamental role in HuNoV infection is histo-blood group antigen
(HBGA). HBGAs are carbohydrates containing structurally related saccharides and are expressed as free
oligosaccharide in biological fluids like milk and saliva and linked to proteins or lipids on the surface
of red blood cells and mucosal epithelial cells [20–22]. The binding of norovirus to HBGAs is strain
specific and depends on the type of oligosaccharide epitope expressed on host cells, and infectivity
of specific viral strains is dependent on the HBGA type of the host [22–24]. These carbohydrates are
necessary for replication in both in vitro culture systems, although the way in which they facilitate
infection may differ [12,14].

2. Finding a Permissive Cell Type

Much of the early work pioneering in vitro growth for HuNoVs focused on investigating the
ability of intestinal epithelial cells to replicate the virus. The historical paradigm for cellular tropism of
enteric viral infection was based on the symptoms of gastrointestinal pathogens. An infected person
experiences temporary stomach and intestinal inflammation, causing pain, dehydration, diarrhea,
vomiting, and fatigue. So, naturally, it was hypothesized that norovirus would infect intestinal epithelial
cells and release pro-inflammatory cytokines involved in inflammation. Intestinal epithelial cells are
targeted by several enteric viral pathogens including poliovirus and rotavirus [7,25]. Indeed, human
norovirus tropism for epithelial cells was also supported by in vivo data from intestinal sections of
acutely infected animals. However, while the virus was detected in epithelial cells, the paucity of the
signal was puzzling given the high viral titers shed during symptomatic infection [26–28].

In 2003, murine norovirus (MNV) was discovered, and it was quickly identified that this virus
replicated in dendritic cells and macrophages [17,29]. These studies were the first to prove that a
norovirus could target immune cells both in vitro and in vivo. Since its discovery, MNV has become a
widely used surrogate for HuNoVs based on its similar shape, size (28–35 nm), genomic organization,
and its use in a small animal model [30–34]. In addition, both MNV and HuNoV are spread by
fecal-oral transmission, infect the gastrointestinal tract, and are shed in high titers by their respective
hosts [35–38]. The MNV model system has allowed the opportunity to harness the relationship between
norovirus replication in vitro and host pathogenesis and immune responses in vivo. It should be
noted that the current MNV model is not a perfect replica of HuNoV. For example, mice cannot
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recapitulate vomiting symptoms of norovirus infection as they do not have emetic reflex, however,
gastric bloating, which is known to induce vomiting, is observed in mice and can be used as a
pathological substitute [37]. Another difference between HuNoV and MNV infections is the spread of
the murine virus to extra-intestinal sites in the mouse, like the spleen, which has not been observed in
HuNoV infection [16,37].

Table 1. In vivo cellular tropism of murine norovirus (MNV).

Cell Type Immunocompetent Host Immunocompromised Host

Acute 1 Persistent Acute Persistent

Epithelial cells + 2 – 3 + 4 N.D.
Tuft cells N.D. + 3 N.D. N.D.

Macrophages +++ 2 N.D. +++ 4, 5 N.D.
Dendritic cells ++ 2 N.D. +++ 4, 5 N.D.

B cells + 2 N.D. N.D. N.D.
T cells +++ 2 N.D. N.D. N.D.

Notes: 1 N.D. = Not done. 2 Stained for viral antigen and replication intermediate [36]. 3 Stained for viral non-structural
proteins [39]. 4 Stained replication intermediate in epithelial cells and lamina propria [29,37]. 5 Stained viral antigen [29].

Further work investigating the tissue tropism of MNV infection found virus-positive cells in the B
cell zones of Peyer’s patches of signal transducer and activator of transcription 1 (STAT-1) deficient and
interleukin 10 (IL-10) deficient mice [38,40]. This work was the first to point to B cells as a potential
target for MNV. Additional studies revealed diminished viral titers in MNV-infected Rag1–/– and B
cell-deficient mice as compared to wild type mice, which further bolstered the B cell tropism hypothesis
and indicated that T cells may also be a potential in vivo target for this virus [16]. More recently,
in-depth studies evaluating in vivo cellular tropism of MNV in immunocompetent mice have been
conducted and revealed that B cells and T cells, along with macrophages and dendritic cells, are not only
infected but actively support norovirus replication in the gut-associated lymphoid tissue (GALT) [36].
Investigations into the in vivo cellular tropism of HuNoVs have revealed these viruses are also able to
heavily infect immune cells in chronically infected immunocompromised individuals. Specifically,
T cells were overwhelmingly infected by HuNoV compared to the other cell types examined, and this
study was the first to demonstrate T cells as a biological target of HuNoVs [41]. Although the presence
of non-structural protein was not investigated for infected T cells specifically, the lamina propria
contained large regions that were positive for nonstructural proteins indicating the presence of many
immune cells supporting viral replication [41]. This HuNoV-positive T cell data is also consistent with
MNV tropism data in acutely infected, immunocompetent mice, which show T cells as the predominant
cell type infected by the virus [36,41]. It should be noted that B cell infection by HuNoV was not
detected in biopsies from immunocompromised individuals, however, B cells were also not found
in several of the biopsy samples suggesting that the immunocompromised state of the individuals
may have influenced the availability of B cells for infection in those patients [41]. Interestingly, a
reduction of HuNoV titers occurs in B cell-deficient individuals as compared to immunocompetent
individuals, which phenotypically mimics what is observed in B cell-deficient mice upon infection
with MNV [16,42]. Given that these viruses target multiple cell types upon infection, it is anticipated
that viral titers would be reduced when a cellular target is not present. It is also important to note that
experimental conditions (e.g., immune competent vs. immunocompromised hosts, acute vs. persistent
infection) vary widely among these studies, and further work is needed to definitively determine the
cellular tropism of HuNoVs in immunocompetent hosts during acute infection. However, collectively,
these data demonstrate that noroviruses infect both immune cells and epithelial cells under certain
conditions (Tables 1 and 2).



Viruses 2019, 11, 547 4 of 13

Table 2. In vivo cellular tropism of human norovirus (HuNoV).

Cell Type Immunocompetent Host Immunocompromised Host

Acute 1 Persistent 1 Acute 1 Persistent 1

Epithelial cells N.D. N.D. + 3 ++ 4

Tuft cells N.D. N.D. N.D. N.D.
Macrophages N.D. N.D. N.D. + 5

Dendritic cells + 2 N.D. N.D. + 5

B cells + 2 N.D. N.D. – 5

T cells N.D. N.D. N.D. +++ 5

Notes: 1 N.D. = not done. 2 Detected viral antigen in tissue section of chimpanzees [43]. 3 Detected viral antigen in
tissue sections of gnotobiotic pigs [27,28]. 4 Detected viral antigen and non-structural proteins [41]. 5 Stained for
viral antigen in cells and non-structural proteins detected in the lamina propria [41].

The early discoveries in MNV immune cell tropism led to work in HuNoVs to determine
whether immune cells were permissive to infection in vitro. Initial studies examined blood-derived
macrophages and dendritic cells since cell lines from these cell types were shown to replicate MNV
to high titers within 24 hours [17]. However, HuNoV replication was not observed [17,44]. Studies
examining HuNoV infection in chimpanzees were the first to indicate that cell types beyond epithelial
cells were permissive to infection by the human pathogen and revealed that duodenal B cells and
dendritic cells were positive for HuNoV capsid proteins [43]. This led to additional investigations on
whether HuNoVs were capable of infecting immune cells in vitro. In 2014, it was revealed that both
human and murine noroviruses replicated in immortalized B cell lines in vitro (Table 3) and marked
the first time HuNoVs had been grown in culture [12,15]. Specifically, infection of B cells with stool
samples containing HuNoV resulted in significant increases in both the viral genome (30–100 fold) and
synthesis of the major capsid protein after five days of infection [12].

Table 3. Summary of cell types which support in vitro replication of HuNoV and MNV.

Cell Type HuNoV MNV

Epithelial cells Yes No
Macrophages No Yes
Dendritic cells No Yes

B cells Yes Yes

While the success in cultivating HuNoV in immune cells was groundbreaking, it did not preclude
the ability of the virus to replicate in epithelial cells. Similar to studies investigating immune cell
infection, early attempts at cultivating HuNoVs in epithelial cells lines were unsuccessful despite
exhaustive screening of several primary and immortalized cell types [45]. The invention of organoid
systems opened a new avenue of research for cultivating HuNoVs in epithelial cells. Initial attempts
to cultivate the virus in 3D-organoid systems were unsuccessful [46], however, in 2016 multiple GII
HuNoV strains successfully replicated in human intestinal enteroid (HIE) monolayers derived from
stem cells [14]. HIE is a differentiated but non-transformed cell culture consisting of enterocytes,
enteroendocrine cells, goblet cells, and Paneth cells, hence forming a replica of the human intestinal
microenvironment [47,48]. Although enteroids are different from organoids in that enteriods are not
three-dimensional structures derived from primary tissues and grown “organ-like” in an artificial
niche, they are a step closer to mimicking the gut or intestinal microenvironment in vitro for the
purposes of understanding norovirus propagation in vivo [49]. Successful culture of HuNoVs in the
HIE monolayers sets the foundation for the development of more complex in vitro systems containing
both epithelial and immune cells to more closely recapitulate the intestinal environment. It has also
been recently demonstrated that, during persistent infection, MNV infects specialized epithelial cells,
called tuft cells [39]. Interestingly, the investigation of MNV acute infection in vivo has not shown
substantial epithelial cell infection. These data are consistent with HuNoV tissue tropism data, where
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epithelial cell infection has been observed in chronically infected hosts but has not been widely seen
in acutely infected individuals [41]. Together these data may point to a disparity in norovirus cell
tropism in acute vs. persistent (or chronic) infection [36]. The dual tropism of noroviruses has been
recently reviewed [50] and so will not be expanded upon in further detail in this article except to point
out that both HuNoV and MNV have been shown to infect a variety of cells types (Figure 1), but the
studies publishing this information have varied widely in the conditions used. Therefore, further
work is required to determine the cell types targeted by these viruses under varying conditions of host
immune status and times of infection.
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Figure 1. Proposed tropism model of MNV and HuNoV to various cells in the human small
intestine [36,50]. These viruses may enter in free form or as clusters [51] potentially crossing through
microfold (M) cells [52,53] or through intestinal epithelial cells of the villus. Tuft cells express CD300lf
and have been shown to be infected by MNV [39]. Norovirus can further cross the brush border of
epithelial cells to infect cells of hematopoietic origin like dendritic cells [36,43], T cells [14,36,41], B
cells [36,43], and macrophages [14,36,41]. All the cell types depicted as HuNoV positive have been
shown to be positive for viral antigen or genome in either animal studies or human studies.

3. Discovering Cofactors Needed for In Vitro Replication

The discovery of immune cell tropism in murine viruses aided in the development of the first
human norovirus culture system. Similarly, the need for and inclusion of cofactors in HuNoV cultivation
has also been supported by work from other viruses. For example, it was demonstrated that commensal
bacteria enhanced replication of poliovirus [54]. Specifically, the bacterial lipopolysaccharide, which is
expressed on the surface of gram-negative bacteria, was specifically responsible for the enhancement of
viral infection [54]. As mentioned above, HuNoV infection is dependent on the expression of HBGAs.
HBGA-like structures are expressed on the surface of bacterial cells [55], and it has been demonstrated
that an HBGA-producing commensal bacterium (Enterobacter cloacae) could be bound by HuNoV
virus-like particles [56]. These findings led to the discovery that in vitro replication of HuNoVs in B
cells is facilitated by the presence of HBGA-expressing commensal bacteria [12,15].

Like B cell infection, infection of HIEs requires the addition of a cofactor, at least for some strains
of human norovirus [14]. PEC causes diarrhea in gnotobiotic and weaned pigs [57,58]. Struggles to
cultivate this virus in vitro eventually led to the discovery that intestinal contents, and specifically
bile acids, were key to successful laboratory replication of the virus [59–61]. In PEC, bile acids act by
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downregulating type I Interferon (IFN)-mediated signal transduction and facilitating release from
endosomes into the cell cytoplasm, which allowed for PEC replication in LLC-PK cells [59,62,63]. It has
also recently been shown that specific mutations in lab-adapted strains of PEC allow for improved
replication in vitro and investigation of similar residues in HuNoV may also aid in improving its
replication in vitro [64]. Given the key role intestinal contents and bile acids played in the successful
cultivation of PEC, this compound was also examined for involvement in HuNoV replication. Initial
studies examining HuNoV replication in epithelial cells lines found that simple addition of bile acids to
these cells did not result in HuNoV amplification [45]. However, upon examination of the role of bile
acids in HuNoV replication in HIEs, it was found that replication of some viral strains was dependent
on (or enhanced by) non-toxic levels of bile acids. Like PEC, it is suggested that the increase in HuNoV
replication in the presence of bile acids is due to the effect of bile on the cells and not on the virus [14,65].
However, X-ray crystallography has shown that bile acids bind at partially conserved pockets on the P
domain of some genotypes and stabilize P domain loops in HBGA non-binders. Moreover, bile acids
augmented binding of GII.10 with HGBA [65]. Similarly, in MNV, bile acids have been demonstrated
to bind at the interface of the P1 and P2 domains of the capsid and enhance interaction with its cellular
receptor [66]. Both of these observations point to an impact of bile acids on the viral particle itself. Bile
carries out multiple cellular functions such as facilitating digestion and absorption of fat, acting as a
detergent, and regulating cell metabolism and inflammation, some or all of which may play a role
in HuNoV infection [67]. Furthermore, bile acids are also acted upon and modified by commensal
bacteria in the small intestine [68,69]. Although bacteria are not involved in HuNoV replication in HIEs,
given the demonstrated role of commensal bacteria in norovirus infection, it may be that commensal
bacteria influence in vivo infection through both direct and indirect mechanisms [12].

While discoveries in other viruses have aided in the development of HuNoV culture systems, not
all research has proven to be beneficial in the cultivation of this pathogen. For example, early methods
of astrovirus cultivation began with the generation of cell culture-adapted isolates using primary cells
and treatment with trypsin that allowed for serial propagation of the virus in tissue culture [70,71].
Trypsin has also been shown to enhance the infectivity of rotavirus by facilitating cell entry [72–74].
However, the addition of trypsin did not result in the successful cultivation of HuNoVs in transformed
epithelial cells lines [45]. Nevertheless, the advancement of research in related enteric RNA viruses has
greatly assisted the growth of techniques and ideas in the norovirus field and led to the development
of the current cultivation systems.

4. Improvement of Current Models or the Discovery of New Ones

More recent discoveries in the norovirus field may hold the key to improving the current methods
of in vitro cultivation of HuNoV. One such discovery was the identification of CD300lf as the receptor
for MNV [75,76]. CD300lf is an immune-regulatory protein present on the hematopoietic cell (especially
myeloid cells) and tuft cell surface [39,66,76]. MNV interacts with CD300lf and further engages
CD300lf-like host ligands through multiple binding sites [66]. It was also demonstrated that cells
that were refractory to infection by MNV could support infection if they were modified to express
the CD300lf receptor [75]. The proteinaceous receptor required for HuNoV infection of immune and
epithelial cells is not yet known, but given the important role MNV has played in the advancement
of our understanding of HuNoV biology, it is likely that discovery of the MNV receptor will open
new doors for the identification of the cellular receptor for HuNoV, which may aid in increasing viral
replication in vitro.

Alongside the discovery of the cellular receptor for MNV was the discovery of a distinct cell type
that is infected by the virus during persistent infection. These cells were called brush, multi-vesicular,
fibrillovesicular, caveolated, or tuft cells [39]. Tuft cells express CD300lf and are targeted by MNV in
the mouse intestine during persistent infection. Identification of this persistently infected cell type
could lead to its use in cell culture systems. Specifically, persistent in vitro infection could be used for
generation of lab-adapted or attenuated norovirus strains, which would aid in vaccine development.
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Another novel development in norovirus biology is the role of exosomes in viral egress [51].
Non-enveloped viruses are classically thought to escape from infected cells through cellular lysis,
however, over the last several years, multiple research groups have shown that cell destruction is not
always necessary for virus spread [77]. For example, poliovirus can release viral antigens into the media
without the death of human neuroblastoma or K562 cells [78,79]. Similarly, hepatitis A and hepatitis
E viruses were shown to be masked in a membrane while circulating in the bloodstream [80,81].
These observations led to the hypothesis that non-enveloped viruses have alternate mechanisms of
egress besides cell lysis. Supporting this hypothesis, several enteroviruses including Coxsackievirus,
poliovirus, and rhinovirus have been found to form viral clusters inside extracellular vesicles (EVs)
in vitro [82–85]. EVs are membrane-bound vesicles secreted by living or dead cells, which carry
peptides, microRNAs, or other cargo such as viruses or pathogenic molecules [82,86]. Recently, it was
shown that MNV-1 and HuNoV can exit cells cloaked in EVs [51]. These virus-containing vesicles
are shed in the stool of infected humans/mice and remain intact during fecal–oral transmission [51].
Moreover, for MNV, it was found that these virus-containing EVs still required the CD300lf receptor
for the infection of new cells [51]. Given that exosomes also play an important role in cellular
communication, the impact of viral infection on this cellular pathway may lead to new discoveries
involving antiviral immune responses and may also be key in identifying factors responsible for low
levels of viral replication in vitro [87,88].

Exosomes are not only involved in viral egress but also appear to facilitate increased virus
production by infected cells [51]. RNA viruses are notorious for the lack of proofreading mechanisms
in their polymerases resulting in a high mutation rate in a range of 10−3–10−5 mutations per nucleotide
copied, as estimated by independent biochemical and genetic approaches [89]. This is almost a
million-fold higher as compared to mutation rates of cellular DNA, indicating that there are rarely
identical copies of each virus [89]. This suggests that any single progeny is most likely not able to
undertake a successful replication cycle in the next host. Each virus may have multiple attenuating
mutations and thus require the presence of other viral progeny with potentially compensating mutations.
This idea challenges the “free independent virus particle” idea of viral transmission and is increasingly
supported biologically with the discovery of mechanisms by which multiple viral particles can infect
the same cell simultaneously. One example is the cellular escape of multiple viral particles within a
single exosome (mentioned above). Exosomes containing noroviruses can carry around one to five
viruses per vesicles and are more infectious than individual viruses or free viral particles [51]. When
examined directly, infection by EV-encased viruses resulted in a higher number of progeny viruses
produced compared to infection with “free” virus suggesting there are manifold barriers to viral entry
when the number of viruses bound to cells are low [82–85]. A different mechanism yielding a similar
overall result can be seen with the use of bacteria by poliovirus (Figure 2). It was demonstrated
that attachment of polioviruses to enteric bacterium enhanced both viral infection efficiency and
recombination leading to increased fitness of viral progeny [90]. Enhanced infection of HuNoV in B
cells in the presence of bacteria may be the result of an analogous mechanism or it may indicate an
alternate role for HBGAs as a means of viral aggregation that improves viral infection. Ultimately,
when viral particles enter in high concentrations such as on bacteria or inside EVs, the probability
of viral replication, translation of functional proteins, and sharing genomic or replication machinery
increases, potentially giving rise to greater genetic diversity in progeny viruses and improved viral
fitness [90–92]. Therefore, research investigating mechanisms of viral aggregation may also lead to
discoveries that improve HuNoV output in cell culture systems.

While improving replication in the currently available B cell and HIE systems may be the most
straightforward path to improving laboratory cultivation of HuNoV, other avenues remain. One such
method would use the humanized mouse model that has been developed for HuNoV. These mice were
engrafted with human CD34+ hematopoietic stem cells, to test the importance of human immune cells
for infection [93,94]. Interestingly, the presence of HuNoV structural and non-structural proteins was
detected in cells in both humanized and non-humanized immune-deficient mice [94]. This surprising



Viruses 2019, 11, 547 8 of 13

observation may be useful in isolation and culture of lymphocytes from model systems that could
serve as a foundation for a new and novel in vitro culture system for HuNoV.Viruses 2019, 11, x FOR PEER REVIEW 8 of 13 
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lack proofreading mechanisms diminishing the ability of the virus to undergo successful replication in
its host due to the production of attenuating mutations [89]. On the other hand, infection of a single
cell with multiple viruses increases infection efficiency and viral fitness [51]. Two such mechanisms
have been identified in enteric viruses: Attachment to commensal bacteria (poliovirus) and egress in
extracellular vesicles (rotavirus) [51,90]. A similar mechanism may be employed by HuNoV, which
could explain enhanced B cell replication in vitro in the presence of enteric bacteria such as Enterobacter
cloacae [12]. Noroviruses are also found inside multi-vesicular body (MVB) derived exosomes and
cause higher infection as compared to single viruses of same MOI [51].

5. Conclusions

Considering the economic and health burdens caused by HuNoV, a better understanding of
virus-host interactions through improved cell culture models is the need of the hour. Use of the currently
available B cell and HIE systems has already led to their use in the testing of antiviral compounds
and facilitated studies on virus inactivation, respectively [95,96]. Additionally, HIEs allowed for the
implementation of true HuNoV neutralization assays rather than using HBGA binding assays as a
surrogate for neutralization [97]. However, restricted viral replication in both systems limits their use in
a detailed examination of viral infection and pathogenesis. Detailed cellular and genetic studies would
ultimately give rise to the discovery of attachment and/or entry receptor proteins as well as identify
antiviral mechanisms that suppress HuNoV replication in specific cell types. Furthermore, improved
in vitro replication and passaging of generated viruses would allow for the creation of lab-adapted
viruses and the development of live, attenuated HuNoV vaccines. Improved in vitro replication will
also allow for increased crossover between virology and immunology, to discover answers to other
characteristics of HuNoV infection, such as the lack of long-term protective immunity generated from
viral infection. The progress made thus far in the development of HuNoV in vitro culture systems
has been bolstered by knowledge gained from research on surrogate viruses, which is a testament to
the collaborative nature of science, and future improvements to these systems may also come from
discoveries made in other viruses.
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