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Abstract: The transplantation world changed significantly following the introduction of immuno-
suppressants, with millions of people saved. Several physicians have noted that liver recipients that
do not take their medication for different reasons became tolerant regarding kidney, heart, and lung
transplantations at higher frequencies. Most studies have attempted to explain this phenomenon
through unique immunological mechanisms and the fact that the hepatic environment is continu-
ously exposed to high levels of pathogen-associated molecular patterns (PAMPs) or non-pathogenic
microorganism-associated molecular patterns (MAMPs) from commensal flora. These components
are highly inflammatory in the periphery but tolerated in the liver as part of the normal components
that arrive via the hepatic portal vein. These immunological mechanisms are discussed herein based
on current evidence, although we hypothesize the participation of neuroendocrine-immune path-
ways, which have played a relevant role in autoimmune diseases. Cells found in the liver present
receptors for several cytokines, hormones, peptides, and neurotransmitters that would allow for
system crosstalk. Furthermore, the liver is innervated by the autonomic system and may, thus, be
influenced by the parasympathetic and sympathetic systems. This review therefore seeks to discuss
classical immunological hepatic tolerance mechanisms and hypothesizes the possible participation of
the neuroendocrine-immune system based on the current literature.

Keywords: liver transplantation; regulatory microenvironment; neuroendocrine-immune interaction;
adrenergic receptor; cholinergic receptor; immunological tolerance

1. Introduction
The Immune System in Neuroendocrine-Immune Crosstalk: Early Evidence

The development of the immune system, like that of other homeostatic systems, has
evolved over millions of years after the appearance of the first metazoans (animals). In
mammals, this system allows for integrity maintenance, responding to non-self components
and altered self or damage-associated molecules [1]. Therefore, immune surveillance
recognizes dangers, including cancer cells, foreign substances, infectious pathogens, and
even self-components.

During metazoan evolution, the immune system developed alongside several cellular
communication systems, such as the nervous system, with action potentials and super-
fast messenger transmission (<5 ms-electrical synapse) [2]; the endocrine system, which
provides hormones that act over long distances; and paracrine or synaptic intercellular
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communication, which acts over short distances. However, historically, immunology and
physiology have always been studied separately [3,4]. The study of the immune system
evolved in association with the study of bacteriology and microbiology, later becoming an
independent discipline. The same was observed in physiology, which was associated with
growing knowledge of anatomy and medicine. These separate developments restricted
the contact between immunologists and physiologists. Thus, for many years in the past, it
was impossible to imagine that the immune system could influence brain activity and the
endocrine system or vice versa.

One of the first clues of neuroendocrine-immune loops was obtained by Hadden
in 1970 [5] for evidence on the expression of adrenergic receptors in human peripheral
lymphocytes, suggesting a link between the sympathetic nervous system and the immune
response. Moreover, as established by one of the pioneers in this area, neuroendocrine-
immune interactions first gained recognition at an immunology conference held in Canada
in 1986. Thus, Basedovsky and coworkers revealed feedback regulation between interleukin
(IL)-1 and glucocorticoids in an inflammatory microenvironment [6,7]. Then, Ader and
coworkers demonstrated the influence of “psychological” mechanisms on the immune
system using behavioral experiments [8].

Considering these data and the fact that theβ2 adrenergic receptor, as well as some cholin-
ergic receptors, are widely expressed in T lymphocytes, it is possible that neuroendocrine-
immune crosstalk plays a role in liver transplantation (LT) tolerance. The expression of these
receptors was evidenced mainly through the effects of agonists and antagonists [9,10].

2. Background on Liver Transplantation

The discovery and implementation of calcineurin inhibitors, in addition to cyclosporine,
in the early 1980s, followed by tacrolimus in the 1990s, significantly reduced acute cellular
rejection (ACR) and dramatically improved the one-year patient survival rate [11,12]. Other
agents, such as purine analogs and mammalian target of rapamycin (mTOR) inhibitors,
have been developed, further lowering ACR rates and calcineurin inhibitor-related toxicity.
Additionally, patient survival has continued to improve over the last decade, although
ACR remains a challenge, mainly when occurring late after LT [13,14]. The induction of
graft immune tolerance is a complex process essential for minimizing organ or tissue/cell
rejection after transplantation. LT is the only effective treatment for end-stage liver diseases.
Following transplantation, the use of immunosuppressants (ISs) is an approach used to pre-
vent acute immune rejection and modulate immune tolerance to the transplanted organ. In
recent years, there has been a substantial improvement in the patient survival rate following
LT, mainly due to advances in ISs therapy. Despite improved pharmacological strategies
to prevent acute transplant rejection, ISs cause countless adverse effects, leading to an
increased malignancy and opportunistic infections, and promoting or enhancing cardiac,
renal, and metabolic pathological conditions. In addition, they increase health care costs,
require drug monitoring, and usually increase long-term morbidity and mortality [15].
Over the years, many strategies have been implemented to reduce these effects, such as
gradually reducing IS administration and applying cell-based therapies to induce immune
tolerance to grafts, which can, in turn, minimize liver rejection [16–18]. It is important to
highlight that the interplay between the immune system and neuroendocrine responses has
been increasingly associated with immune tolerance in various conditions; however, it re-
mains unclear after LT. Currently, there is a consensus that the human psychological status
can affect immunological responses. However, we do not yet understand how to control
these mechanisms, either psychologically or pharmacologically. Thus, understanding these
pathways may be helpful for improving LT therapies and the patient quality of life and
survival. Thus, in this review, we discuss neuroendocrine-immune interactions and their
possible applications to prolong liver tolerance after transplantation, since the evidence of
this axis in the context, as well as the tolerance after LT, is still poorly understood.
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3. Current Ideas of Liver Tolerance Mechanisms after Transplantation

Currently, ISs, including calcineurin inhibitors (cyclosporin and tacrolimus) and cor-
ticosteroids that target the activation, expansion, and cytotoxicity of the recipient’s T
lymphocytes, have created improvements in transplant surgeries since the 1970s and have
reduced the acute rejection rate to less than 15% of transplants, but long-term ISs use is asso-
ciated with increased risks of infections and malignancies [19–21]. Preclinical experiments
in animal models were essential for understanding the mechanisms of rejection or tolerance
of LT. It was observed that hepatic allografts could be accepted by MHC-mismatched indi-
viduals without IS treatment for a short time. Moreover, the prior transplantation of liver
fragments induced immunological tolerance to secondarily transplanted solid organs from
the same donor. In contrast, when solid organs from another donor were transplanted, they
were rejected [22–24]. Therefore, the liver appears to provide some level of immunological
protection for other organs in cases of combined organ transplantation (liver-kidney or
liver-intestine), with the second solid organ being less adversely impacted by donor-specific
antibodies [25–27]. Both cellular and humoral alloimmune responses contribute to rejection.
It is also important to know that LT itself is capable of inducing inflammatory pathways as
the hepatic ischemia-reperfusion injury [28]. The liver microenvironment passes by waves
of the proinflammatory and anti-inflammatory response that remains throughout life, and
this regenerative profile, as well as the cytokines subtypes secreted, is closely related to the
restoration of liver function and post-LT clinical outcomes [29].

Clinically, LT recipients require the lowest amounts of ISs and exhibit the lowest
incidence of chronic immune-mediated injury [30] compared to other organ recipients, and
have a propensity toward tolerance over alloreactivity. Interestingly, approximately 38% of
adults (>18 years old) and 44% of children (<18 years old) among all patients who undergo
LT can discontinue IS therapy in the longer term, as shown in Table 1.
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Table 1. Clinical experiences of immunological tolerance in liver transplant recipients.

Number of
Patients Type of Graft Immunosuppressive Therapy Patient Selection

Time from
Transplantation to

Weaning

Complete IS
Withdrawal

Mean Follow-Up
Period after
Withdrawal

Ref.

63 Living donor Tacrolimus

Patients who survived more
than 2 years after

transplantation, maintained
good graft function, and had no

rejection episodes in the
preceding 12 months

24 months 38.1% 23.5 months (range,
3–69 months) [31]

45 (adults) Cadaveric donor Tacrolimus: 93%, Cyclosporin: 7%

>3 years after liver
transplantation, >12 months

without rejection, no
autoimmune disease

43.2 months (mean;
SD 0.96)

22.2% (no difference
with the control group) 26 months (range 11–36) [32]

34 (adults) Cadaveric donor Ciclosporin

>1 year after liver transplantation,
positive for hepatitis C virus
RNA, absence of rejection or

cirrhosis on biopsy

63.5 months (mean;
SD 20.1) 23.4% 45.5 months (mean;

SD 5.8) [33]

12 (adults) Cadaveric donor Ciclosporin

≥2 years after liver
transplantation;

≥1 year with no rejection;
no autoimmune disease, cancer,

or viral disease

57.5 months
(mean; SD 33.5) 38% 10–30 months

(mean) [34]

5
(children),

median age: three
years old (range,

8 months to 9 years)

Four parental living
donors and one
cadaveric donor

Tacrolimus

Patients who had a very low
tacrolimus trough level

(<1 ng/mL by liquid
chromatography-mass

spectrometry

45 months (range,
14 months to
60 months)

100%
32 months (range,
14 months to 82

months)
[35]

20 (children),
<18 years old Parental living donor Tacrolimus: 65%, Ciclosporin: 35%

Allograft function while taking
a single immunosuppressive
drug, no evidence of acute or
chronic rejection or significant

fibrosis on liver biopsy

>48 months 60% 32.9 months (median;
IQR 1.0–49.9) [36]

102 (adults) Not specified

Tacrolimus: 38.8%,
Ciclosporin: 26.5%,

Mycophenolate
mofetil: 17.3%

Comorbidities of
immunosuppression,

risk of neoplasm

103 months
(mean; SD 47) 40.2% 48.9 months

(mean) [37]
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Table 1. Cont.

Number of
Patients Type of Graft Immunosuppressive Therapy Patient Selection

Time from
Transplantation to

Weaning

Complete IS
Withdrawal

Mean Follow-Up
Period after
Withdrawal

Ref.

24 (adults) Cadaveric donor

Tacrolimus: 20.8%,
Ciclosporin: 8.3%,

Mycophenolate mofetil: 29.2%,
Sirolimus: 8.3%,

Monotherapy: 66.7%

>3 years after liver
transplantation, no active

hepatitis C virus infection, no
autoimmune disease

112 months (median;
IQR 72–160) 62.5% 14 months

(median) [38]

34 (adults) Not mentioned Tacrolimus: 53%,
Ciclosporin: 26.5%

Positive for hepatitis C virus
RNA, identified as highly specific

for operational tolerance

86 months
(mean; SD 37) 50% 12 months

(mean) [39]

15 (adults),
≥18 years old Cadaveric or living donor Calcineurin inhibitor to

sirolimus (SRL)

Adult LTR ≥ 18 years of age,
≥3 months of sirolimus

monotherapy with trough levels
of 3–8 ng/mL, ≥3 years post-LT

(primary living or
deceased donor)

6.7 ± 3 years 53% 12 months [40]

88 (children),
median age:
11 years old

Not mentioned Tacrolimus

Alanine aminotransferase or
gamma glutamyl transferase

level exceeding 100 U/L, liver
transplant recipient at ≤6 years
of age, ≥4 years after transplant,

no acute or chronic rejection
within 2 years

36–48 weeks 37.5% 48 months [36]

IS: Immunosuppressant; SD: Standard deviation; LT: Liver transplantation; LTR: Liver transplant recipient; IQR: Interquartile range.
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4. Immune Cells and Liver Transplant Immune Tolerance

Clinical trials have provided clues to clarify the roles of immune cells in LT, with the
possibility of developing cell-based therapies. As discussed earlier, tapering to complete
withdrawal may be a viable strategy. In addition, cell therapy would contribute to an
increased tolerance after LT, such as in clinical trials that use Treg cell therapy [41]. Thus,
since Treg cells are the main cells involved in tolerance after LT and their involvement in
LT tolerance was successfully observed in humans [18,42,43], most clinical studies have
targeted these cells (Table 2). Thus, immune cells have been studied with the aim of
inducing tolerance mechanisms, as discussed below.

4.1. Natural Killer T Cells

Experimental studies in rats showed that natural killer T (NKT) cells, an abundant cell
present in liver, could play an important role in liver transplant tolerance by promoting a
Th-1 shift to Th-2. Allograft survival was significantly increased in mice inoculated with
α-galactosylceramide, a synthetic glycolipid that induces NKT cells activation, increasing
IL-10 and decreasing IFN-γ levels [44].
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Table 2. Immune cells and the mechanism of tolerance after liver transplantation.

Immune
Cells

Type of Study
(Pre-Clinical or Clinical) Mechanism Type of Approach Outcome Reference

NK cells

Experimental—rats
Immunomodulatory effect

mediated by NK cell activation
through a receptor

Activation of NK by αGalCer receptor
after OLT

NK cell activation by the αGalCer receptor was capable of
inducing an anti-inflammatory profile, increasing IL-10

and decreasing IFN-γ
[44]

Experimental—rats
IDO expressed on the NK cell

surface mediating an
immunomodulatory response

Induction of NK in an
immunomodulatory microenvironment

by IL-14 after OLT

Donor IL-4 injection induced the expression of IDO in NK
cells and alternatively activated macrophages to increase

the tolerance response after LT
[45]

Experimental—rats Enhancement of donor liver NK
cells to prevent acute rejection

Donor NK liver cells infusion through
portal vein (3 × 106 cells) of recipients

Infusion of donor liver NK cells could downregulate the
acute rejection microenvironment, but no induced

spontaneous tolerance was observed after OLT
[46]

imDCs Experimental—rats
Overexpression of IL-10, FasL, or
TGF-β on DCs ameliorated liver

damage after HLT

i.p. or i.v. injection of imDCs
overexpressing IL-10 or FasL (2 × 106)

Injection (i.p.) of imDCs overexpressing IL-10 or FasL
prevented liver damage and probably induced Treg cells

through the regulatory milieu
[47–49]

DCs

Clinical trial—NCT03164265 Infusion of DCs from a donor
(phase I/II)

Donor DC cells were infused 7 days
before the LT (2.5–10 × 106/kg)

The trial is ongoing. Donor DCs were able to maintain a
regulatory profile and suppress alloreactive cells against

the donor cells
[50]

Clinical trial—
NCT04208919

Infusion of DCs from a donor
(phase I/II)

Donor DC cells were infused 1 and
3 years after the LT (3.5–10 × 106/kg)

The results have not been published yet but seem
highly promising

clinicaltrials.gov
identifier number:

NCT04208919

Treg cells

Experimental—in vitro Induction of Treg cells by
exogenous IL-2 in the culture

IL-2 was added in culture of cells obtained
from rats with tolerogenic, synergistic, and

rejection groups after OLT

The addition of IL-2 in the culture was capable of
inhibiting effector T cell differentiation and increasing the

regulatory milieu in a dose-dependent manner
[51]

Clinical trial—NCT02474199 Infusion of DARTreg
(phase I/II)

DARTreg infusion intravenous
300–500 × 106 cells/kg

The trial showed safety and the capacity to induce a
tolerogenic profile

clinicaltrials.gov
identifier number:

NCT02474199

Clinical trial—
NCT03577431

Infusion of arTreg
(phase I/II)

arTreg-CSB intravenous infusion
1–2.5 × 106 cells/kg

The results have not been published yet but seem
highly promising

clinicaltrials.gov
identifier number:

NCT03577431

Clinical trial—
NCT01624077

Infusion of DARTreg
(phase I) DARTreg infusion 1 × 106 cells/kg

The trial showed safety and the capacity to induce a
tolerogenic response

clinicaltrials.gov
identifier num-

ber:NCT01624077

Clinical trial—
NCT02166177

Infusion of an autologous Treg
product—polyclonal treg

(phase I/II)
0.5–4.5 × 106 cells/kg No result posted

clinicaltrials.gov
identifier num-

ber:NCT02166177
DC: Dendritic cells; NK: Natural killer; Treg: Regulatory T; OLT: Orthotropic liver transplantation; HLT: Heterologous liver transplantation; DARTreg: Donor alloantigen-reactive Treg
cells; arTreg: Alloantigen-reactive Treg cell.

clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
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4.2. Natural Killer Cells

Donor liver natural killer (NK) cells may influence the allograft acceptance. They act as
“passenger leukocytes”, circulating in the recipient’s body and inducing tolerance [52]. In
this sense, the liver from IL-4-treated donor rats is less rejected. IL-4 induced an extensive in-
flammatory infiltrate in the donor liver consisting of alternately activated macrophages and
IDO (indoleamine dioxygenase)-expressing NK cells with potentially immunosuppressive
activity and associated with migration to a recipient spleen [45].

4.3. Dendritic Cells

In animal models, the intraperitoneal or venous injection of immature DCs overex-
pressing IL-10 or Fas-L was able to prevent liver damage after LT, probably by inducing
Treg cells [47–49]. In post-LT mice, DCs showed an increase in PDL-1 expression (Figure 1),
which contributed to a decrease in the T cell response through the acquisition of MHC
molecules via the “cross-addressing” of donor cells by host cells [50,53]. In humans, fol-
lowing DC infusion in patients who underwent LT (clinical trials: NCT03164265 [50] and
NCT04208619), alloreactive cells against donor cells were suppressed with the maintenance
of the regulatory environment [50].
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Figure 1. Possible influence of the nervous system on the liver immune system after liver transplan-
tation. (A) Among the interactions of neurotransmitters in liver injury by CCl4-induced cirrhosis,
a decrease in norepinephrine (NE) is observed after sympathectomy, followed by a decrease in
regulatory T cell (Treg) and increases in inflammatory cytokines, such as interleukin (IL)-1β and
monocyte chemoattractant protein-1 (MCP-1), in addition to increases in hepatic steatosis and brain
inflammation markers. (B) Collectively, evidence for neuroendocrine-immune interactions in the
liver, mainly collected in clinical trials, shows that, after liver transplantation (LT), the Treg cell pool
is heterogeneous and may present phenotypes indicative of different origins. Thus, these cells may
express CD45RO or CD45RA, in addition to presenting CD31 on the cell surface. In addition, dendritic
cells (DCs) contribute to the regulatory microenvironment, leading to a tolerogenic response after
LT. In the peritoneal microenvironment, it is possible that these cells are modulated by β-adrenergic
receptors in Kupffer cells (KC) via NE, as observed in other conditions associated with the peritoneal
microenvironment or acetylcholine (ACh) release induced by cholinergic anti-inflammatory pathway
(CAIP) activation. These changes are able to induce the anti-inflammatory macrophage profile via
Treg cells and thus modulate the inflammatory response. BNDF: brain-derived neurotrophic factor;
SREBP1: sterol regulatory element-binding protein-1; PDL-1: programmed death-ligand 1; CTLA-1:
cytotoxic T-lymphocyte-associated antigen 4; α7nAChR: alpha7-nicotinic acetylcholine receptor; AR:
adrenergic receptor.
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4.4. Regulatory T Cells

Treg cells play essential roles in the mechanisms of immunological tolerance in LT
in experimental allograft model animals, such as rats [54] and mice [55], as well as in
humans [18,56]. In addition to acting through the inhibitory receptor CTLA-4, also known
as CD152, Treg cells exert their suppressive functions through the expression of IL-10 and
TGF-β (Figure 1). It is important to highlight that CD4+ Treg cells compose approximately
10% of peripheral lymphocytes in humans, and their phenotype is CD25highFOXP3+ [57].

Teratani and colleagues [58] described the liver-brain-gut interaction in the Treg induc-
tion on colitis model as contributing to immune tolerance in the peritoneal cavity through
the hepatic vagal sensory afferent nerves. It indirectly induces the sensory inputs to the
brainstem on the nucleus tractus solitarius, and then to vagal parasympathetic nerves and
enteric neurons that lead the Treg niche maintenance. In line with this idea, they also
demonstrated that this alteration could reduce the Treg and the tolerance effects in the
inflammatory bowel microenvironment. Although there are no studies demonstrating the
activation of Treg cells in tolerance after LT through adrenergic receptors, it is possible to
consider the importance of the neuroendocrine-immune axis in immunological tolerance in
diseases of the peritoneal cavity via the activation of β-adrenergic receptors on Treg cells in
colitis [59], inflammatory bowel disease [60], or experimental autoimmune encephalomyeli-
tis [61]. These findings could suggest the participation in the activation of the regulatory
population via β-adrenergic receptors on spontaneous natural tolerance after LT. In ad-
dition, in previous clinical trials, such as the infusion of donor alloantigen-reactive Treg
cells (clinical trials: NCT02474199, NCT02166177, and NCT03577431) or autologous Treg
cells (NCT02166171), the results showed that this procedure is safe and induces tolerogenic
microenvironment. However, some results have not yet been disclosed. In addition, a
clinical trial using regulatory DCs showed that these cells induced a hyperresponsiveness
in effector T lymphocytes and an enhanced Treg cell function [62]. In spontaneously toler-
ant animal models of hepatic transplantation, CD4+CD25+ T cells expressing FOXP3 are
significantly increased in relation to acute rejection models, indicating that Treg cells might
be involved in the induction of spontaneous immune tolerance [51].

Understanding the participation of the immune cells mentioned above, in the context
of LT and how they could be related to neuroendocrine interactions, is important to suggest
modulation via this axis, considering that the liver has a tolerogenic microenvironment. In
addition, they have receptors and are influenced by molecules from the nervous system.
These interactions will be briefly described below.

5. The Hepatic Tolerogenic Microenvironment and the Interplay with the Nervous System

As mentioned previously, many immune cells are part of the liver microenvironment
(Figure 2), such as NK and NKT cells, which compose more than 50% of hepatic lym-
phocytes, followed by conventional circulating and intrahepatic CD8+, CD4+, and γδ T
lymphocytes. Kupffer cells (KCs) compose approximately 20–35% of nonparenchymal liver
cells, and different populations of DCs, such as plasmacytoid DCs (pDCs), and lymphocytes
are found in the liver and have distinct phenotypes depending on their origin [63–65]. In
addition, these immune cells from the liver microenvironment have surveillance features,
as they widely express pattern recognition receptors (PRRs), such as scavenger recep-
tors, carbohydrate receptors (lectins), TLRs, and cytoplasmic receptors, that are capable
of responding to blood and gut antigens. There is plenty of evidence that antigens that
enter the liver may lead to a natural bias toward tolerance through the production of
anti-inflammatory mediators and expression of inhibitory cell surface ligands [66,67].

5.1. Kupffer Cells

Hepatic tolerance is maintained with the participation of different hepatic cell pop-
ulations [68], such as KCs (Figure 2) [69]. KCs compose approximately 20–35% of non-
parenchymal liver cells.
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Figure 2. Liver cells in immunity: hepatic cells in homeostasis and the regulatory microenvironment
in the immunosuppressive response after LT. (A) The liver is an organ composed of parenchymal
(hepatocyte) and nonparenchymal cells that exert different functions. During homeostasis, non-
parenchymal cells such as Kupffer cells, dendritic cells, NK cells, NKT cells, and HSCs constitute the
immunological liver microenvironment, responding to most gut-derived antigens. In addition to
these resident cells, there are transient lymphocytes in the sinusoidal space. In addition, hepatocytes
can play an immunological role in the context of innate protein release. (B) Regulatory T (Treg) cells
play an important role in the mechanisms of allogeneic response suppression after LT. Kupffer cells
(KCs) and dendritic cells (DCs) have important roles in this regulatory microenvironment mediated
through IL-10 production and TGF-β release. These molecules contribute to the induction of Treg
cells, which probably act directly to decrease the response via effects on CD4+ (Th1 cells) and CD8+ T
cells, minimizing the rejection process. In CD8+ T cells, there is a decrease in CD154, an important
protein expressed on the surface of activated cells in humans. Furthermore, in a mouse model, it
was observed that cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) induction in Treg cells
promoted an increase in glucocorticoid-induced TNFR-related protein (GITR) on CD8+ and CD4+ T
cells, decreasing the rejection responses of these T cells through the induction of apoptosis in these
cells, mainly via increased expression of programmed death-ligand1 (PDL-1). Thus, the production
of inflammatory cytokines, such as IFN-γ, was decreased. LSEC: liver sinusoidal endothelial cells;
IDO: indoleamine 2,3-dioxygenase.

KCs are anatomically located in the lumen of the hepatic sinusoids, a network of fen-
estrated blood vessels lined by LSECs [65]. KCs express major histocompatibility complex
(MHC)-I and MHC-II and the costimulatory molecules B7.1, B7.2, and CD40, although at
lower levels than HDCs. Under steady-state conditions, these cells secrete transforming
growth factor-beta (TGF-β), prostaglandin E2 (PGE2), and IL-10 [70]. In addition, they
express Fas-L and programmed cell death-ligand (PD-L1), a potent inhibitor of immune
responses that also downregulates T lymphocyte function after binding to programmed
cell death protein-1 (PD1) on the T cell membrane [71]. This repertoire of secreted and
surface molecules leads to the differentiation of hepatic regulatory T (Treg) cells [72], a
population highly represented in the liver. In vivo, KCs induce apoptosis in neutrophils
and other polymorphonuclear cells (PMNCs) through the Fas/Fas-L pathway [73]. The
engagement of phosphatidylserine (PS) exposed by apoptotic cells with the PS receptor
on KCs has also been shown to lead to the secretion of more TGF-β, IL-10, and PGE2 [74].
Moreover, this interaction reduces the production of proinflammatory cytokines by KCs
under inflammatory conditions [75] and contributes to liver tolerance maintenance.

Sympathetic nerve fibers can modulate hepatic inflammation by adrenergic receptors
expressed by KCs through the activation of α1-ARs and α2A-Ars, inducing an increased
inflammatory cytokine production, whereas the activation of β2-Ars on KCs decreases
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the production of these mediators. In this sense, sympathetic denervation or blocking
α1-ARs in KCs reduces the production of cytokines, such as IL-6 and TGF-β, and reduces
the development of HCC (hepatocellular carcinoma) [76]. In this neuroendocrine-immune
crosstalk context, it was demonstrated that the N-methyl-D-aspartate (NMDA) receptor
is expressed by KCs and that its activation on primary mouse and human cells has an
anti-inflammatory activity, limiting injury in acute hepatitis in vivo [77]. This effect was
observed to be due to the downregulation of NOD-like receptor family, pyrin domain
containing 3 (NLRP3) and procaspase-1, leading to the downregulation of inflammasome
activation via a β-arrestin-2, nuclear factor kappa B (NF-kB)-dependent pathway, and not
via Ca2+ mobilization [77]. These observations highlight important roles for the complex
interactions between the immune system and neural response in inflammatory and anti-
inflammatory pathways as possible keys to new therapeutic approaches.

5.2. Hepatic Dendritic Cells

HDCs are a very heterogeneous population in the liver, performing multiple functions
under normal conditions or after transplantation [78]. In the liver, some cytokines, such as
FMS-like tyrosine kinase 3 ligand (Flt3L) and GM-CSF, can recruit conventional DCs (cDCs)
originating from bone marrow progenitors [78]. However, in the case of monocyte differen-
tiation into HDCs in the liver, the intrahepatic environment induces the differentiation of
an HDC subset that leads to Th2 responses [79]. Some anti-inflammatory and immunosup-
pressive drugs can affect DC recruitment to the liver and HDC maturation and function;
these drugs include aspirin, corticosteroids, calcineurin inhibitors, and rapamycin [78,80].
HDC subsets include pDCs and cDCs (also known as myeloid dendritic cells), which are
subdivided into cDC1s (CD8+ lymphoid) and cDC2s (CD11b+) [81].

HDCs, in general, secrete lower levels of IFN-γ than extrahepatic DCs and more
IL-10 than IL-12, favoring Th2 responses [82,83]. Under normal conditions, hepatic pDCs
are relatively immature antigen-presenting cells (APCs) with a lower endocytic capacity
and lower expression of MHC-II [84] and costimulatory molecules, such as CD40, B7.1,
and B7.2 [85,86]. The other hepatic DC subpopulations express higher levels of these
molecules. However, HDCs may express high levels of PD-L1, TGF-β, PGE2, and other
immune-inhibitory molecules, maintaining hepatic immune tolerance [87].

The neuroendocrine-immune interactions in the peritoneal cavity and the influence of
neurotransmitters and neuropeptides on DCs are still poorly understood. The anatomical
proximity of HDCs to the nerve peripheral plexus suggests a response mediated via
neuroendocrine-immune interactions, which possibly have a relatively great influence on
NPY and NE released from hepatic sympathetic nerves [88]. Unfortunately, there is little and
contradictory evidence demonstrating the influence of neuropeptides or neurotransmitters
on DCs involved in the activation of pro- and anti-inflammatory pathways, probably due
to the heterogeneity of the models studied and their induced immune responses.

The release of serotonin (5-HT), a neurotransmitter monoamine related to the patho-
physiological mechanisms of inflammatory disease in the gastrointestinal tract, increases
inflammation in the context of intestinal inflammation, probably via the serotonin receptors
5-HTR1B and 5-HTR2A on DCs, increasing proinflammatory cytokines in activated B cells
via NF-kB [89,90]. In contrast, the deletion, mainly in DCs, of 5-HTR, or even blockade
with SB-269970, a 5-HTR antagonist, was shown to increase the severity of inflammation
in colitis models, increasing the production of proinflammatory cytokines (e.g., IL-1β,
IL-6, and TNF-α) [90,91], showing the possible close relationship between the neuronal
mediators and the modulation of the immune system in the liver by DCs. Thus, these data
suggest that the role of DCs via neuroendocrine-immune interactions may be related to the
modulation of the immune response in the liver, but further studies are needed to clarify
how this occurs.



Cells 2022, 11, 2327 12 of 24

5.3. Hepatic Stellate Cells

HSCs (Figure 2) are best known for their capacity to store vitamin A and retinyl
esters [92], but they are also considered as functional APCs in the liver. At least in culture,
HSCs express members of the HLA family (HLA-I and HLA-II), lipid-presenting molecules
(CD1b and CD1c), and accessory molecules involved in T-lymphocyte activation (CD40
and B7.1) [93]. Moreover, these characteristics were shown to be increased after incubation
with proinflammatory cytokines such as IL-1β and IFN-γ, and these cells could efficiently
present antigens to CD1d-, MHC-I-, and MHC-II-restricted T lymphocytes [94]. In contrast,
it was also shown that HSCs could inhibit T cell responses via PD-L1-mediated apoptosis.
Moreover, HSCs alone do not seem to present antigens to naïve CD4+ T lymphocytes, but,
in the presence of HDCs and TGF-β, they preferentially induce FOXP3+ Treg cells [95].
Finally, HSCs seem to be essential in generating fibrosis caused by multiple etiologies [96],
a feature that could be observed after LT.

Roskmans and coworkers hypothesized that HSCs and hepatic progenitor cells form
a neuroendocrine compartment in the liver, expressing neuronal proteins, such as neural
cell adhesion molecules, neurotrophin, and their receptors [97]. In addition, HSCs express
the serotonin receptors 5-HT2A and 5-HT2B; these cells also take up and release serotonin
through the 5-HT receptor [98]. These receptors contribute to hepatic fibrosis, HSC pro-
liferation, gene transcription, and apoptosis [90,99]. Human HSCs also respond to NE,
as cellular exposure to this neurotransmitter triggers pro-inflammatory responses with
the secretion of inflammatory chemokines, such as RANTES and IL-8, and calcium spikes,
which were partially attenuated with the administration of a nonspecific beta-blocker
(propranolol) [100]. However, this activation is selectively suppressed by α1-B and α1-D
adrenoceptor antagonists [101]. Thus, HSCs can communicate with the nervous system,
modulating the immune response.

NK cells [102], NKT cells [103], and LSECs [104,105] also play roles in the maintenance
of the tolerogenic status of the liver and its intrinsic pathways involved in triggering
controlled inflammatory responses.

Most cell populations found in the liver and their biochemical regulatory pathways
lead to Th2-biased immune responses and the differentiation of Treg cells that play key
roles in the liver regulatory pattern. These cells exert this function through IL-4, IL-10, and
TGF-β production, as well as indoleamine 2,3-dioxygenase (IDO1), PD-L1, and cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) activity (Figure 2) [106]. In addition, Treg cells
can suppress the activation of alloreactive conventional CD4+ and CD8+ T cells, as observed
in a murine model of allogeneic transplantation [107]. These intercellular interactions certainly
contribute to the tolerogenic response after LT and to minimizing IS administration and
improving immune tolerance. Thus, it is important to understand the liver innervation and
the mechanisms related to modulation via neuropeptides and neurohormones.

6. The Autonomic Nervous System in the Liver

The liver is innervated by afferent and efferent nerve fibers of either sympathetic
or parasympathetic origin [108] that employ multiple neurotransmitters that are recog-
nized by most, if not all, hepatic cell populations. The possible endocrine role of these
neurotransmitters in the metabolic pathway may integrate the liver, brain, and periphery.

In the case of successful human LT, implying the complete autonomic liver denervation
and ablation of the neuronal brain-liver connection, accumulating evidence indicates changes
in liver metabolism. In 1848, the French physiologist Claude Bernard observed a decrease
in hepatic glucose output after peripheral vagotomy, the earliest known study on hepatic
autonomic innervation and glucose metabolism [109]. Many years later, in 1969, Niijima
observed that, upon glucose infusions into the portal vein in guinea pigs, a change in vagal
activity was recorded [110]. These pioneering works showed the interplay between the liver
and the nervous system, but much still remains to be clarified, including its role in tolerance.

The distribution of sympathetic and parasympathetic nerves in the liver is highly vari-
able among species. In humans, these nerves are observed surrounding the hepatic artery,
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portal vein, and bile ducts, extending into the hepatic lobules and reaching liver parenchy-
mal cells [111]. Through autonomic nervous system (ANS) fibers, a bidirectional connection
is mediated between the liver and the central nervous system (CNS), a characteristic that
can affect liver metabolic and immunological responses. The sympathetic splanchnic nerves
that innervate the liver originate from neurons in the celiac and superior mesenteric ganglia
(Figure 3). The parasympathetic nerves mainly originate from preganglionic neurons in the
dorsal motor nucleus of the vagus, which is located in the dorsal brainstem (Figure 3) [112].
Sympathetic and parasympathetic efferent nerves in the liver contain aminergic epinephrine
and norepinephrine (NE), in addition to cholinergic neurotransmitters and peptidergic
components, such as neuropeptide Y (NPY) (Figure 3) [109].
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Figure 3. Arrangement of autonomic fibers in the liver. The interaction of the liver with the nervous
system takes place through communication between the peripheral nerves and the vagus nerve, which
largely innervates the peritoneal cavity. Sympathetic fibers that innervate liver tissue originate from
neurons in the celiac and superior mesenteric ganglia. Furthermore, parasympathetic fibers originate
mainly from preganglionic neurons located in the dorsal motor nucleus of the vagus nerve. Both are
capable of interactions mediated by the release of adrenergic and cholinergic neurotransmitters and
neuropeptides, such as neuropeptide Y, (continue on next page) leading to neuroendocrine-immune
interactions that contribute to the modulation of inflammatory responses.

The efferent hepatic nerves act in the regulation of multiple hepatic physiological
functions, including the contractility of the sinusoids, as observed in dogs [113]. It was
demonstrated that nerve endings containing aminergic, peptidergic, and cholinergic neuro-
transmitters terminate near HSCs in the vascular walls, affecting the vascular caliber [114].
The sympathetic release of epinephrine leads to the contraction of the sinusoids, whereas
the parasympathetic release of acetylcholine (ACh) and vasoactive intestinal peptide (VIP)
induces vascular relaxation [115]. Regarding liver regeneration, it was observed that, after
partial hepatectomy, liver regeneration was severely impaired by vagotomy in rats [116].
Moreover, adrenergic signaling also stimulates liver regeneration [117] through hepato-
cyte growth factor [113]. In vitro, TGF-βwas shown to be a potent inhibitor of epithelial
growth factor (EGF)-induced DNA synthesis in primary rat hepatocytes, whereas NE was
shown to counter-modulate this inhibition [118]. The consequences of nerve ablation on
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the regenerative capacity of hepatocytes are particularly important for understanding liver
engraftment and postsurgical IS regimens, which remain poorly investigated.

Few published papers have studied liver regeneration and re-enervation after partial
or total hepatectomy, a very important aspect in determining the postoperative LT outcome.
Using rats that underwent partially hepatectomy, it was observed that, after subdiaphrag-
matic vagotomy, hepatic DNA synthesis and thymidine kinase activity were delayed [119].
Moreover, subdiaphragmatic vagotomy caused a considerably greater loss of food intake
and body weight, whereas hepatic vagotomy led to no alterations in either parameter.
Similar results were obtained by another group, with the increase in DNA synthesis after
partial hepatectomy being markedly suppressed and delayed by subdiaphragmatic vago-
tomy [116]. All of these results illustrate the complexity of the postoperative and general
management of chronic liver disease patients and the necessity to discuss these issues
further.

7. Neuroendocrine-Immune Modulation: A Complex Process toward Tolerance

Cells of the immune system have been described since the 1980s as having the ca-
pacity to release these neuronal molecules [120], which may regulate tolerance processes.
Guereschi and coworkers showed that Treg cells express theβ2-adrenergic receptor (Table 3)
and that its activation increases the suppressive activity in a protein kinase A (PKA)-
dependent pathway, upregulating Treg cell differentiation and cyclic adenosine monophos-
phate release [121]. Thus, neurohormones and neurotransmitters are released by the
nervous system and can modulate immunological functions.

Table 3. Expression of adrenergic and cholinergic receptors in primary T lymphocytes. Only studies
using primary cells that positively identified the expression of neurotransmitter receptors in T
lymphocytes were considered.

Receptor Cell Type Form of Detection Biological Effect Reference
Adrenergic Receptors

β1AR

Spleen LøT qPCR
IFI ND [122]

LøTCD4 qPCR Switching from a Th1 cytokine profile to a Th2
cytokine profile [123]

β2AR

Th1 Cells IFI
Terbutaline stimulation

Inhibition of IFN-γ production
Inhibition of IgG1 production by B cells [124]

Naïve LøTCD4
Th1 Cells

RT-PCR
NE stimulation Decrease in IL-2 production [125]

Spleen LøT qPCR
IFI ND [122]

Naïve T Lø
Treg Lø

WB
WB, IFI Increased suppression of naïve T Lø activation in vitro [121]

LøTCD4 qPCR Switching from a Th1 cytokine profile to a Th2
cytokine profile [123]

Treg Lø
In silico analyses

nCounter RNA analyses
WB

ND [126]

Naïve LøTCD8
Activated LøTCD8

WB Inhibition of naïve LøTCD8
activation [127]

β3AR

Con A-stimulated
TLø RT-PCR Inhibition of cytokine mRNA accumulation [128]

Spleen LøT qPCR
IFI ND [122]

LøTCD4 qPCR Switching from a Th1 cytokine profile to a Th2
cytokine profile [123]
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Table 3. Cont.

Receptor Cell Type Form of Detection Biological Effect Reference

α2AAR
LøTCD4
LøTCD8
Treg Lø

In silico analyses
nCounter RNA analysis

WB
ND [126]

Cholinergic Receptors

m1

PBL (T/B cell
enriched) RT-PCR Increased IL-2 production [129]

Spleen LøTCD4 and
LøTCD8

qPCR Th2 and Th17 responses [130]

m2 PBL (T/B cell
enriched) RT-PCR Increased IL-2 production [129]

m3

LøT
LøTCD4

RT-PCR ND [131]

Spleen LøTCD4 and
LøTCD8

qPCR Th2 and Th17 responses [130]

LøTCD4

In silico analyses
nCounter RNA analyses

WB
ND [126]

m4

LøT
LøTCD4

RT-PCR ND [131]

Spleen LøTCD4 and
LøTCD8

qPCR Th2 and Th17 responses [130]

Treg Lø
2 LøTCD4
2 LøTCD8

In silico analyses
nCounter RNA analyses

WB
ND [126]

m5

LøT
LøTCD4

RT-PCR ND [131]

Spleen LøTCD4 and
LøTCD8

qPCR ND [130]

α

2 Spleen LøTCD8 qPCR ND [130]

4 Activated LøTCD4
Activated LøTCD8

qPCR ND [130]

5 Spleen LøTCD4 and
LøTCD8

qPCR Th1 polarization [130]

7
Treg Lø RT-PCR

FITC-labeled α-bungarotoxin Increased CTLA-4 expression [132]

Activated LøTCD4
Activated LøTCD8

qPCR ND [130]

9 Spleen LøTCD4 and
LøTCD8

qPCR Th1 polarization [130]

10 Spleen LøTCD4 and
LøTCD8

qPCR Th1 polarization [130]

β

1
Spleen LøTCD4 and

LøTCD8
qPCR ND [130]

LøTCD8

In silico analyses
nCounter RNA analyses

WB
ND [126]

2

Spleen LøTCD4 and
LøTCD8

qPCR Th1 polarization [130]

Treg Lø
LøTCD4
LøTCD8

In silico analyses
nCounter RNA analyses

WB
ND [126]

4 Spleen LøTCD4 and
LøTCD8

qPCR Th1 polarization [130]

AR: Adrenergic Receptors; β2AR: β2 Adrenergic Receptors; ND: Not Determined; WB: Western blot; IFI: Indirect
Immunofluorescence; NE: Norepinephrine; PBL: Peripheral Blood Leukocytes; qPCR: Quantitative RT-PCR;
2 Memory phenotype.
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The interactions between immunoregulatory cells and the nervous system may be key
factors in understanding immunological tolerance mechanisms involved in transplantation
and autoimmune diseases. Furthermore, psycho-emotional illnesses and bio-psychosocial
disorders, such as maternal-fetal deprivation in the early years, play important roles in
inducing the intestinal inflammatory response and in Crohn’s disease rates, suggesting
a possible inflammatory modulation loop via brain-gut interactions [133,134]. Patients
with end-stage cirrhotic liver disease and hepatitis and post-transplant patients have a
high incidence of depression, a condition that may be controlled by a reduction in hepatic
encephalopathy through the use of antidepressants [135].

Surgical vagotomy was able to reduce dysbiosis in mice with CCl4-induced cirrhosis,
but these animals showed increased levels of brain-derived neurotrophic factor, a key
protein involved in the pathogenesis of cirrhosis and associated complications, and inflam-
matory cytokines such as IL-1β and MCP-1, as well as increased liver steatosis [136]. In
keeping with this idea, a model of dextran sulfate sodium-induced colitis showed that vago-
tomy contributed to disease worsening and increased inflammation, with increasing NF-kB
levels and decreasing Treg cell numbers levels [137]. In contrast, Wirth and colleagues
demonstrated that lpr-lpr mice, which have autoimmune lymphomyeloproliferative dis-
ease, and C57BL/6 mice with 6-OHDA-induced chemical sympathectomy had lower levels
of NE and increased levels of Treg cells colocalized in the splenic nerves, suggesting that
blocking the neurosympathetic pathway could contribute to disease improvement [138].
These controversial responses may be related to the complexity of and differences in the
neural and immune responses in these models.

It is important to highlight that vagal nerve stimulation (VNS) has contributed to clarify-
ing this evidence and has become a promising nondrug treatment in bioelectronic medicine.
For example, VNS was able to ameliorate pathogenesis and decrease the levels of markers
related to disease progression in murine models of collagen-induced arthritis [139] and trauma-
hemorrhagic shock [140]. These effects occur mainly through cholinergic anti-inflammatory
pathways (CAIPs), since cholinergic agonists inhibit the release of TNF-α and other cy-
tokines by macrophages via interaction with α7nAChR (Figure 1) [141]. This increases Treg
cells and NE release or increases the Treg/Th17 cell ratio and decreases TNF-α, respec-
tively [139,140]. Furthermore, a pilot study on Crohn’s disease patients showed that chronic
VNS was able to alleviate disease severity and decrease C-reactive proteins through the
activation of CAIP [142]. These findings indicate the important role of immune modula-
tion mediated through neuroendocrine-immune communication. Once better understood,
exploitation of this communication will contribute to the advancement of new therapeutic
methodologies, such as VNS, and the improvement of the above-described diseases.

8. The Neuroendocrine-Immune Crosstalk in the Liver May Possibly Influence
Tolerance after LT

Neurotransmitters are synthesized in neurons and present in the presynaptic terminal
portion of these cells. In addition, these chemicals must exert a specific action on postsynaptic
neurons or target cells in effector organs, exogenous components should mimic their action,
and cellular mechanisms should remove them from the intersynaptic cleft [143]. Neurochemi-
cals then act on cells that express the corresponding specific receptors, including postsynaptic
neurons, T lymphocytes, NK cells, and many other liver-resident cell types. Thus, the premise
for neuroendocrine-immune tolerogenic action in the liver is the exposure of hepatic cells to
neurotransmitters and other neurochemicals, as intercellular communication in the nervous
system is based on these messengers, as previously mentioned.

In the liver, dopamine plays an essential role in suppressing autoimmune hepatitis [144].
A previous study showed that the depletion of dopaminergic neurons led to hepatic invariant
NK (iNKT) cell activation and augmented concanavalin A-induced liver injury. This suppres-
sive effect of dopamine on iNKT cells was mediated by the D1-like receptor-PKA pathway
and gut microbiota, as antibiotic administration reduced dopamine synthesis in the intestines
and exacerbated liver damage. These results suggest not only that intrahepatically produced
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neurochemicals may affect liver cell populations and functions but also that dopamine acts
on G-protein-coupled receptors (D1–D5), and different subtypes have been described in hu-
man and mouse lymphocytes [145] and have been shown to affect lymphocyte proliferation,
activation, fibronectin adhesion, chemotaxis, and function [146].

The neurotransmitter ACh has also been described as having suppressive actions on
the immune system, and CAIPs have been observed in the liver [147]. The release of ACh
following vagal efferent fiber activation leads to the inhibition of inflammatory cytokines
through α7nAChRs, which are located on the surface of KCs and other cells in the liver.
This communication seems to be mediated by the prior release of NE, which interacts
with β2-adrenergic receptors (Table 3) and causes the release of ACh by T cells. ACh
then interacts with α7nAChRs on macrophages and suppresses proinflammatory cytokine
release and inflammation [148]. It was also demonstrated that PNU-282987, a selective
α7nAChR agonist, protects the liver from ischemia-reperfusion injury by inhibiting NF-kB
activation in mice [149]. Based on this, the liver is innervated by vagus branches, and
inflammatory responses may be modulated by the activation of vagal efferent fibers.

The neurotransmitter gamma-aminobutyric acid (GABA) is synthesized by the de-
carboxylation of glutamate by the enzyme glutamine acid decarboxylase (GAD), which
has two isoforms, GAD65 and GAD67 [150]. In addition to cells from the nervous system,
T lymphocytes and macrophages secrete GABA [151], an inhibitory neurotransmitter. By
PCR, two GABA receptor subunit types (β3 and ε) were detected in human hepatocytes.
Moreover, increased GABAergic activity was associated with a reduced hepatocyte prolif-
eration and attenuation of hepatic regeneration after partial hepatectomy [152]. Conversely,
decreased GABAergic activity was associated with enhanced hepatic regeneration after
ethanol exposure or toxin-induced acute or chronic liver disease [153–155].

It was reported that platelet-derived serotonin supported viral persistence in the
liver and aggravated virus-induced immunopathology after experimental infection with
noncytopathic lymphocytic choriomeningitis virus (LCMV) [156]. This suggests that sero-
tonin may also be involved in controlling the hepatic inflammatory response. In this case,
platelets accumulated in the liver and severely reduced the sinusoidal microcirculation, de-
laying LCMV elimination and increasing liver damage. The serotonin treatment of infected
mice delayed CD8+ T lymphocyte migration to the liver and aggravated immunopathologi-
cal hepatitis [156]. These results were confirmed in infected serotonin-deficient mice and
showed the direct and indirect effects of neurotransmitters on the hepatic pathophysiology.
Moreover, serotonin modulation in the gut-liver neural interaction ameliorated fatty and
fibrotic changes in nonalcoholic fatty liver disease (NAFLD) [157].

It has also been reported that stress-induced liver injury can be stimulated by NE,
sympathetic nerve activation, and stress hormones [158]. Circulating and locally secreted
hormones also play an immunoregulatory role in the liver. For example, during pregnancy,
when maternal FOXP3+ Treg cells are expanded, the immune response shifts toward a
Th2-dominant arm, and other immune-endocrine adaptations occur. During the gestational
period, autoimmune hepatitis remission occurs, which results in a postpartum flare of this
pathological condition [159]. These results indicate the great impact in the neurological
vertices by hepatic metabolic and immunological functions and show that much remains to
be understood.

Considering that much of the evidence on the interaction between the ANS and liver
diseases is focused on portal pressure, the imbalance in the heart rate, and characteristics of
encephalopathy, little is known about the role of the ANS in the immune-mediated hepatic
response, especially after LT. Thus, given the extensive hepatic innervation, as well as the
known roles of neurotransmitters and neuropeptides in immune cells, as described above, it
is possible that there is a close involvement of neuronal stimuli in the mechanism of hepatic
tolerance after LT. This information could contribute to new therapeutic methodologies
capable of improving patient survival and the quality of life after LT.
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9. Conclusions

The hepatic microenvironment exerts an important influence on the mechanisms
involved in many conditions that affect the liver (e.g., autoimmune and viral hepatitis,
cytomegalovirus infection, NASH, cirrhosis, and other conditions), and the mental state
may also be related to this imbalance. Thus, the resident and transient cells present in the
liver, such as HSCs, LSECs, HDCs, and intrahepatic and circulating lymphocytes, contribute
to the immunosurveillance and immune tolerance modulation that occur in the liver.
Although there are no definitive studies showing the neuroendocrine-immune interaction
interplay as a mechanism of tolerance after LT, understanding how neurotransmitters and
neurohormones influence the liver microenvironment may help to develop an approach to
induce immunological regulation. The neuronal, endocrine, and immunological responses
contribute to the highly complex intercellular interactions that occur in the liver, which
may be explored as a potential new therapeutic perspective to improve the acceptance
of transplanted livers and extend the quality of life and expectancy of chronic hepatitis
patients. Thus, although the neuroendocrine-immune interactions occurring after LT are
unknown, they may play key roles in modulating the mechanisms involved in LT tolerance.

Furthermore, considering bioelectronic medicine, nondrug intervention through VNS
may be a strategy, with little invasiveness required to induce neuroendocrine-immune com-
munication for tolerogenic immunoregulation in the liver. These aspects may help to reduce
or discontinue IS administration and prolong the life expectancy in transplanted patients.
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