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Abstract

Reliable methods to quantify dynamic signaling changes across
diverse pathways are needed to better understand the effects of
disease and drug treatment in cells and tissues but are presently
lacking. Here, we present SigPath, a targeted mass spectrometry
(MS) assay that measures 284 phosphosites in 200 phosphopro-
teins of biological interest. SigPath probes a broad swath of signal-
ing biology with high throughput and quantitative precision. We
applied the assay to investigate changes in phospho-signaling in
drug-treated cancer cell lines, breast cancer preclinical models,
and human medulloblastoma tumors. In addition to validating
previous findings, SigPath detected and quantified a large number
of differentially regulated phosphosites newly associated with
disease models and human tumors at baseline or with drug pertur-
bation. Our results highlight the potential of SigPath to monitor
phosphoproteomic signaling events and to nominate mechanistic
hypotheses regarding oncogenesis, response, and resistance to
therapy.
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Introduction

Cellular processes including signal transduction, cell cycle progres-

sion, and response to DNA damage, among many others, are regu-

lated through the addition or removal of phosphate from the amino

acids serine, threonine, and tyrosine. In keeping with this, aberrant

phospho-signaling is a hallmark of many diseases including cancer.

For example, genetic disruption of the tumor suppressors PTEN and

APC leads to pathologic levels of phosphorylated AKT and ß-catenin

respectively, while oncogenic activation of ABL and RAS leads to

aberrant phosphorylation in CRKL or MEK, respectively. Dysregu-

lated kinases and phosphatases have thus become important targets

for therapeutic development. This in turn has motivated the desire

to quantitatively monitor phosphorylation events to determine the

cellular or organismal activity of such inhibitors. Unfortunately, due

to the limited ability to robustly quantify hundreds of phosphoryla-

tion events, most drug discovery programs in this area have

followed single phosphorylation events as the marker of pharmaco-

dynamic activity. As a result, paradoxical activation of RAF isoforms

as a consequence of BRAF inhibitors (Hatzivassiliou et al, 2010;

Poulikakos et al, 2010), or feedback upstream pathway activation

resulting from mTOR inhibitors, was missed until well after the rele-

vant molecules were in clinical trials or beyond (Shi et al, 2005).

The Cancer Cell Line Encyclopedia project (CCLE), in addition to

characterizing genome, transcriptome, and methylome alterations

(Barretina et al, 2012; Ghandi et al, 2019), has sought to character-

ize the metabolome and proteome across hundreds of cancer cell

lines (Li et al, 2019; Nusinow et al, 2020). An initial attempt in the

phosphoproteome space was also made using Reverse Phase Protein
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Arrays (Li et al, 2017); however, the sparse availability of phospho-

antibodies that are highly reliable in detecting phosphorylation

events on the protein arrays limits the broader application of this

approach. Thus, to begin to develop high-complexity quantitative

phosphoprotein assays for use in both characterizing cell lines and

clinical samples and to enable much deeper pharmacodynamic

assessment of therapeutics, we set out to develop robust mass

spectrometry-based phospho-assay sets.

Mass spectrometry (MS)-based proteomics has led to the discov-

ery of the majority of the over 200,000 known human phosphosites

(Phosphosite.org; Hornbeck et al, 2015). Many laboratories, but

especially those associated with the Clinical Proteomics Tumor

Analysis Consortium (Rodriguez et al, 2021), have elaborated deep,

high-quality phosphopeptide, and proteome datasets (Zhang et al,

2014, 2016; Mertins et al, 2016; Chen et al, 2017a; Huang et al,

2017; Archer et al, 2018; Vasaikar et al, 2019; Dou et al, 2020; Gill-

ette et al, 2020; Krug et al, 2020; Satpathy et al, 2020). The deep-

scale proteomic methods used in the CPTAC studies detect 30,000–

45,000 distinct phosphosites in each sample studied, and quantita-

tive chemical labeling provides relative quantification of each site

across samples. However, one drawback of this approach is the lack

of uniform detection of any given phosphosite across an entire

sample cohort, a technical artifact caused by stochastic sampling of

the analytes introduced into the MS system, especially those in low

abundance, and the extreme complexity of the samples analyzed.

Targeted MS in the forms of multiple reaction monitoring (MRM,

also referred to as selected reaction monitoring, SRM) and parallel

reaction monitoring (PRM) is now widely used for highly multi-

plexed, quantitative measurement of proteins in blood, cells, and

tissues (Keshishian et al, 2009; Kuhn et al, 2009; Picotti & Aeber-

sold, 2012; Rebecca et al, 2014; Soste et al, 2014; Gallien et al,

2015; Abelin et al, 2016; Chen et al, 2017b; Manes & Nita-Lazar,

2018; Whiteaker et al, 2018; Huttenhain et al, 2019; Sperling et al,

2019; Eshghi et al, 2020; Pino et al, 2020). All variants of the

approach begin with targeted selection in the mass spectrometer of

the intact, ionized peptides of interest followed by fragmentation of

each peptide precursor to produce product ions that, together with

the mass of the intact peptide, are used to identify and quantify that

peptide. In its most specific and precise form, heavy isotope-labeled

synthetic peptides are added at known concentration to verify that

the correct peptide is being measured and to improve accuracy of

the relative quantification of the target peptide. The use of this tech-

nology to measure post-translationally modified peptides is less

common. Targeted MS assays have largely been developed for

purposes of verification; however, if such an assay queries a large

number of targets, it can also be viewed as a discovery method.

In contrast to multiplexed antibody methods, MS-based targeted

analysis of peptides and modified peptides, including phosphopep-

tides, can, in principle, be configured to quantify any phosphosite of

interest in any organism and scaled to measure many hundreds of

peptides in a single measurement cycle of a few hours by liquid

chromatography–tandem mass spectrometry (LC-MS/MS; Burgess

et al, 2014). Soste and coworkers developed targeted MS assays to

152 phosphosites and 157 proteins in yeast that were culled from

the literature to develop what they called “sentinel markers’’ to give

biological insights (Soste et al, 2014). The methods have been

extended to mammalian systems in several recent studies to detect

and quantify on the order of 100 phosphosites in a single 1- to 2-h

analysis (Abelin et al, 2016; Kennedy et al, 2016). These studies

employed TiO2 or immobilized metal affinity chromatography

(IMAC) to enrich phosphopeptides from cells followed by analysis of

the resulting mixture by targeted MS using heavy stable isotope-

labeled (SIL) phosphopeptides for confident detection and quan-

tification. Kennedy et al. measured phosphosites relevant to DNA

damage response, while Abelin et al. assayed a set of moderate-to-

high-abundance phosphopeptides known to be modulated in non-

uniform ways by a panel of drugs in a range of cell lines. The targets

were selected based on ease of detection in a small number of initial

chemical or genomic perturbations in cell lines, not on their potential

biological relevance. Recently, Stopfer et al. developed and applied a

targeted MS assay for several hundred phosphotyrosine (pY) sites

and were able to consistently detect and quantify 165 endogenous pY

peptides in colorectal cancer tumor samples (Stopfer et al, 2021).

Here, we present the development and application of SigPath,

one of the largest phosphosite assay panels to date applicable to

mammalian cells and human tissues. This quantitative, targeted

MS-based assay measures 284 phosphosites in 200 cancer-relevant

target proteins spanning many pathways. Phosphosites were

selected by cancer biologists based on known or presumed rele-

vance to cancer disease or treatment and through discovery proteo-

mics efforts leading to the SigPath set of 298 phosphopeptides. This

unique set is purposely designed to probe a broad swath of signaling

biology in a single measurement rather than focusing on a single

pathway. Importantly, the panel can be extended to measure other

phosphosites in additional pathways as desired. Here, we demon-

strate the utility of the assay through a range of applications in

drug-treated cell lines, preclinical models of breast cancer and

human medulloblastoma tumor samples.

Results

Selection of phosphosites for assay development and assay
construction

The majority of the phosphosites were nominated by cancer biolo-

gists in our institutions and supplemented with frequently modu-

lated phosphosites observed in our discovery proteomic

experiments (Fig EV1A). In an effort to further characterize the

signaling and physiological state of human tumor samples, we set

out to capture nodes of biological pathways known to be modulated

via phosphorylation. Critical kinase cascades, often hyperactivated

in tumors, make up the backbone of the assay set. These include

the MAPK, PI3K, PKC, SRC, and JAK signaling pathways as well as

both receptor and non-receptor tyrosine kinases. Both critical activa-

tion sites of the kinases themselves and their relevant downstream

substrates were targeted. These kinase cascades often culminate in

the modulation of transcription factor circuits, so transcriptional

nodes within the FOXO, STAT, NFKB, TGFB, and Wnt pathways

were also selected. Lastly, to capture physiological cell states,

protein phosphosites were selected to provide readouts on DNA

damage, cell cycle arrest, apoptosis, spindle checkpoint activation,

hypoxia, autophagy, cell stress, and epithelial-to-mesenchymal tran-

sition. The rationale for specific target selection and pathway infor-

mation for the selected sites is presented in Datasets EV1 and EV2,

respectively. While these sites were selected based on relevance to
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cancer cell-autonomous phenotypes, the associated pathways

constitute central signaling nodes and should therefore be valuable

when applied to a variety of experimental paradigms.

SigPath assay development

Assay development, configuration, and quality assessment, as well

as workflow development (Figs EV1A and 1A), are described in

Materials and Methods. Briefly, spectral libraries were generated on

a QE or QE plus mass spectrometer using synthetic, SIL peptides,

and transitions selected and optimized on a TSQ Quantiva Triple

Quadrupole Mass Spectrometer. The final assay begins with prote-

olytic digestion of the sample, followed by spiking of SIL peptides

into digested sample and subsequent phosphopeptide enrichment

steps. We first perform phosphotyrosine antibody (pY Ab) capture,

followed by immobilized metal affinity chromatography (IMAC) on

the flow-through of pY Ab capture. Phosphotyrosine Ab and IMAC

eluents were analyzed using an LC-MRM/MS method on two- and

three-hour gradients, respectively. The overall success rate for

detection of the targeted heavy phosphopeptides was 85%

(Fig EV1B). Twenty-four out of 352 phosphopeptides failed assay

configuration due to either their instability in solution or their poor

behavior on LC or MS, while an additional 30 peptides failed during

the pY Ab or IMAC enrichment steps (Dataset EV1). It is noteworthy

that of the 37 phosphopeptides that were included in the assay panel

but lacked prior experimental observation in our datasets (mostly

pY-containing), we were able to successfully configure assays for

24. The final working assay contains 298 phosphopeptides repre-

senting 284 phosphosites and 200 phosphoproteins (Table 1 and

Dataset EV1). In addition, 178 of the 298 phosphopeptides (60%)

are fully conserved between humans and mouse; therefore, this

portion of the assay can be applied to mouse samples. The SigPath

panel predominantly consists of singly phosphorylated peptides,

with only 8 doubly phosphorylated phosphopeptides included. The

majority of phosphoproteins (142/200) are represented by a single

tryptic phosphopeptide containing a single phosphosite (Fig EV1C).

Pathway representation in the final assay panel

Pathways represented by the final SigPath panel were assessed

using the canonical databases in the Molecular Signatures Database

(MSigDB; Kanehisa & Goto, 2000; Pico et al, 2008; Schaefer et al,

2009; Liberzon et al, 2011, 2015; Jassal et al, 2020). The panel

represents a spectrum of cancer-relevant biology spanning signal

transduction, cell proliferation, apoptosis, and the immune system

(Dataset EV2). Figures 1B and EV1D illustrate Hallmark gene sets

and processes represented in SigPath with the addition of the Ras

pathway from WikiPathways (Martens et al, 2021).

SigPath assay configuration and evaluation

Evaluation of sensitivity and reproducibility of the assay were

performed in a mixture of five cancer cell lines (OVCAR, Meljuso,

H3122, PC9, A375) to maximize detection of endogenous peptides.

Phosphotyrosine Ab enrichment was performed with two peptide

input amounts (1 and 5 mg), whereas IMAC enrichment was

performed with five different input amounts ranging from 0.05 to

1 mg. Fifty-eight and 96 endogenous light peptides were detected in

this experiment with median coefficient of variation (CV) of less

than 20% after pY Ab and IMAC enrichments, respectively. Phos-

photyrosine Ab enrichment with only 1 mg input achieved quan-

tification of 52 (93%) of the detected peptides, while IMAC

enrichment achieved quantification of 74 (77%) of the detected

peptides in the lowest input, 0.05 mg sample (Fig EV2A and B).

We initially evaluated the assay in ten cell lines representing

various cancer types (lung, B-cell lymphoma, mantle cell

lymphoma, prostate, ovarian, bladder, and melanoma) and genetic

contexts using 250 of the 298 phosphopeptides in SigPath (Dataset

EV3). Each cell line was selected to maximize the potential for

detecting endogenous signals from the phosphosites in the panel

that are typically at low abundance. Endogenous versions of 89–125

peptides were detected in each individual cell line with a total of

143/250 (57%) detected across all 10 cell lines. Detection of endoge-

nous phosphopeptides reflected the genetic context of the cell lines

(Fig EV2C). For example, phosphosites/peptides derived from ALK

and FGFR were only detected in lung adenocarcinoma (LUAD) cell

line H3122 (driven by ALK fusion) and bladder carcinoma cell line

RT112 (driven by FGFR3 fusion), respectively, while in another

LUAD cell line PC9, which harbors an activating EGFR mutation

(exon 19 deletion) higher levels of EGFR phosphosites were

detected.

Application of the assay to evaluate effects of drug treatment in
cancer cell lines

To investigate the utility of the SigPath assay to detect and quantify

acute perturbations in cell lines, we next treated LUAD H3122 cells

with the ALK inhibitor ceritinib (Friboulet et al, 2014; Shaw et al,

2014) and KRAS mutant Ls513 colorectal cancer cells (CRC) with the

MEK inhibitor trametinib (Falchook et al, 2012; Flaherty et al, 2012;

Fig EV3A and B). Cells were treated with the respective inhibitors or

DMSO for 6 and 24 h, and two process replicates per condition were

analyzed using the SigPath assay as described above. A total of 162

and 155 endogenous phosphopeptides were detected in H3122

(LUAD) and Ls513 (CRC) cell lines, respectively (Dataset EV4). Excel-

lent reproducibility was achieved for replicates, with Pearson correla-

tion > 0.9 for all samples in both cell lines (Fig EV3C). Furthermore,

using both LUAD and CRC cell line perturbagen data, we investigated

correlation of site quantification as measured by 2 different peptides

for the subset of 12 sites for which such data was available. The

measured levels of the sites differed by a maximum of 30% from

peptide 1 to peptide 2, while the Pearson correlation of the drug/

DMSO ratio was 0.6 (Fig EV3D).

Ceritinib treatment of H3122 cells resulted in significant regula-

tion of 57 phosphosites, 93% of which were downregulated after

24 h of drug treatment (Fig 2A). Consistent with ALK inhibition, pY

sites on ALK (pY1096, pY1507) showed dramatic downregulation

(Fig 2B). We also observed downregulation of pathway members

downstream of ALK, including in PI3K/AKT and ERK/MAPK path-

ways as described previously (Miyawaki et al, 2017). Interestingly,

we also observed differential regulation of PTPN11 phosphosites

upon ALK inhibition, with two C-terminal sites (pY542 and pY580)

showing significant reduction at 24 h. ALK activation has been

shown to increase PTPN11 phosphorylation at Y542 and Y580 in a

neuroblastoma cell line (Sattu et al, 2013). Deep-scale discovery

phosphoproteomic analysis of ALK fusion-driven patient-derived
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lung adenocarcinoma tumors (Gillette et al, 2020) also displayed

elevated phosphorylation of PTPN11 Y542 and Y580 (Fig 2C; note

that these correspond to Y546 and 584 in the alternative splice

isoform of PTPN11), both of which have been implicated in its acti-

vation (Bennett et al, 1994; Lu et al, 2001). PTPN11 regulates cell

survival and proliferation (Matozaki et al, 2009), and its inhibition

suppresses tumorigenesis (Schneeberger et al, 2015). ALK resistance

is an inevitable consequence of targeted therapy (Rothenstein &

Chooback, 2018); in resistant ALK-driven non-small-cell lung

cancers, PTPN11 inhibition restores sensitivity to ALK inhibitor

therapy (Dardaei et al, 2018). Notably, we also observe downregula-

tion of Gab1 phosphorylation at Y659 (Fig 2B), which is required

for Gab1-PTPN11 binding and activation of downstream ERK/MAPK

signaling initiated by PTPN11 (Cunnick et al, 2001). Our current

data showing that ALK inhibition leads to significant downregula-

tion of phosphosites on both the C-terminal of PTPN11 and Gab1

fits with these other lines of evidence in indicating a key and thera-

peutically tractable role of this phosphatase in ALK-mediated down-

stream signaling both in cell lines and in human tumors. The highly

parallel SigPath readout also shows significantly increased phospho-

rylation at activating sites on ERBB2 (Y1248) and ERBB3 (Y1289),

both shown to be involved in the development of resistance during

ALK inhibition (Choi et al, 2017) and representing possible bypass

tracks that can be targeted in resistant disease (Yamaguchi et al,

2014). Collectively, these data suggest that in the context of thera-

peutic perturbation experiments, SigPath can provide key readouts

and guide specific, testable hypotheses about response, mechanisms

of resistance, and therapeutic alternatives.

In the trametinib-treated Ls513 colorectal cells, we observed

strong downregulation at both 6 and 24 h of MAPK3 (ERK1) pY204

and MAPK1 (ERK2) pY187, both downstream of MEK and consistent

with MEK inhibition (Fig 2A). Certain drug treatment effects were

exclusively observed at either 6 or 24 h. For example, downregula-

tion of RPS6K1 (pT359 and pS363), which is downstream of ERK,

was observed at 6 but not 24 h after Trametinib treatment. Conver-

sely, downregulation of RB1 (pY780 and pS807) and CDK1 (pY15)

phosphorylation was significant only after 24 h, suggesting the

long-term impact of MEK inhibition on cell cycle progression via

CDK1 and also likely via CDK4/6 inhibition upstream of RB1 phos-

phorylation (Otto & Sicinski, 2017).

Application of the assay to breast cancer xenograft tissue
samples

The ability to robustly quantify protein phosphorylation events in

tumor samples remains limited. Hence, we sought to test the perfor-

mance of the SigPath assays in tumor cells undergoing in vivo

treatment. Previously, we carried out a deep proteome and phos-

phoproteome study of six patient-derived xenograft (PDX) models of

triple-negative breast cancer (WHIM (Washington University human

in mouse) 2, 4, 6, 12, 21, 30) each carrying unique mutations in the

PI3K pathway (Mundt et al, 2018). These PDX models were selected

based on a range of sensitivity to the PI3K inhibitor buparlisib with

WHIM4 being the most sensitive and WHIM12 the most resistant.

After buparlisib treatment, a differential effect was observed in the

phosphoproteome, with the downregulation of phosphosites

involved in PI3K signaling seen more in the sensitive than the resis-

tant model. However, due to limits on sensitivity and the stochastic

nature of data-dependent MS-based proteomics especially for modi-

fied peptides, the canonical AKT phosphorylation sites at threonine

308 and serine 473 were neither quantified nor detected.

To assess the SigPath performance in this context, we applied the

full SigPath assay, including pY Ab and IMAC enrichments, to tissue

samples from the six PDX models (Fig 3A). 185/298 (62%) phospho-

peptides in the SigPath assay were detected at the endogenous level

in this study (Dataset EV5). The well-known PI3K inhibition marker

for AKT1S1 pT246 was readily detected and quantified, as were the

AKT markers pT308 and pS473 that had been missed in the discovery

experiment. These sites were readily downregulated after buparlisib

treatment, consistent with their status as pharmacodynamic markers

of PI3K inhibition. Inhibition of these phosphorylation sites is depen-

dent on the continuous administration of the drug, as evident from

the upward trend of the sites following drug washout (Fig EV4A).

Interestingly, the most resistant PDX model, which harbors a PIK3CA

mutation, is the model that often shows the least effect of PI3K inhibi-

tion on either of these sites. CausalPath analysis (Babur et al, 2021)

applied to the buparlisib/vehicle treatment dataset shows strong inhi-

bition of several members of the PI3K-AKT-mTOR pathway after 2-h

buparlisib treatment (Fig 3B). Residual inhibition of the PI3K-AKT-

mTOR pathway is still visible after 50-h treatment, but is less

pronounced (see CausalPath analysis in Data availability section).

These findings substantially recapitulate those from the discovery

data (Mundt et al, 2018). Interactive exploration of pathway connec-

tivities in this and other datasets described below is available through

Data availability section.

To further investigate PI3K-AKT-mTOR signaling in the context

of buparlisib treatment, we looked at the subset of the SigPath data

that include all proteins in Hallmark’s PI3K_AKT_mTOR_signaling

pathway and at mTOR itself (Fig 3C). Of the 48 phosphosites repre-

sented in the SigPath assay, 36 were readily quantified across the 6

models and treatment conditions. The ratio of buparlisib to vehicle

treatment for all models listed in the order of their sensitivity to the

treatment is shown in Fig 3C. The resistance of the PDX models to

buparlisib does not seem to be mediated at the level of AKT

◀ Figure 1. SigPath assay workflow and pathway coverage.

A In the full SigPath workflow, the heavy stable isotope-labeled (SIL) pY peptide set is spiked into the digested sample and endogenous and spiked SIL peptides enriched
using pY antibody. A portion of the flow-through from the pY enrichment is then spiked with the IMAC set of SIL peptides and enriched by IMAC. Both, pY Ab and
IMAC-captured samples are analyzed on the MS using pY and IMAC LC-MRM/MS methods, respectively (see Materials and Methods).

B MSigDB Hallmark gene sets and process categories (Liberzon et al, 2015) represented by SigPath. To be included in the plot, a pathway had to have at least 5%
coverage, or be represented by a minimum of three proteins and five phosphosites in the assay. The RAS signaling pathway from WikiPathway (Martens et al, 2021) is
also included in the plot. Each rectangle assembles gene sets in the same process category. Gene set is shown in circles in which blue colored rectangles refer to the
proteins represented in the assay. Shades of blue indicate the number of phosphosites per protein in the assay. Edges show overlapping proteins and phosphosites
between the different gene sets. Overlap of 1–5 phosphosites is indicated with gray lines, whereas overlap of more than 5 phosphosites is shown with red lines at
increasing intensity. The larger the overlap, the more intense is the shade of red.
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Table 1. List of all the proteins in the final SigPath assay panel

HUGO-
approved
symbol

Number of
phosphosites

HUGO-
approved
symbol

Number of
phosphosites

HUGO-
approved
symbol

Number of
phosphosites

HUGO-
approved
symbol

Number of
phosphosites

ABI1 1 FGFR1 1 MAPRE1 1 RBM39 1

ABL1 1 FGFR2 1 MARCKS 2 RBM7 1

ACIN1 1 FGFR3 3 MARVELD2 1 RELA 1

AKT1 2 FGFR4 1 MAST2 1 RET 1

AKT1S1 1 FLT3 1 MCL1 2 RICTOR 2

AKT2 1 FOXO1 2 MDM2 1 RIPK1 2

AKT3 1 FOXO3 2 MET 1 ROS1 1

ALK 3 FRS2 3 MITF 1 RPS27 1

ANLN 1 FRS3 1 MOB1A 1 RPS6 3

APLP2 1 GAB1 1 MPZL1 1 RPS6KA1 4

ARAF 4 GLYR1 1 MTOR 3 RPS6KA2 1

ATM 1 GRB2 1 MYC 1 RPS6KA3 3

AURKA 1 GSK3A 1 MYCBP2 1 RPS6KB1 2

AURKB 1 GSK3B 2 NF2 1 RREB1 1

AXL 1 GTF2I 1 NFKB1 1 SHB 1

Bad 2 HECTD1 1 NFKB1 1 SHC1 2

BCL2 1 HGS 1 NFKBIA 3 SMAP 1

BCL2L11 1 HIF1A 2 NTRK1 1 SMARCA4 1

BRAF 2 HMGN1 1 NTRK2 1 SMC4 1

BRCA1 1 HNRNPA3 1 NUCKS1 1 SOCS3 1

BTK 2 HSPBL2 1 PAK1 1 SOS1 2

BUB1 1 IGF1R 2 PALLD 1 SPRY1 1

CAMSAP2 1 INSR 1 PBRM1 1 SPRY2 3

CDC20 1 IRF3 1 PDPK1 1 SPRY4 1

CDK1 2 IRS1 2 PEA15 1 SRC 1

CFAP97 1 IRS2 3 PGAM1 1 STAT3 2

Chek1 2 JAK1 1 PHIP 1 STAT5A 1

CIC 1 JAK2 1 PIK3R1 3 STK3 1

CPSF6 1 JUN 1 PLCB3 1 STK39 1

CRK 1 JUND 1 PLCG1 1 STK4 2

CTNNB1 2 KIF2C 1 PLCG2 1 STMN1 1

DDI2 1 KIF4A 1 PLK1 2 SUFU 1

DNAH5 1 KIT 1 PPP2R5B 1 SYK 1

DOCK5 1 KMT2A 1 PRKAA1 1 SYNPO2 1

DOT1L 1 KSR1 2 PRKACA 1 TAZ 1

DYRK2 1 LAG3 1 PRKCA 1 TP53 2

EGFR 4 LATS1 2 PRKCB 2 TP53BP1 1

EIF2A 2 LATS1 2 PRKCB 1 TPX2 1

EIF2AK4 1 LATS2 1 PRKCD 1 TSC2 1

EIF4EBP1 3 LCK 1 PRKCQ 1 TTC39B 1

EML4 1 LYN 1 PRKCZ 1 UBE2J1 1

EPAS1 1 MAP2K1 2 PRKD2 1 ULK1 1

EPHA2 1 MAP2K4 1 PRKDC 1 VAV1 1

EPS8 1 MAP3K14 2 PTEN 1 VEPH1 1

6 of 22 Molecular Systems Biology 17: e10156 | 2021 ª 2021 The Authors

Molecular Systems Biology Hasmik Keshishian et al



phosphorylation, which suggests that the resistance arises from

cross-talk with other pathways and signaling hubs. To identify

response markers, we applied a two-sample moderated t-test to

compare the two most resistant PDX models (WHIM12 and WHIM2)

with the other four models (Fig 3D). Among the highly upregulated

sites in the resistant models were pS289 and pS301 of RAF1, which

is regulated by MAPK3 (ERK1) (Balan et al, 2006). The original PDX

study (Mundt et al, 2018) showed that some of the resistance in the

most resistant model (WHIM12) was mediated by MAPK3 activa-

tion. Our observations using the SigPath assay strengthen the

hypothesis that RAF1 is involved in resistance to buparlisib.

More global comparison of the 146 peptides quantified in both

the original Tandem Mass Tag (TMT)-based and SigPath analyses

highlighted the effect of ratio compression in TMT datasets and

illustrated how targeted MS overcomes this issue (Fig EV4B).

Application of the assay to tumor tissue from medulloblastoma
patients

To test SigPath in primary human tumor samples, we applied the

IMAC portion of the assay (Dataset EV1) to brain tissue specimens

from 39/40 medulloblastoma patients representing all established

subgroups (WNT, SHH, Gr3, and Gr4), previously analyzed by

deepscale proteomics, phosphoproteomics (including IMAC and pY

enrichment), and acetylproteomics (Archer et al, 2018; Fig EV4A).

The pY subset of SigPath was not used due to limited sample avail-

ability. The original study showed that tumors with similar RNA

expression varied extensively at the post-transcriptional and post-

translational levels, while proteome profiling revealed subgroups

within the SHH and Gr3 groups, providing additional prognostic

information and hinting at previously undescribed signaling path-

ways amenable to SigPath analysis.

A total of 140 of the phosphopeptides targeted in the SigPath IMAC

assay (about 60%) were detected across the 39 samples analyzed

(Dataset EV6). We looked at the overlap of the 140 phosphosites

detected in the SigPath assay with those from the discovery data

(Archer et al, 2018) and found that 58/140 peptides were detected in

all samples in the discovery dataset, while another 28 were detected

in at least nine samples of the discovery dataset (Fig EV5B). Correla-

tion analysis of discovery and SigPath results for the 86 sites detected

in both demonstrated a high level of agreement between phosphosite

abundances as measured by both platforms (Fig EV5C).

Fifty-four phosphosites were uniquely detected and quantified

with the SigPath assay (Fig EV5B). The behavior of 46 out of the 54

sites quantified in at least 50 percent of the patient samples is illus-

trated in Fig 4A. While verification is required, some of the unique

sites could constitute novel markers for medulloblastoma subtypes.

For example, the pS127 phosphosite of YAP1 is upregulated in the

sonic-hedgehog subtype as compared to both groups 3 and 4 in a

one-way ANOVA test (Fig 4B). Yap1 protein is amplified and upreg-

ulated in hedgehog-associated medulloblastomas (Fernandez et al,

2009), while the quantified YAP1 pS127 site indicates inactivation of

the protein in this subtype (Artinian et al, 2015). YAP1 and WWTR1

have both been shown to be regulated by, and regulators of, the

Hippo pathway, specifically phosphorylated at serine 127 and serine

89, respectively, by the LATS tumor suppressor (Totaro et al, 2018).

LATS1 and LATS2 activation is substantiated by CausalPath analysis

in the sonic-hedgehog subtype, compared to group 3 (see Data avail-

ability section for CausalPath analysis link for SHH over GR3 compar-

ison). Phosphorylation of YAP1 at S127, and WWTR1 at S89 results

in 14-3-3 binding and cytoplasmic retention (Kanai et al, 2000; Zhao

et al, 2007), limiting its ability to co-activate TEAD transcription

factors and inhibiting proliferation (Vassilev et al, 2001; Zhao et al,

2008; Kofler et al, 2018). CausalPath analysis (see Data availability

section) also indicated activation of YES1, an upstream effector of

YAP1 (Hamanaka et al, 2019), in the sonic-hedgehog subtype

compared with group 3. To investigate whether the phosphorylation

status of each protein and site could be attributed to protein-level dif-

ferences, we extracted protein ratios from the proteomic discovery

study for all patient samples and performed correlation analysis with

the SigPath assay ratios. High correlation (R2 = 0.69) indicates that in

SigPath assay YAP1 pS127 is acting as a proxy for the protein-level

difference, while by contrast the pS89 site of WWTR1 seen upregu-

lated in sonic hedgehog versus group 4 is not due to protein-level dif-

ference, as correlation of this phosphosite to the protein is very low

(R2 = 0.03) (Fig 4B). High expression of the transcriptional coactiva-

tor WWTR1 has been shown to be associated with a worse prognosis

and affects cell proliferation in patients with medulloblastoma,

regardless of subtype (Wang et al, 2019); however, phosphorylation

of the S89 site leads to an inhibition of carcinogenesis and cell growth

(Cordenonsi et al, 2011; Zhang et al, 2015). Furthermore, CausalPath

analysis indicated activation of HCK and YES1 in the sonic-hedgehog

subtype, compared to group 3. The HCK protein product is a member

of the Src family of tyrosine kinases. A positive feedback loop

between GLI1 and the tyrosine kinase HCK has been shown to

amplify sonic-hedgehog signaling in medulloblastoma (Shi et al,

2015). These new phospho-level findings may be of significant inter-

est to the medulloblastoma community.

Table 1 (continued)

HUGO-
approved
symbol

Number of
phosphosites

HUGO-
approved
symbol

Number of
phosphosites

HUGO-
approved
symbol

Number of
phosphosites

HUGO-
approved
symbol

Number of
phosphosites

ERBB2 2 MAP3K7 1 PTK2 3 VIM 1

ERBB3 2 MAPK1 2 PTPN11 4 XIAP 1

ERBB4 1 MAPK14 2 RAB11B 1 YAP1 2

ERH 1 MAPK3 2 RAF1 9 YTHDC1 1

ERRFI 1 MAPK8 2 RAF1 1 ZAP70 1

EZH2 2 MAPK9 1 RB1 3 ZNF638 1

Table includes HUGO gene names and number of phosphosites per protein in the assay panel.
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Discussion

Targeted MS assays have largely been developed for purposes of

biomarker verification, but are increasingly being used to validate

findings in biological and preclinical studies (as reviewed in (Rifai

et al, 2006; Parker & Borchers, 2014). The highly multiplexed,

targeted quantitative assay we developed and applied here was

designed to measure phosphosites in nodes of biological pathways

known to be modulated via phosphorylation, including the RAS,

MAPK, PI3K, PKC, SRC, and JAK signaling pathways, transcription

factor circuit nodes including FOXO, STAT, NFKB, TGFB, and Wnt

pathways, as well as protein phosphosites useful as readouts of DNA

damage, cell cycle arrest, apoptosis, spindle checkpoint activation,

hypoxia, autophagy, cell stress, and epithelial-to-mesenchymal transi-

tion. It is important to note that the coverage of these pathways by

the current SigPath assay is variable and incomplete, but the sites

measured provide some preliminary information that can be used as

starting points for further exploration. Furthermore, the assay can be

expanded to include additional sites of interest. Through a range of

applications in cell lines, preclinical models, and clinical samples, we

demonstrated the utility of the assay to not just verify prior findings,

but to detect and quantify a large number of differentially regulated

phosphosites newly associated with drug perturbation and disease

subgroups. For example, in an ALK fusion cell line with the treatment

of Ceritinib, we observed differential phosphorylation of N- and C-

terminal phosphosites from PTPN11 phosphatase consistent with

prior observations in primary LUAD tissue samples (Gillette et al,

2020). These results suggest that SigPath, and targeted MS assays in

general, should be more routinely used in the development and opti-

mization of therapeutics. Our results also highlight the potential of

SigPath to monitor phosphoproteomic signaling events and to nomi-

nate mechanistic hypotheses regarding oncogenesis, response, and

resistance to therapy in disease models and human tumors.

The ca. 300-plex SigPath assay was designed to flexibly allow

measurement of phosphosites having phosphotyrosine alone, chiefly

phosphoserine- and phosphothreonine sites, or a mix of all three.

Any proteomic lab skilled in phosphopeptide enrichment can imple-

ment the assay, and phosphopeptide sample enrichment is readily

automated (Abelin et al, 2016). The SigPath assay is readily extend-

able to measure other phosphosites by synthesis of the new phos-

phopeptides in heavy-labeled form and repeating the QC processes

described with a focus on the new sites. Three hundred targets does

not represent the maximal level of multiplexing that can be

achieved. Using modern MS instrumentation and techniques such

as internal standard-triggered parallel reaction monitoring (Gallien

et al, 2015), assay panel sizes can be increased to 500 targets or

◀ Figure 2. SigPath analyses of cancer cell line perturbation experiments.

A Summary of all significantly regulated phosphosites observed in H3122 and Ls513 cell lines. The log2-transformed light/heavy peak area ratios for two replicates per
time point and treatment were used to compare drug treatment to DMSO. SigPath phosphopeptides differentially regulated upon treatment in each of the conditions
in a moderated two-sample t-test (adj. P-value < 0.05) are shown as circles. H3122 6-h experiment did not yield any significant regulation and hence not shown on
the figure. The color indicates fold change relative to DMSO, and the size of the circle indicates log10 (FDR).

B Scatter plot showing fold change of SigPath sites relative to DMSO for H3122 cell line treated with ALK inhibitor. X-axis and Y-axis show 6-h and 24-h time points,
respectively. The red dots indicate sites with FDR < 0.05. Highlighted are a subset of key differentially regulated phosphosites.

C Box plot showing relative abundance of detected PTPN11 phosphosites and PTPN11 protein in the CPTAC LUAD tumors with and without ALK fusion (Gillette et al,
2020). The box represents interquartile range (IQR) with the lower, central, and the upper bands representing 25th percentile (Q1), median, and 75th percentile (Q3),
respectively. The lower and upper whiskers represent Q1-1.5*IQR, and the upper whisker shows Q3+1.5IQR. The data summarized represents patients wild type
(n = 103) and mutant (n = 7). PTPN11 pY546 and pY584 sites showed the most significant upregulation (P-value < 0.01, Wilcoxon test) in tumors with ALK-fusion.

▸Figure 3. Application of SigPath to understand mechanisms of response and resistance of triple-negative breast cancer to therapy.

A Six patient-derived xenograft models of triple-negative breast cancer were assessed for their resistance to buparlisib, a PI3K inhibitor, and analyzed for their
proteome and phosphoproteome (Mundt et al, 2018). The six models ranked after their resistance, from most sensitive to the left (WHIM4), to most resistant to the
right (WHIM12). The resistance is calculated as rate-based growth (treatment over control; T/C). Each PDX model was then treated with buparlisib or vehicle and
tumors were collected at hours 2 or 50 (buparlisib/vehicle administered at hours 0, 24, and 48). Each of these six models subjected to five different treatments results
in a total of 30 samples that were analyzed with the SigPath assay.

B CausalPath (www.causalpath.org) analysis of 2-h drug/vehicle treatment data. Log2 (L/H PAR) for all 6 WHIM models was used for this analysis. Moderated one-
sample t-test was used to analyze 2-h treatment data. Resulting table was used for the CausalPath analysis. CausalPath network generated by comparing drug-
treated PDX samples to the controls at 2 h. Nodes represent proteins, and the (p) labels on the nodes represent significant differences in site-specific phosphopeptide
measurements. (p) Blue background color indicates a downregulated site, red background color indicates an upregulated site. Green border color around (p) indicates
an activatory site, and a red border color indicates an inhibitory site. Green edges represent known site-specific phosphorylations, and red edges represent
dephosphorylations. The label (i) indicates an inhibited protein. In the case of PI3KCA, the label (i) indicates our manually inserted hypothesis of inactivated PIK3CA
due to the drug effect. All other (i) labels on the graph are generated automatically by the CausalPath algorithm through statistical evaluation of the changes at the
downstream of the protein. CausalPath infers the PI3KCA -> AKT1 relation, indicating the downregulated phosphorylation of AKT1 is likely due to inhibition of PIK3CA.
Additionally, statistical measurements on the downstream of AKT proteins indicate their inactivation. We observe that this effect extends over downstream targets of
AKT such as mTOR.

C Heat map of 36 sites from Hallmark’s PI3K_AKT_mTOR pathway and mTOR, including MAPK3_Y204, detected in SigPath assay. Ratio of buparlisib treatment to vehicle
for each time point is used. WHIMs are listed in the order of their resistance to buparlisib treatment. The row min, row max color scheme has been applied after the
rows have been adjusted to robust Z-scores (subtracted median and divided by the median absolute deviation; median-MAD).

D Volcano plot comparing resistant versus sensitive models in 50-h treatment samples. Sensitive (WHIMs 4, 30, 21, and 6) and resistant (WHIMs 2, and 12) are
compared in a two-sample moderated t-test. Log2 fold changes are shown on the x-axis, �10*log10 (P-value) derived from the two-sample moderated t-test are
shown on the y-axis. Red dots indicate the 10 peptides significantly regulated with adj. P-value threshold of < 0.1.
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more. In contrast, assays employing anti-peptide antibodies (Kuhn

et al, 2009; Whiteaker et al, 2011, 2014; Keshishian et al, 2015; Sper-

ling et al, 2019) take a long time to develop and qualify, are very

costly even for small numbers of targets, have yet to be multiplexed

to the level demonstrated here, and are currently available in only a

few expert labs, limiting their utility for the biology community. A

limitation of SigPath as configured is that it profiles and quantifies

changes in phosphorylation levels only, and therefore cannot deter-

mine whether the observed change in phosphopeptide level was due

to altered protein expression or a site-specific post-translational effect.

Assessing if the change in phosphorylation observed is more likely

due to protein-level change vs. site-specific phosphorylation change

could, in principle, be accomplished by adding heavy non-

phosphorylated peptide standards to the flow-through from the IMAC

enrichment and measuring these non-phosphorylated peptides in a

separate and parallel assay. The success of this method is entirely

dependent on the ability to detect and quantify the unmodified

peptide in the complex digest using a single shot approach.

While Western-competent antibodies exist for many of the targets

in SigPath, they are generally deployed in a highly selective and indi-

vidual manner and are non-quantitative, resulting in large swaths of

biology remaining opaque to the investigator. Multiplexed Western

and ELISA panels are commercially available, but typically measure

only 10–20 analytes per well in order to avoid cross-reactivity and

maintain sensitivity (e.g., Quanterix, MSD, Myriad, Abcam, AbcamRe-

view). Large protein assay panels employing two different antibodies

for each protein target with detection based on proximity extension

are also now commercially available from Olink (Olink). However,

these assay panels primarily measure proteins, not phosphosites.

The depth of detection in any targeted MS approach is governed

by the abundance of the target peptide in the sample being

analyzed, the efficiency of the enrichment process and the amount

of input peptide that was enriched. When IMAC phosphopeptide

enrichment alone is used, the efficiency is ca. 95%; that is, less than

5% the peptides observed after enrichment do not contain a phos-

phorylated amino acid. This is important, as non-phosphorylated

peptides are generally present at much higher abundance than

the phosphopeptides and so can interfere with detection of phos-

phopeptides. In the three studies presented here, 500–1,000 lg of

peptides was used for the IMAC portion of the assay; however as

little as 50 lg can be used, with consequent loss of detection of a

subset of the least abundant phosphopeptides. Due to the lower

abundance of phosphotyrosine-containing peptides, antibody-based

phosphotyrosine peptide enrichment typically requires a larger

sample input, often in the range of 1–5 mg, to get high coverage of

the sites in the SigPath assay.

Once targeted MS-based assays achieve the large numbers

presented here in SigPath, they can also be viewed as a different,

complementary way to do discovery, with a narrower spectrum but

more consistent measurements and vastly greater throughput. For

example, the bona fide PI3K inhibition marker AKT S473 was

missed completely in the PDX discovery dataset, while the SigPath

assay consistently quantified this site. Sample preparation for

SigPath is simple, requiring only digestion, phosphopeptide capture

and analysis of the captured peptides together with spiked heavy

peptide standards. While sample processing was done manually in

the present study, throughput for SigPath can be greatly increased

using automated digestion and IMAC enrichment on liquid handling

robots as we have previously demonstrated (Abelin et al, 2016).

Antibody-based capture of pY peptides will also become much faster

and more reproducible once these antibodies are conjugated to

magnetic beads for processing on systems like the Kingfisher as we

have done in the case of KGG-peptide capture for ubiquitylation pro-

filing (preprint: Rivera et al, 2021). The assay as presented here

requires a total of 5 h of on-instrument time for the analysis of both

pY Ab- and IMAC-captured samples. This time can be shortened

with faster MS instrumentation, use of shorter gradients or by

mixing pY and IMAC captures and analyzing these together in a

single LC-MRM/MS run. The use of FAIMS for post-translationally

modified peptides would also provide another level of separation

and potentially increase sensitivity (Udeshi et al, 2020; Popow et al,

2021). Quantification of phosphopeptides using SigPath is far more

precise than label-free discovery experiments or those using isobaric

chemical labels like TMT, as targeted MS methods do not suffer

from the ratio compression challenges of the latter. While the

breadth of coverage in SigPath is much smaller than discovery phos-

phoproteomic analyses (> 300 phosphopeptides compared to

> 30,000 phosphopeptides per sample), the quantitative precision

and repeatability for targets measured by the assay confer their own

advantages, as shown here in the replicates of the ALK inhibitor

study and in other phosphopeptide assays we have uploaded to the

CPTAC assay portal. Since SigPath detects and measures the spiked

heavy peptide forms of all of the phosphopeptides targeted, deter-

mining the presence and level of the endogenous form by ratioing

the intensities of the endogenous and spiked peptide-specific frag-

ment ions, it, like other targeted MS assays, is far less susceptible to

false positives, meaning that if the target was not detected, it was

below detection limits rather than due to stochastic sampling.

Therefore, we view SigPath as an impactful resource for the cancer

research community, suitable for discovery, as a verification assay

for targets of biological import, and for preclinical studies in human

cancers and other diseases.

◀ Figure 4. Application of the IMAC subset of SigPath to cancer tissue samples from 39 medulloblastoma patients.

These patients represent all the known clinical subtypes; WNT (n = 1), SHH (n = 13), group 3 (GR3; n = 13), and group 4 (GR4; n = 12).
A A heat map of 39 samples with medulloblastoma showing 46 phosphosites uniquely detected in the SigPath assay. Samples are clustered by their original clinical

subtypes as well as by new classification in ref. Archer et al (2018) where discovery analyses split subgroup 3 into 3b and 3a, and subgroup SHH into SHHa and SHHb.
The heat map was generated using Morpheus online tool, the data are median-MAD normalized, and colors are relative across rows, from row min to row max.

B Box plots comparing all the data for YAP1 pS127 and WWTR1 pS89 for all the samples in different groups of medulloblastoma (SHH, GR3, GR4, and WNT). One-way
ANOVA with an ad hoc Tukey’s test (with adj. P-values for multiple comparisons) was applied for the comparison. The box represents interquartile range (IQR) with
the lower, central, and upper bands representing 25th percentile (Q1), median, and 75th percentile (Q3), respectively. The whiskers extend from 5 to 95 percentile of the
data. Scatter plots comparing TMT protein-level Log2 ratios for YAP1 and WWTR1 to SigPath Log2 light to heavy ratios for YAP1 pS127 and TAZ pS89, respectively.
Pearson correlation coefficient is shown on the plots.
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Materials and Methods

Reagents and Tools table

Reagent or Resource Source Identifier

Antibodies

PTMScan-pY 1000 Rabbit mAB kit Cell Signaling Technology Catalog: 8803A

Biological Samples

Primary tumor samples See Experimental Model
and Subject Details

N/A

Chemicals and Reagents

Synthetic [C13,N15] labeled peptides New England Peptide N/A

HPLC-grade water J.T. Baker Catalog: 4218-03

Urea Sigma Catalog: U0631

Sodium chloride Sigma Catalog: 71376

1M Tris, pH 8.0 Invitrogen Catalog: AM9855G

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Aprotinin Sigma Catalog: A6103

Leupeptin Roche Catalog: 11017101001

Phenylmethylsulfonyl fluoride Sigma Catalog: 78830

Sodium fluoride Sigma Catalog: S7920

Phosphatase inhibitor cocktail 2 Sigma Catalog: P5726

Phosphatase inhibitor cocktail 3 Sigma Catalog: P0044

Dithiothreitol, No-Weigh Format Fisher Scientific Catalog: 20291

Iodoacetamide Sigma Catalog: A3221

Lysyl endopeptidase Wako Chemicals Catalog: 129-02541

Sequencing-grade modified trypsin Promega Catalog: V511X

Formic acid Sigma Catalog: F0507

Acetonitrile Honeywell Catalog: 34967

Trifluoroacetic acid Sigma Catalog: 302031

Methanol Honeywell Catalog: 34966

Ni-NTA agarose beads Qiagen Catalog: 30410

Iron (III) chloride Sigma Catalog: 451649

Potassium phosphate, monobasic Sigma Catalog: P0662

Potassium phosphate, dibasic Sigma Catalog: P3786

MOPS Sigma Catalog: M5162

Sodium hydroxide VWR Catalog: BDH7225

Phosphate-buffered saline Fisher Scientific Catalog: 10010023

Equipment

Reversed-phase tC18 Sep-Pak, 1cc 100 mg Waters Catalog: WAT023590

Reversed-phase tC18 Sep-Pak, 3cc 200 mg Waters Catalog: WAT054945

Solid-phase C18 disk, for stagetips Empore 3M Catalog: 66883-U

Stage-tip needle Cadence Catalog: 7928

Stage-tip puncher, PEEK tubing IDEX Health & Science Catalog: 1581

PicoFrit LC-MS column New Objective Catalog: PF360-75-10-N-5

ReproSil-Pur, 120 �A, C18-AQ, 1.9-lm resin Dr. Maisch Catalog: r119.aq

Nanospray column heater Phoenix S&T Catalog: PST-CH-20U

Column heater controller Phoenix S&T Catalog: PST-CHC
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Reagents and Tools table (continued)

Reagent or Resource Source Identifier

300 ll LC-MS autosampler vial and cap Waters Catalog: 186002639

96-well microplate for BCA Greiner Catalog: 655101

Microplate foil cover Corning Catalog: PCR-AS-200

Vacuum centrifuge Thermo Fisher Catalog: SPD121P-115

Centrifuge Eppendorf Catalog: 5427 R

Benchtop mini centrifuge Corning Catalog: 6765

Benchtop vortex Scientific Industries Catalog: SI-0236

Incubating shaker VWR Catalog: 12620-942

15-ml centrifuge tube Corning Catalog: 352097

50-ml centrifuge tube Corning Catalog: 352070

1.5-ml microtube w/o cap Sarstedt Catalog: 72.607

2.0-ml microtube w/o cap Sarstedt Catalog: 72.608

Instrumentation

Microplate Reader Molecular Devices Catalog: M2

Online LC for LC-MS Thermo Fisher Catalog: LC140

Q Exactive Plus Mass Spectrometer Thermo Fisher Catalog: IQLAAEGA
APFALGMBDK

TSQ Quantiva Triple Quadrupole
Mass Spectrometer

Thermo Fisher Catalog: IQLAAEGAAXFAOUMZZZ

Critical Commercial Assays

BCA Protein Assay Kit Thermo Fisher Catalog: 23225

Software and Algorithms

Software Source (i.e., PMID or lab) Identifier (i.e., links)

Spectrum Mill software package v7.0 Broad Institute, Cambridge, MA https://proteomics.broadinstitute.org/

Protigy Broad Institute, Proteomics Platform https://github.com/broadinstitute/protigy

Skyline University of Washington, Seattle, WA https://skyline.ms/project/home/software/Skyline/begin.view?

Panorama University of Washington, Seattle, WA https://panoramaweb.org/home/project-begin.view?

CausalPath Computer Science Department,
University of Massachusetts Boston,
Boston, MA

www.causalpath.org

Methods and Protocols

Human subjects
Primary medulloblastoma patient samples were collected as described

in ref. Archer et al (2018). Patient samples, including FFPE slides,

were obtained with informed consent according to the International

Cancer Genome Consortium (ICGC) guidelines as approved by the

Ethics Committee of the Medical Faculty at Heidelberg University,

and as approved by the institutional review board of contributing

center Nikolay Nilovich Burdenko Neurosurgical Institute in Moscow.

De-identified tumor samples of 50 mg were freeze-fractured using

Covaris cryoPREP CP02 at setting ‘‘impact level 4’’, and the pulver-

ized samples were aliquoted for the downstream analysis.

Patient-derived Xenographs
Six triple-negative breast cancer, patient-derived xenograft (PDX)

models with moderate-to-high PI3K pathway activity were selected

from the Washington University Human in Mouse (WHIM) PDX

collection as described in ref. Mundt et al (2018). All human tissues

for these experiments were processed in compliance with NIH regula-

tions and institutional guidelines, and approved by the institutional

review board at Washington University. All animal procedures were

reviewed and approved by the institutional animal care and use

committee at Washington University in St. Louis. PDX models are

available through the application to the Human and Mouse-Linked

Evaluation of Tumors core at http://digitalcommons.wustl.edu/ha

mlet/, and additional information can be found in ref. Li et al (2013).

Peptide selection by nomination and selection from
phosphoprofiling studies
For the list of nominated phosphosites, the first step was to convert

them into tryptic peptides containing the sites. An in silico tryptic

digest of the UniProt protein database was generated to identify fully

cleaved tryptic peptides containing the nominated phosphosites.

Peptides longer than 40 amino acids in the list were dropped at this

step of the selection process. Short versions (< 6 amino acids) of
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fully cleaved tryptic peptides were still considered at this step in

case missed cleaved versions with reasonable length were observed

in the existing datasets (Fig EV1A).

Next step was to ascertain whether they had been detected by

mass spectrometry. For this purpose, we used the large collection of

high-quality phosphopeptide data generated by the proteomics group

at the Broad Institute over the past 15 years to identify whether and

in which form(s) the tryptic phosphopeptide had been most

frequently observed (e.g., full tryptic, incomplete cleavage, etc.). For

the search, we utilized in-house developed R and Perl scripts specifi-

cally tailored toward database search results created by Spectrum Mill

Software (Broad Institute, Cambridge, MA) or MaxQuant (Cox &

Mann, 2008). Only validated peptides at 1% false discovery rate

(FDR) were considered in subsequent analysis. Missed cleaved

versions of the query peptide were allowed. Peptides identified by

this approach were manually analyzed for each peptide to select a

version for synthesis. In the cases where more than one version of

the peptide was observed (fully cleaved or missed cleaved, singly or

multiply phosphorylated), priority was given to the version with the

highest frequency of observation in the datasets. In selecting the

singly versus the multiply phosphorylated version of a peptide, prior-

ity was given to singly phosphorylated version unless doubly phos-

phorylated version was much more prevalent in existing datasets.

Moreover, for MAPK1, MAPK14, MAPK3, MAPK8, MAPK9, RAF1,

and RPS6KA1 both singly phosphorylated and doubly phosphorylated

forms of the peptides were included (see Dataset EV1). There are no

triply phosphorylated peptides in the assay panel.

Seventy percent of sites nominated (234 out of 343) were previ-

ously observed as fully tryptic phosphopeptides or in a missed

cleaved form in our experimental datasets. Dataset EV1 lists all of

the previously observed nominated phosphosites, the phosphopro-

tein of origin, the dominant tryptic peptide form containing each

site, and the enrichment methodology required for detection of the

site (i.e., either immobilized metal affinity chromatography (IMAC)

or phosphotyrosine (pY) antibody). Sixty-two phosphopeptides

containing 66 of the 343 nominated phosphosites were not observed

in our datasets (Datasets EV1 and EV7). Despite the lack of prior

observation in discovery data, we included 37 of these phosphopep-

tides due to their importance in cancer biology and the potential for

the targeted MS method to have greater sensitivity for their detec-

tion than the discovery methods used. The remaining 29 sites were

excluded from consideration (Dataset EV7).

In addition to lack of detection in experimental data, there were

a number of other reasons to not advance the assay configuration

for some of the nominated phosphosites, including target peptides

being too long or too short or having failed synthesis. Nineteen of

the nominated sites were located in tryptic peptides that were

deemed to be too long (> 40 amino acids) and were eliminated

because of anticipated issues with synthesis, chromatography, and/

or assay development (Dataset EV7). In addition, a number of nomi-

nated sites were located in short tryptic peptides of 6 amino acids or

less. To improve likelihood of detection, specificity and chromato-

graphic retention on C18 reverse phase matrix, we instead searched

the data for longer, missed cleaved forms of these peptides. Seven-

teen of the total 25 short peptides were found in longer, missed

cleaved peptides (> 6 but < 40 amino acids) and were included for

assay development. For example, the nominated site pS380 in

serine/threonine–protein kinase LATS2 is present in tryptic peptide

form D(pS)LQK. The longer, missed cleaved version of this peptide

RD(pS)LQKPGLEAPPR was found in the discovery data and selected

for assay configuration (Dataset EV1). Missed cleaved forms for

eight additional short phosphopeptides were not detected in the data

and so these were removed for further consideration (Dataset EV7).

Seventy-three phosphosites in the panel were derived from quan-

titative proteomic discovery studies in our laboratory and were

among the most significantly regulated sites in those studies. 17

phosphopeptides were selected from a discovery phosphoprofiling

study investigating impact of ischemia in ovarian cancer and breast

cancer xenograft tissues (Mertins et al, 2014). The remaining experi-

mentally derived sites were included based on the analysis of

several discovery experiments done in cancer cell lines treated with

specific inhibitors.

During the selection process, the uniqueness of each peptide in

the human proteome was also taken into consideration with priority

given to peptides unique to one protein. Seven of the peptides in the

final assay panel are shared with more than one protein (Dataset

EV1). Among these are: pS909 of LATS1 and pS872 of LATS2;

pT1079 of LATS1 and pT1041 of LATS2; pT35 of MOB1A and

MOB1B; pS907 of NFKB1 and pS276 of RELA; pT198 of PRKACA,

PRKACB, and PRKACG; pS621 of RAF1 and pS582 of ARAF: and

pY706 of NTRK2 and pY709 of NTRK3.

Peptide synthesis
The final list of 352 tryptic phosphopeptides representing 344

phosphosites (17 peptides having more than one site) correspond-

ing to 234 phosphoproteins were synthesized containing single

stable isotopically labeled (SIL) amino acid. Most peptides

contained [13C, 15N] lysine or arginine at the C-terminus. Nine

peptides representing C-terminal of the protein were synthesized

with either heavy N-terminal lysine or arginine, or heavy internal

leucine and proline. All synthetic peptides were purified by the

vendor to greater than 95% purity, quantified by amino acid analy-

sis, and received at micromolar concentrations in a buffer contain-

ing 0.1% formic acid/30% acetonitrile. Aliquots of these solutions

were diluted to 100 pm/ll for preparation of the peptide mixtures.

Peptides are stored at �80⁰C at the Broad Institute and are

intended for in-house use only.

Peptide organization
Synthetic heavy-labeled internal standard peptides were organized

in mixtures first by their enrichment methodology (immobilized

metal affinity chromatography (IMAC) and/or phosphotyrosine (pY)

antibody). Two hundred thirty one peptides containing phosphoser-

ine (pS) or phosphothreonine (pT) were organized in five IMAC

mixtures alphabetically by gene name containing 43–50 phospho-

peptides each. Seventy-one pY-containing peptides were organized

in 2 pY mixes alphabetically by gene name, each containing 31 or

40 peptides. Finally, the remaining 50 peptides (predominantly pY)

with previous detection information after IMAC as well as pY anti-

body enrichments were organized in a separate mixture (IMACpY)

and used in combination with either IMAC or pY mixtures. Peptides

were at 2 pm/ll equimolar concentration in all of the mixtures.

Assay configuration
Multiple reaction monitoring (MRM) assay configuration using

heavy-labeled synthetic peptides was done on TSQ Quantiva Triple
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Quadrupole Mass Spectrometer (Thermo Fisher) coupled with Easy-

nLC 1200 ultra-high pressure liquid chromatography (UPLC) system

(Thermo Fisher) in several batches of 50–100 peptides each.

Skyline Targeted Mass Spec Environment was used throughout

assay configuration and all data analysis. First, spectral libraries

for the peptides were generated on a Q Exactive mass spectrome-

ter. Spectral libraries were uploaded to Skyline, and 5–10 most

intense fragment ions (transitions) for each peptide were selected

for MRM assay configuration. Transitions containing phosphosite

or helping with the assignment of the phosphosite were included

in the transition list for assay configuration. Next, collision ener-

gies (CE) were optimized for all the transitions and peptides by

liquid chromatography–multiple reaction monitoring mass spec-

trometry (LC-MRM/MS) on TSQ Quantiva using Skyline’s CE opti-

mization module. For every transition starting with the

instrument-specific calculated CE tested 10 additional CEs (5

below and 5 above the calculated CE) in increments of 2. The list

of transitions with varying CE values was exported from Skyline

and used for building the MRM method in Xcalibur software.

Equimolar mixture of peptides at 50 fm/ll was analyzed by LC-

MRM/MS on Quantiva using this method. Resulting data were

analyzed on Skyline which then selected the CE that resulted in

the highest peak area for each transition. In the final step of CE

optimization MRM data were acquired with optimized CE values

for every transition. Using this dataset in Skyline, manually

selected the best 3–6 transitions for every peptide giving highest

priority to fragment ions of y-series with mass to charge (m/z)

above the precursor, and ions containing phosphosite or helping

with the site localization. For the peptides where the options were

more limited also included ions of y-series with m/z below the

precursor and b-series.

While we configured the assay on TSQ Quantiva MS, other triple

quadrupole instruments can be used for this assay with further opti-

mization of MS-specific parameters for each instrument (Kuhn et al,

2012; Abbatiello et al, 2015).

After the CE optimization compiled 2 LC-MRM/MS methods, one

for peptides enriched by IMAC strategy (231 IMAC and 50 IMACpY

mixtures) and the second for peptides enriched by pY antibody strat-

egy (71 pY and 50 IMACpY mixtures).

Liquid chromatography was performed on 75 lm ID PicoFrit

columns packed in-house to a length of 28–30 cm with Reprosil

C18-AQ 1.9 lm beads (Dr Maisch GmbH) with solvent A of 0.1%

formic acid (FA) / 3% acetonitrile (ACN) and solvent B of 0.1% FA

/ 90% ACN at 200 nl/min flow rate. Below are the details of the

IMAC and pY LC-MRM/MS methods:

IMAC LC-MRM/MS method: method duration – 160 min, gradi-

ent – 2–6% solvent B in 1 min, 6–30% B in 124 min, 30–60% B

in 9 min, 60–90% B in 1 min, followed by a hold at 90% B

for 5 min, and subsequent hold at 50% B for 19 min. MS param-

eters include 3-sec cycle time, Q1 and Q3 resolution of 0.4 and

0.7, respectively, retention time (RT) scheduling window of

10 min.

pY LC-MRM/MS method: method duration – 120 min, gradient –

2–6% solvent B in 1 min, 6–30% B in 84 min, 30–60% B in 9 min,

60–90% B in 1 min, followed by a hold at 90% B for 5 min, and

subsequent hold at 50% B for 19 min. MS parameters include 1.5-

sec cycle time, Q1 and Q3 resolution of 0.4 and 0.7, respectively, RT

scheduling window of 10 min.

Lysis and digestion of cell line and tissue samples
1 Add lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris pH 8.0,

1 mM EDTA, 2 lg/ml Aprotinin, 10 lg/ml Leupeptin, 1 mM

PMSF, 10 mM NaF, 1:100 phosphatase inhibitor cocktail 2 and

1:100 phosphatase inhibitor cocktail 3) to the cell pellets or

cryopulverized tissue samples, vortex lightly, and incubate at

4°C with end-over-end rotation for 15 min.

2 Vortex samples for 10 s on the highest setting and allow to incu-

bate at 4°C with end-over-end rotation again for 15 more minutes.

3 Centrifuge samples at 20,000 rcf for 10 min at 4°C to pellet

insoluble cell debris.

4 Transfer the supernatant to a new 2-ml Eppendorf tube and

quantify by the Pierce BCA Protein Assay Kit.

5 Equalize concentrations of a set of samples in a study and

digested together by adding more lysis buffer to samples that

are more concentrated to match the sample with the lowest

concentration.

6 Reduce samples with 5 mM dithiothreitol (DTT, Pierce,

A39255), mixing at 800 rpm for 45 min at room temperature.

7 Alkylate samples using 10 mM iodoacetamide (IAA, Sigma-

Aldrich, 144489) for 45 min in the dark at room temperature.

8 Dilute the samples 1:4 with 50 mM Tris–HCl pH 8.0 and digest

with LysC (Wako) at an enzyme to substrate ratio of 1:50 for

2 h at 30°C and shaking at 800 rpm.

9 Add trypsin (Promega) at an enzyme to substrate ratio of 1:50

overnight at 37°C and shaking at 800 rpm.

10 Quench the digestion with 10% formic acid to a final concen-

tration of 1% and pH 3.

Peptide cleanup by cartridge desalt
1 Condition 200 mg (3 cc) Sep-Pak C18 Vac Cartridges (Waters)

with 3 ml of acetonitrile followed by 3 ml of 0.1% FA / 50%

ACN.

2 Equilibrate them with four 3 ml injections of 0.1% trifluo-

roacetic acid (TFA).

3 Load the samples onto the cartridges and collect the flow-

through.

4 Wash the samples three times with 3 ml 0.1% trifluoroacetic

acid and one time with 3 ml 1% FA.

5 Elute the samples off the cartridges with two injections of

1.5 ml 0.1% FA / 50% ACN into 15-mL centrifuge tubes.

6 Freeze the samples and dry them down with vacuum centrifu-

gation.

7 Reconstitute the samples in 0.1% FA / 3% ACN and quantify

by the Pierce BCA Protein Assay Kit.

8 Make 5 mg aliquots of the samples for pY Ab enrichment,

freeze the aliquots, and dry down by vacuum centrifugation.

9 If pY Ab enrichment is skipped, then make 500 lg aliquots for

the IMAC enrichment step (see below).

Phosphotyrosine enrichment
1 Reconstitute peptide aliquots for pY Ab enrichment with

1.5 ml of IAP buffer (50 mM MOPS/NaOH pH 7.2, 10 mM

Na2HPO4, 50 mM NaCl) and keep on ice throughout the exper-

iment.

2 Add 30 fmol of the pY and IMACpY heavy peptide mixtures

into each sample, then vortex, and spin down at 5,000 rcf for

5 min.
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3 Wash the pY 1000 Immunoaffinity beads (Cell Signaling Tech-

nology) 3 times, each time with 1.5 ml of IAP buffer. Remove

the supernatant after each wash.

4 Add reconstituted peptide samples onto the Immunoaffinity

beads and mix end over end at 4°C for 1 h.

5 After the hour incubation, spin down the beads at 1,500 rcf for

1 min and collect the supernatant as the pY flow-through for

IMAC enrichment.

6 Wash pY 1000 beads four times with 1.5 ml cold phosphate-

buffered saline (PBS, Thermo Fisher).

7 After washing, resuspend the beads with 50 ll of 0.15% TFA

and incubate at room temperature for 5 min.

8 Spin down the beads and transfer the supernatant onto a

prewashed and pre-conditioned stagetip (see below).

9 Repeat TFA incubation one more time for a total of 100 ll of
supernatant transferred onto the stagetip. After the second

elution, transfer the beads along with the supernatant to the

stagetip.

Phosphotyrosine enrichment stage-tip desalt
1 Condition the stagetips, prepared with two Empore C18 (3 M)

punches with 100 ll of methanol, and followed by 100 ll of
0.1% FA / 50% ACN. Spin down after each one at 3,100 rcf

for 1 min.

2 Equilibrate with 2 injections of 100 ll 0.1% FA.

3 Add the two 50 ll pY captured samples along with the beads

to stagetips then spin down.

4 Wash the sample with two injections of 100 ll 0.1% FA and

spin down after each.

5 Elute the bound peptides off the stagetips using 50 ll of 0.1%
FA / 50% ACN.

6 Transfer the eluates to autosampler vials, freeze, and dry

down.

7 Reconstitute in 5 ll of 0.1% FA/3% ACN solution and inject

4 ll for LC-MRM/MS analysis on TSQ Quantiva using pY LC-

MRM/MS method (see above).

Phosphotyrosine flow-through desalt
1 Condition 100 mg (1 cc) Sep-Pak C18 Vac Cartridges (Waters,

WAT023590) with 1 ml of acetonitrile followed by 1 ml of

0.1% FA / 50% ACN.

2 Equilibrate with four 1 ml injections of 0.1% TFA.

3 Acidify pY Ab enrichment flow-through samples with 150 ll of
10% FA and load onto the prepared cartridges in two steps of

750 ll.
4 Wash them three times with 1 ml of 0.1% TFA then one time

with 1 ml 1% FA.

5 Elute the samples off the cartridges and into 2-mL

Eppendorf tubes with 2 injections of 750 ll 0.1% FA / 50%

ACN.

6 Freeze the samples and dry down by vacuum centrifugation.

7 Reconstitute the samples in 0.1% FA / 3% ACN and measure

the concentrations using the Pierce BCA Protein Assay Kit

(Thermo Fisher).

8 Make aliquots at appropriate amounts for each study (500–

1,000 lg) for the immobilized metal affinity chromatography

(IMAC) enrichment step. Freeze the aliquots and dry down by

vacuum centrifugation.

Immobilized metal affinity chromatography (IMAC)
phosphopeptide enrichment
1 Remove 1,200 ll slurry, or 600 ll of Ni-NTA Agarose beads

(Qiagen) and transfer to a 1.5-ml Eppendorf tube.

2 Wash the beads three times by adding 1 ml of water onto the

beads, inverting the tube to suspend the beads, then spinning

down for 1 min at 1,500 rcf and removing the supernatant.

Strip the beads of the nickel by incubating end over end with

1,200 ll of 100 mM ethylenediaminetetraacetic acid (EDTA

(Sigma-Aldrich)) at room temperature for 30 min.

3 Wash three times with HPLC water then incubate with

1,200 ll of 10 mM FeCl3 end-over-end at room temperature for

30 min.

4 Wash the agarose beads again three times with HPLC water

and resuspend with 1:1:1 acetonitrile: methanol: 0.01% acetic

acid to a ratio of 1:3 beads to slurry volume.

5 Aliquot 60 ll slurry, or 20 ll beads, into 1.5-ml Eppendorf

tubes for each 1 mg sample undergoing phosphopeptide

enrichment.

6 Reconstitute the dried peptide aliquots in 0.1% TFA / 50%

ACN and vortex until the peptides were fully dissolved. Add

0.1% TFA / 100% ACN to each aliquot to bring the final

concentration to 0.5 mg/ml in 80% ACN solution.

7 Add 30 fmol of heavy-labeled IMAC peptides into each sample,

and then add the peptide solutions on top of the prepared

beads and incubate end-over-end for 30 min at room tempera-

ture.

8 Spin down the beads for 1 min at 1,500 rcf. Remove the super-

natant and save.

9 Add 200 ll of 0.1% TFA / 80% ACN to the beads. Transfer

onto a prepared stagetip for desalting.

Immobilized metal affinity chromatography stage-tip desalt
1 Condition the stagetips, prepared with two Empore C18 (3 M)

punches, first with 100 ll of methanol, then with 50 ll of

0.1% FA / 50% ACN and spin down at 3,100 rcf for 1 min

after each step.

2 Equilibrate the tips with 2 injections of 100 ll 1% FA.

3 Load the resuspended beads onto the stagetips and spin down.

4 Desalt the stagetips with two 50 ll injections of 0.1% TFA /

80% ACN then one 50 ll injection of 1% FA.

5 Elute the phosphopeptides off the agarose beads and onto the

stagetips by three 70 ll injections of 500 mM K2PO4.

6 Wash the samples once with 100 ll of 1% FA,

7 Elute the samples off the tips with 60 ll 0.1% FA / 50% ACN.

8 Transfer the eluates from Eppendorf tubes to HPLC vials,

freeze, and dry down by vacuum centrifugation.

9 Reconstitute in 9 ll of 0.1% FA / 3% ACN solution and inject

4 ll for LC-MRM/MS analysis on TSQ Quantiva using IMAC

LC-MRM/MS method (see above).

Titration curve experiment

Five cell lines (OVCAR, Meljuso, H3122, PC9, and A375) were lysed,

digested, and desalted as described above. Equal amounts of

peptides from each digest were combined to create the peptide mix

used in the study. In triplicate, 1 mg and 5 mg aliquots of this

peptide mix were reconstituted in 1.5 ml IAP buffer (50 mM MOPS/

NaOH pH 7.2, 10 mM Na2HPO4, 50 mM NaCl). Aliquots were then
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spiked with 30 fmol of the pY and IMACpY heavy peptide mixtures,

then enriched by pY 1000 antibody using the phosphotyrosine

enrichment method detailed above. Enriched samples were stagetip-

desalted (see method above) then analyzed on TSQ Quantiva using

the method for pY LC-MRM/MS described above. The flow-through

samples from the pY Ab enrichments were combined and desalted

together. The resulting mix was aliquoted in triplicate at 1, 0.5,

0.25, 0.1, and 0.05 mg. Each aliquot was reconstituted in 1 ml 0.1%

TFA / 50% ACN (1 mg aliquots were reconstituted in 2 ml) then

spiked with 30 fmol of the IMAC heavy peptide mixture. The IMAC

phosphopeptide enrichment procedure detailed above was used.

Enriched samples were stagetip-desalted (see method above) then

analyzed on TSQ Quantiva using the method for IMAC LC-MRM/MS

described above.

Cell line processing for testing the assay

Ten cell lines (PC9, H3122, TMD8, Mino, PC3, OVCAR4, WM266.4,

Meljuso, A375, and RT112) were lysed and digested as described

above. Five milligrams of each was enriched by pY antibody and

1 mg of the flow-through of that was enriched by IMAC and

analyzed following SigPath workflow as described above.

Cell line perturbagen sample processing

H3122 and Ls513 cells were treated with either DMSO or drug for

6 h and 24 h (Fig EV3A). H3122 cells were treated with Ceritinib at

300 nM concentration, and Ls513 cells were treated with Trametinib

at 30 nM concentration. Treatments and time points were done in

two process replicates. Cells were collected, lysed, and digested as

described above. Following digestion, 5 mg of each sample was

enriched with pY Ab and 1 mg of the flow-through of that by IMAC

and analyzed according to the SigPath workflow described above.

Breast cancer xenograft (PDX) tissue processing

Six models were selected from Washington University human to

mouse (WHIM) PDX collection (Mundt et al, 2018) (4, 30, 21, 6, 2,

and 12). Each of the models was treated either with buperlasib or

with vehicle (Fig 3A). For the 2-h treatment group, the animals

received one dose and tissue was collected 2 h after the treatment

either by buperlasib or by vehicle. For the 50-h group, animals

received Buperlasib or vehicle at 0, 24, and 48 h, and the tissue was

collected at 50 h. Only in the washout group at 48 h, the animals

were treated with vehicle instead of the drug. Tissue lysis and diges-

tion were performed as described above. Input peptide amount for

pY Ab enrichment varied as follows for the different WHIM models

due to limited amount availability of some of the samples: WHIM4 –

4.5 mg; WHIM30 – 4.5 mg; WHIM21 – 5 mg; WHIM6 – 5 mg;

WHIM2 – 2 mg; WHIM12 – 4 mg. Input peptide amount for IMAC

was 1 mg for all of the samples. Phosphotyrosine antibody enrich-

ment for all the five samples of each WHIM was done the same day,

but on different days for the different WHIMs. IMAC enrichment

was performed over 3 days, samples for 2 WHIM models per day.

Medulloblastoma tissue processing

39 tissue samples from medulloblastoma patients belonging to all

four groups (sonic hedgehog (SHH), group 3 (GR3), group 4 (GR4)

and WNT) were digested as described above. Less than 1 mg of

digested peptides was available for this study, and therefore, the pY

Ab portion of the procedure was skipped and only the IMAC part of

the assay was applied to all the samples with 500 lg input digested

peptides for 85% of them. For 6 of the samples, 500 lg was not

available; therefore, the peptide input varied as follows: MB088

(SHH) = 357 lg; MB136 (SHH) = 347 lg; MB206 (SHH) = 313 lg;
MB284 (SHH) = 444 lg; MB287 (SHH) = 425 lg; MB091

(GR4) = 485 lg. Sample processing and data acquisition were

performed in 4 batches. Samples were randomized in 4 batches

making sure to include an equal number of samples from each

group.

Data processing
All analyses of raw mass spectrometry data were performed in

Skyline Targeted Mass Spec Environment (Broudy et al, 2014). Peak

area ratios of endogenous light to stable isotope-labeled (SIL) heavy

internal standard peptide were calculated in Skyline (Skyline

version (64-bit) 20.2.0.343), https://brendanxuw1.gs.washington.ed

u/labkey/project/home/software/Skyline/begin.view). All the

peaks were manually inspected to make sure accurate and equal

integration of light and heavy versions. Peak area ratios of the most

abundant, interference-free transitions were used for further statisti-

cal analysis. Detection of endogenous (light peptide) signals

required detection of all the transitions along with a minimal signal

for the reporting transition based on manual inspection of the data.

The height of the light peak had to be more than 250 and 300 counts

for pY Ab and IMAC enriched samples, respectively.

Data imputation
Imputation of missing data points was performed for the pertur-

bagen experiments (H3122, Ls513, and PDX), separately for each

dataset and pY Ab / IMAC experiments. Phosphopeptides were

divided into three categories: 1) confidently quantified peptides

derived as described above; 2) quantified peptides not passing the

minimal signal threshold; and 3) peptides not quantified at all. Log2-

transformed peptide peak area ratios for 3) were imputed by draw-

ing from a normal distribution with parameters mu and sd (mean

and standard deviation, respectively) estimated from the distribu-

tion of light/heavy ratios in 2). Parameter mu was further adjusted

by subtracting one sd to resemble light/heavy ratios below the

detection limit.

For statistical analysis of these datasets, peptide ratios of cate-

gory 2) were kept in the dataset and imputed values for category 3)

were used.

Statistical analysis
Peak area ratios were log2-transformed. Visual inspection of the

resulting log-ratios in profile density plots revealed comparable

distributions of samples within each dataset, and no further normal-

ization was applied. A two-sample moderated t-test was applied to

cell line perturbagen, medulloblastoma, and PDX datasets compar-

ing sensitive versus resistant models using Protigy. (https://github.c

om/broadinstitute/protigy). Derived P-values were adjusted for

multiple hypothesis testing using Benjamini–Hochberg (BH) strat-

egy. Significance was assessed with BH-corrected P-value of < 0.1.

A one-sample moderated t-test was applied to drug/vehicle ratio

of ratios in the PDX dataset to compare drug to vehicle treatment for

all 6 PDX models. Derived P-values were adjusted for multiple

hypothesis testing using Benjamini–Hochberg (BH) strategy. Signifi-

cance was assessed with BH-corrected P-value of < 0.1.
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A one-way ANOVA with an ad hoc Tukey’s test (with (BH)

adjusted P-values for multiple comparisons) was performed in

GraphPad Prism on medulloblastoma dataset.

Heat maps are generated using the Morpheus online tool (Mor-

pheus, https://software.broadinstitute.org/morpheus

CausalPath analysis
CausalPath (Babur et al, 2021) analysis was used to identify the likely

cause–effect relations between the correlated phosphopeptide measure-

ments. For the comparison of drug/DMSO at 6 h and 24 h in H3122

and Ls513 cell lines, sensitive versus resistant in PDX study and groups

in medulloblastoma study, BH-corrected P-values from a two-sample

moderated t-test were used as input to the method. For the comparison

of drug versus vehicle in PDX study at 2 and 50 h, BH-corrected P-

values from a one-sample moderated t-test were used as input to the

method. The method options to calculate network significance and to

use the inferred activities in causal reasoning are turned on. FDR cutoff

of 0.1 was used for both phosphopeptide change significance and

network significance. For the drug inhibition studies, custom hypothe-

ses indicating inhibition of direct drug targets were inserted. This

allows CausalPath to identify the changes that are compatible with the

hypothesis and use them in the resulting model. ChiBE (Babur et al,

2014) was used as a visualization tool to generate Fig 3B.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

All mass spectrometry data generated during this study have

been published in Panorama (Sharma et al, 2018) and are deposited

at: https://panoramaweb.org/YyIDIy.url.

The source code for Protigy used for all statistical analysis is on

GitHub: https://github.com/broadinstitute/protigy.

The data for CausalPath analysis have been deposited at GitHub:

https://github.com/broadinstitute/proteomics-SigPath-supplementa

l-data.

Expanded View for this article is available online.

Acknowledgements
This work was supported by a grant from Novartis and partially by NIH/NCI

grants from the National Cancer Institute (NCI) Clinical Proteomic Tumor Anal-

ysis Consortium grants NIH/NCI U24CA210986 and U01CA214125 (to SAC) and

NIH/NCI U24CA210979 (to DRM). We thank Jacob Jaffe for help with searching

phosphopeptides against existing datasets, Karl Clauser for help with Spec-

trum Mill during assay development.

Author contributions
HK, ERM, DAP, KW, WRS, and SAC conceived the study; HK, ERM, DAP, JJ-V, FM,

and SAC designed the study; HK, RM, LW, HS, FM, DF, BR, SEM, MLR, MB, MAM,

and MEO generated the data; HK, KK, FM, SS, and DRM did formal analysis; KK,

DRM, and OB provided and helped with software; ERM, DAP, JJ-V, PMJB, OB, SS,

EK, ET, MAG, WRS, and SAC provided resources; HK, ERM, DAP, FM, KK, JG, SS,

DRM, MAG, and TR curated the data; HK, RM, FM, KK, SS, and SAC wrote the

original draft; HK, FM, KK, SS, MG, TR, KW, WRS, and SAC reviewed and edited

the manuscript; HK, ERM, JJ-V, KW, WRS, and SAC supervised the study; WRS

and SAC acquired the funding.

Conflict of interest
SAC is a member of the scientific advisory boards of Kymera, PTM BioLabs, and

Seer and a scientific advisor to Pfizer and Biogen.

References

Abbatiello SE, Schilling B, Mani DR, Zimmerman LJ, Hall SC, MacLean B,

Albertolle M, Allen S, Burgess M, Cusack MP et al (2015) Large-scale

interlaboratory study to develop, analytically validate and apply highly

multiplexed, quantitative peptide assays to measure cancer-relevant

proteins in plasma. Mol Cell Proteomics 14: 2357 – 2374

Abelin JG, Patel J, Lu X, Feeney CM, Fagbami L, Creech AL, Hu R, Lam D,

Davison D, Pino L et al (2016) Reduced-representation phosphosignatures

measured by quantitative targeted MS capture cellular states and enable

large-scale comparison of drug-induced phenotypes. Mol Cell Proteomics

15: 1622 – 1641

Archer TC, Ehrenberger T, Mundt F, Gold MP, Krug K, Mah CK, Mahoney EL,

Daniel CJ, LeNail A, Ramamoorthy D et al (2018) Proteomics, post-

translational modifications, and integrative analyses reveal molecular

heterogeneity within medulloblastoma subgroups. Cancer Cell 34: 396 –410

Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T, Gera J

(2015) Phosphorylation of the hippo pathway component AMOTL2 by the

mTORC2 kinase promotes YAP signaling, resulting in enhanced

glioblastoma growth and invasiveness. J Biol Chem 290: 19387 – 19401

Babur O, Dogrusoz U, Cakir M, Aksoy BA, Schultz N, Sander C, Demir E (2014)

Integrating biological pathways and genomic profiles with ChiBE 2. BMC

Genom 15: 642

Babur Ö, Luna A, Korkut A, Durupinar F, Siper MC, Dogrusoz U, Vaca Jacome

AS, Peckner R, Christianson KE, Jaffe JD et al (2021) Causal interactions

from proteomic profiles: molecular data meet pathway knowledge.

Patterns 2: 100257

Balan V, Leicht DT, Zhu J, Balan K, Kaplun A, Singh-Gupta V, Qin J, Ruan H,

Comb MJ, Tzivion G (2006) Identification of novel in vivo Raf-1

phosphorylation sites mediating positive feedback Raf-1 regulation by

extracellular signal-regulated kinase. Mol Biol Cell 17: 1141 – 1153

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S,

Wilson CJ, Leh�ar J, Kryukov GV, Sonkin D et al (2012) The Cancer Cell Line

Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Nature 483: 603 – 607

Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG (1994) Protein-tyrosine-

phosphatase SHPTP2 couples platelet-derived growth factor receptor beta

to Ras. Proc Natl Acad Sci USA 91: 7335 – 7339

Broudy D, Killeen T, Choi M, Shulman N, Mani DR, Abbatiello SE, Mani D,

Ahmad R, Sahu AK, Schilling B et al (2014) A framework for installable

external tools in Skyline. Bioinformatics 30: 2521 – 2523

Burgess MW, Keshishian H, Mani DR, Gillette MA, Carr SA (2014) Simplified

and efficient quantification of low-abundance proteins at very high

multiplex via targeted mass spectrometry. Mol Cell Proteomics 13:

1137 – 1149

Chen T-W, Lee C-C, Liu H, Wu C-S, Pickering CR, Huang P-J, Wang J, Chang I-

F, Yeh Y-M, Chen C-D et al (2017a) APOBEC3A is an oral cancer prognostic

biomarker in Taiwanese carriers of an APOBEC deletion polymorphism.

Nat Commun 8: 465

Chen Y, Fisher KJ, Lloyd M, Wood ER, Coppola D, Siegel E, Shibata D, Chen YA,

Koomen JM (2017b) Multiplexed liquid chromatography-multiple reaction

monitoring mass spectrometry quantification of cancer signaling proteins.

Methods Mol Biol 1647: 19 – 45

ª 2021 The Authors Molecular Systems Biology 17: e10156 | 2021 19 of 22

Hasmik Keshishian et al Molecular Systems Biology

https://software.broadinstitute.org/morpheus
https://panoramaweb.org/YyIDIy.url
https://github.com/broadinstitute/protigy
https://github.com/broadinstitute/proteomics-SigPath-supplemental-data
https://github.com/broadinstitute/proteomics-SigPath-supplemental-data
https://doi.org/10.15252/msb.202010156


Choi SH, Kim DH, Choi YJ, Kim SY, Lee JE, Sung KJ, Kim WS, Choi CM, Rho JK,

Lee JC (2017) Multiple receptor tyrosine kinase activation related to ALK

inhibitor resistance in lung cancer cells with ALK rearrangement.

Oncotarget 8: 58771 – 58780

Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui

M, Montagner M, Parenti A, Poletti A et al (2011) The Hippo transducer

TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:

759 – 772

Cox J, Mann M (2008) MaxQuant enables high peptide identification rates,

individualized p.p.b.-range mass accuracies and proteome-wide protein

quantification. Nat Biotechnol 26: 1367 – 1372

Cunnick JM, Mei L, Doupnik CA, Wu J (2001) Phosphotyrosines 627 and 659

of Gab1 constitute a bisphosphoryl tyrosine-based activation motif

(BTAM) conferring binding and activation of SHP2. J Biol Chem 276:

24380 – 24387

Dardaei L, Wang HQ, Singh M, Fordjour P, Shaw KX, Yoda S, Kerr G, Yu K,

Liang J, Cao Y et al (2018) SHP2 inhibition restores sensitivity in ALK-

rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat Med

24: 512 – 517

Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L,

Karpova A, Petyuk VA, Savage SR, Satpathy S et al (2020) Proteogenomic

Characterization of Endometrial Carcinoma. Cell 180(729–748): e726

Eshghi A, Pistawka AJ, Liu J, Chen M, Sinclair NJT, Hardie DB, Elliott M, Chen

L, Newman R, Mohammed Y et al (2020) Concentration determination of

>200 proteins in dried blood spots for biomarker discovery and validation.

Mol Cell Proteomics 19: 540 – 553

Falchook GS, Lewis KD, Infante JR, Gordon MS, Vogelzang NJ, DeMarini DJ,

Sun P, Moy C, Szabo SA, Roadcap LT et al (2012) Activity of the oral MEK

inhibitor trametinib in patients with advanced melanoma: a phase 1

dose-escalation trial. Lancet Oncol 13: 782 – 789

Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD,

Kenney AM (2009) YAP1 is amplified and up-regulated in hedgehog-

associated medulloblastomas and mediates Sonic hedgehog-driven neural

precursor proliferation. Genes Dev 23: 2729 – 2741

Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV,

Hassel JC, Rutkowski P, Mohr P et al (2012) Improved survival with MEK

inhibition in BRAF-mutated melanoma. N Engl J Med 367: 107 – 114

Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, Michellys P-Y,

Awad MM, Yanagitani N, Kim S et al (2014) The ALK inhibitor ceritinib

overcomes crizotinib resistance in non-small cell lung cancer. Cancer

Discov 4: 662 – 673

Gallien S, Kim SY, Domon B (2015) Large-scale targeted proteomics using

internal standard triggered-parallel reaction monitoring (IS-PRM). Mol Cell

Proteomics 14: 1630 – 1644

Ghandi M, Huang FW, Jan�e-Valbuena J, Kryukov GV, Lo CC, McDonald ER,

Barretina J, Gelfand ET, Bielski CM, Li H et al (2019) Next-generation

characterization of the Cancer Cell Line Encyclopedia. Nature 569:

503 – 508

Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K,

Petralia F, Li Y, Liang W-W, Reva B et al (2020) Proteogenomic

characterization reveals therapeutic vulnerabilities in lung

adenocarcinoma. Cell 182: 200 – 225

Hamanaka N, Nakanishi Y, Mizuno T, Horiguchi-Takei K, Akiyama N,

Tanimura H, Hasegawa M, Satoh Y, Tachibana Y, Fujii T et al (2019) YES1

is a targetable oncogene in cancers harboring YES1 gene amplification.

Cancer Res 79: 5734 – 5745

Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R,

Ludlam MJC, Stokoe D, Gloor SL, Vigers G et al (2010) RAF inhibitors prime

wild-type RAF to activate the MAPK pathway and enhance growth. Nature

464: 431 – 435

Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E

(2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic

Acids Res 43: D512 – 520

Huang K-L, Li S, Mertins P, Cao S, Gunawardena HP, Ruggles KV, Mani DR,

Clauser KR, Tanioka M, Usary J et al (2017) Proteogenomic integration reveals

therapeutic targets in breast cancer xenografts. Nat Commun 8: 14864

H€uttenhain R, Choi M, Martin de la Fuente L, Oehl K, Chang C-Y,

Zimmermann A-K, Malander S, Olsson H, Surinova S, Clough T et al (2019)

A targeted mass spectrometry strategy for developing proteomic

biomarkers: a case study of epithelial ovarian cancer. Mol Cell Proteomics

18: 1836 – 1850

Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K,

Cook J, Gillespie M, Haw R et al (2020) The reactome pathway

knowledgebase. Nucleic Acids Res 48: D498 –D503

Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M,

Hisaminato A, Fujiwara T, Ito Y, Cantley LC et al (2000) TAZ: a novel

transcriptional co-activator regulated by interactions with 14-3-3 and PDZ

domain proteins. EMBO J 19: 6778 – 6791

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res 28: 27 – 30

Kennedy JJ, Yan P, Zhao L, Ivey RG, Voytovich UJ, Moore HD, Lin C, Pogosova-

Agadjanyan EL, Stirewalt DL, Reding KW et al (2016) Immobilized metal

affinity chromatography coupled to multiple reaction monitoring enables

reproducible quantification of phospho-signaling. Mol Cell Proteomics 15:

726 – 739

Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS,

Gerszten RE, Carr SA (2009) Quantification of cardiovascular biomarkers in

patient plasma by targeted mass spectrometry and stable isotope dilution.

Mol Cell Proteomics 8: 2339 – 2349

Keshishian H, Burgess MW, Gillette MA, Mertins P, Clauser KR, Mani DR, Kuhn

EW, Farrell LA, Gerszten RE, Carr SA (2015) Multiplexed, quantitative

workflow for sensitive biomarker discovery in plasma yields novel

candidates for early myocardial injury. Mol Cell Proteomics 14: 2375 – 2393

Kofler M, Speight P, Little D, Di Ciano-Oliveira C, Szaszi K, Kapus A (2018)

Mediated nuclear import and export of TAZ and the underlying molecular

requirements. Nat Commun 9: 4966

Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, Miles G,

Mertins P, Geffen Y, Tang LC et al (2020) Proteogenomic landscape of

breast cancer tumorigenesis and targeted therapy. Cell 183: 1436 – 1456

Kuhn E, Addona T, Keshishian H, Burgess M, Mani DR, Lee RT, Sabatine MS,

Gerszten RE, Carr SA (2009) Developing multiplexed assays for troponin I

and interleukin-33 in plasma by peptide immunoaffinity enrichment and

targeted mass spectrometry. Clin Chem 55: 1108 – 1117

Kuhn E, Whiteaker JR, Mani DR, Jackson AM, Zhao L, Pope ME, Smith D,

Rivera KD, Anderson NL, Skates SJ et al (2012) Interlaboratory evaluation

of automated, multiplexed peptide immunoaffinity enrichment coupled to

multiple reaction monitoring mass spectrometry for quantifying proteins

in plasma. Mol Cell Proteomics 11: M111.013854

Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, Deik A, Souza A, Pierce K,

Keskula P, Hernandez D et al (2019) The landscape of cancer cell line

metabolism. Nat Med 25: 850 – 860

Li J, Zhao W, Akbani R, Liu W, Ju Z, Ling S, Vellano CP, Roebuck P, Yu Q,

Eterovic AK et al (2017) Characterization of human cancer cell lines by

reverse-phase protein arrays. Cancer Cell 31: 225 – 239

Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, He X, Liu S, Hoog J, Lu C et al

(2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic

20 of 22 Molecular Systems Biology 17: e10156 | 2021 ª 2021 The Authors

Molecular Systems Biology Hasmik Keshishian et al



characterization of breast-cancer-derived xenografts. Cell Rep 4:

1116 – 1130

Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P

(2015) The molecular signatures database (MSigDB) hallmark gene set

collection. Cell Syst 1: 417 – 425

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P,

Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0.

Bioinformatics 27: 1739 – 1740

Lu W, Gong D, Bar-Sagi D, Cole PA (2001) Site-specific incorporation of a

phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of

SHP-2 in cell signaling. Mol Cell 8: 759 – 769

Manes NP, Nita-Lazar A (2018) Application of targeted mass spectrometry in

bottom-up proteomics for systems biology research. J Proteomics 189:

75 – 90

Martens M, Ammar A, Riutta A, Waagmeester A, Slenter DN, Hanspers K,

Miller RA, Digles D, Lopes EN, Ehrhart F et al (2021) WikiPathways:

connecting communities. Nucleic Acids Res 49: D613 –D621

Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H (2009) Protein tyrosine

phosphatase SHP-2: a proto-oncogene product that promotes Ras

activation. Cancer Sci 100: 1786 – 1793

Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X,

Qiao JW, Cao S, Petralia F et al (2016) Proteogenomics connects somatic

mutations to signalling in breast cancer. Nature 534: 55 – 62

Mertins P, Yang F, Liu T, Mani DR, Petyuk VA, Gillette MA, Clauser KR, Qiao

JW, Gritsenko MA, Moore RJ et al (2014) Ischemia in tumors induces early

and sustained phosphorylation changes in stress kinase pathways but

does not affect global protein levels. Mol Cell Proteomics 13: 1690 – 1704

Miyawaki M, Yasuda H, Tani T, Hamamoto J, Arai D, Ishioka K, Ohgino K,

Nukaga S, Hirano T, Kawada I et al (2017) Overcoming EGFR bypass

signal-induced acquired resistance to ALK tyrosine kinase inhibitors in

ALK-translocated lung cancer. Mol Cancer Res 15: 106 – 114

Mundt F, Rajput S, Li S, Ruggles KV, Mooradian AD, Mertins P, Gillette MA,

Krug K, Guo Z, Hoog J et al (2018) Mass spectrometry-based proteomics

reveals potential roles of NEK9 and MAP2K4 in resistance to PI3K

inhibition in triple-negative breast cancers. Cancer Res 78: 2732 – 2746

Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER, Kalocsay M, Jan�e-

Valbuena J, Gelfand E, Schweppe DK, Jedrychowski M et al (2020)

Quantitative proteomics of the cancer cell line encyclopedia. Cell 180:

387 – 402

Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer

therapy. Nat Rev Cancer 17: 93 – 115

Parker CE, Borchers CH (2014) Mass spectrometry based biomarker discovery,

verification, and validation–quality assurance and control of protein

biomarker assays. Mol Oncol 8: 840 – 858

Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C (2008)

WikiPathways: pathway editing for the people. PLoS Biol 6: e184

Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics:

workflows, potential, pitfalls and future directions. Nat Methods 9:

555 – 566

Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ (2020) The

Skyline ecosystem: informatics for quantitative mass spectrometry

proteomics. Mass Spectrom Rev 39: 229 – 244

Popow O, Liu X, Haigis KM, Gygi SP, Paulo JA (2021) A compendium of

murine (Phospho) peptides encompassing different isobaric labeling and

data acquisition strategies. J Proteome Res 20: 3678 – 3688

Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors

transactivate RAF dimers and ERK signalling in cells with wild-type BRAF.

Nature 464: 427 – 430

Rebecca VW, Wood E, Fedorenko IV, Paraiso KHT, Haarberg HE, Chen YI,

Xiang Y, Sarnaik A, Gibney GT, Sondak VK et al (2014) Evaluating

melanoma drug response and therapeutic escape with quantitative

proteomics. Mol Cell Proteomics 13: 1844 – 1854

Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and

validation: the long and uncertain path to clinical utility. Nat Biotechnol

24: 971 – 983

Rivera KD, Olive ME, Bergstrom EJ, Nelson AJ, Lee KA, Satpathy S, Carr SA,

Udeshi ND (2021) Automating UbiFast for high-throughput and

multiplexed ubiquitin enrichment. bioRxiv https://doi.org/10.1101/2021.04.

28.441860 [PREPRINT]

Rodriguez H, Zenklusen JC, Staudt LM, Doroshow JH, Lowy DR (2021) The

next horizon in precision oncology: Proteogenomics to inform cancer

diagnosis and treatment. Cell 184: 1661 – 1670

Rothenstein JM, Chooback N (2018) ALK inhibitors, resistance development,

clinical trials. Curr Oncol 25: S59 – S67

Satpathy S, Jaehnig EJ, Krug K, Kim B-J, Saltzman AB, Chan DW, Holloway KR,

Anurag M, Huang C, Singh P et al (2020) Microscaled proteogenomic

methods for precision oncology. Nat Commun 11: 532

Sattu K, Hochgr€afe F, Wu J, Umapathy G, Schönherr C, Ruuth K, Chand D,

Witek B, Fuchs J, Li PK et al (2013) Phosphoproteomic analysis of

anaplastic lymphoma kinase (ALK) downstream signaling pathways

identifies signal transducer and activator of transcription 3 as a

functional target of activated ALK in neuroblastoma cells. FEBS J 280:

5269 – 5282

Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH

(2009) PID: the Pathway Interaction Database. Nucleic Acids Res 37:

D674 –D679

Schneeberger VE, Ren Y, Luetteke N, Huang Q, Chen L, Lawrence HR,

Lawrence NJ, Haura EB, Koomen JM, Coppola D et al (2015) Inhibition of

Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse

model of lung adenocarcinoma. Oncotarget 6: 6191 – 6202

Sharma V, Eckels J, Schilling B, Ludwig C, Jaffe JD, MacCoss MJ, MacLean B

(2018) Panorama public: a public repository for quantitative data sets

processed in skyline. Mol Cell Proteom 17: 1239 – 1244

Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR,

Vansteenkiste J, Sharma S, De Pas T et al (2014) Ceritinib in ALK-

rearranged non-small-cell lung cancer. N Engl J Med 370: 1189 – 1197

Shi X, Zhan X, Wu J (2015) A positive feedback loop between Gli1 and

tyrosine kinase Hck amplifies shh signaling activities in medulloblastoma.

Oncogenesis 4: e176

Shi Y, Yan H, Frost P, Gera J, Lichtenstein A (2005) Mammalian target of

rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by

up-regulating the insulin-like growth factor receptor/insulin receptor

substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4:

1533 – 1540

Soste M, Hrabakova R, Wanka S, Melnik A, Boersema P, Maiolica A, Wernas T,

Tognetti M, von Mering C, Picotti P (2014) A sentinel protein assay for

simultaneously quantifying cellular processes. Nat Methods 11:

1045 – 1048

Sperling AS, Burgess M, Keshishian H, Gasser JA, Bhatt S, Jan M, Słabicki M,

Sellar RS, Fink EC, Miller PG et al (2019) Patterns of substrate affinity,

competition, and degradation kinetics underlie biological activity of

thalidomide analogs. Blood 134: 160 – 170

Stopfer LE, Flower CT, Gajadhar AS, Patel B, Gallien S, Lopez-Ferrer D, White

FM (2021) High-density, targeted monitoring of tyrosine phosphorylation

reveals activated signaling networks in human tumors. Cancer Res 81:

2495 – 2509

ª 2021 The Authors Molecular Systems Biology 17: e10156 | 2021 21 of 22

Hasmik Keshishian et al Molecular Systems Biology

https://doi.org/10.1101/2021.04.28.441860
https://doi.org/10.1101/2021.04.28.441860


Totaro A, Panciera T, Piccolo S (2018) YAP/TAZ upstream signals and

downstream responses. Nat Cell Biol 20: 888 – 899

Udeshi ND, Mani DC, Satpathy S, Fereshetian S, Gasser JA, Svinkina T, Olive

ME, Ebert BL, Mertins P, Carr SA (2020) Rapid and deep-scale

ubiquitylation profiling for biology and translational research. Nat

Commun 11: 359

Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen BO, Dou Y, Zhang

Y, Shi Z, Arshad OA et al (2019) Proteogenomic Analysis of Human Colon

Cancer Reveals New Therapeutic Opportunities. Cell 177: 1035 – 1049

Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML (2001) TEAD/TEF

transcription factors utilize the activation domain of YAP65, a Src/Yes-

associated protein localized in the cytoplasm. Genes Dev 15: 1229 – 1241

Wang H, Zhou J, Yang D, Yi L, Wang X, Ou Y, Yang D, Xu L, Xu M (2019) High

expression of the transcriptional coactivator TAZ is associated with a

worse prognosis and affects cell proliferation in patients with

medulloblastoma. Oncol Lett 18: 5591 – 5599

Whiteaker JR, Halusa GN, Hoofnagle AN, Sharma V, MacLean B, Yan P, Wrobel

JA, Kennedy J, Mani DR, Zimmerman LJ et al (2014) CPTAC Assay Portal: a

repository of targeted proteomic assays. Nat Methods 11: 703 – 704

Whiteaker JR, Zhao L, Abbatiello SE, Burgess M, Kuhn E, Lin ChenWei, Pope

ME, Razavi M, Anderson NL, Pearson TW et al (2011) Evaluation of large

scale quantitative proteomic assay development using peptide affinity-

based mass spectrometry. Mol Cell Proteomics 10: M110.005645

Whiteaker JR, Zhao L, Saul R, Kaczmarczyk JA, Schoenherr RM, Moore HD,

Jones-Weinert C, Ivey RG, Lin C, Hiltke T et al (2018) A multiplexed mass

spectrometry-based assay for robust quantification of phosphosignaling in

response to DNA damage. Radiat Res 189: 505 – 518

Yamaguchi N, Lucena-Araujo AR, Nakayama S, de Figueiredo-Pontes LL,

Gonzalez DA, Yasuda H, Kobayashi S, Costa DB (2014) Dual ALK and EGFR

inhibition targets a mechanism of acquired resistance to the tyrosine

kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer 83:

37 – 43

Zhang B, Wang J, Wang X, Zhu J, Liu QI, Shi Z, Chambers MC, Zimmerman LJ,

Shaddox KF, Kim S et al (2014) Proteogenomic characterization of human

colon and rectal cancer. Nature 513: 382 – 387

Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, Zhou J-Y, Petyuk

VA, Chen LI, Ray D et al (2016) Integrated proteogenomic characterization

of human high-grade serous ovarian cancer. Cell 166: 755 – 765

Zhang L, Chen X, Stauffer S, Yang S, Chen Y, Dong J (2015) CDK1

phosphorylation of TAZ in mitosis inhibits its oncogenic activity.

Oncotarget 6: 31399 – 31412

Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L et al

(2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved

in cell contact inhibition and tissue growth control. Genes Dev 21:

2747 – 2761

Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang C-Y, Chinnaiyan AM

et al (2008) TEAD mediates YAP-dependent gene induction and growth

control. Genes Dev 22: 1962 – 1971

License: This is an open access article under the

terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in

any medium, provided the original work is properly

cited.

22 of 22 Molecular Systems Biology 17: e10156 | 2021 ª 2021 The Authors

Molecular Systems Biology Hasmik Keshishian et al


