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Abstract

Background: Data from discovery proteomic and phosphoproteomic experiments typically include missing values
that correspond to proteins that have not been identified in the analyzed sample. Replacing the missing values with
random numbers, a process known as “imputation”, avoids apparent infinite fold-change values. However, the
procedure comes at a cost: Imputing a large number of missing values has the potential to significantly impact the
results of the subsequent differential expression analysis.

Results: We propose a method that identifies differentially expressed proteins by ranking their observed changes
with respect to the changes observed for other proteins. Missing values are taken into account by this method
directly, without the need to impute them. We illustrate the performance of the new method on two distinct datasets
and show that it is robust to missing values and, at the same time, provides results that are otherwise similar to those
obtained with edgeR which is a state-of-art differential expression analysis method.

Conclusions: The new method for the differential expression analysis of proteomic data is available as an easy to use
Python package.

Keywords: Proteomics, Differential expression analysis, Imputation, Significance

Background
The recent availability of high-resolution omic measure-
ments has called for the creation of statistical methods
and tools to analyze the resulting data [1–4]. Proteomics,
a large-scale analysis of proteins in biomaterials such as
cells or plasma, in particular, can help elucidate molecular
mechanisms of disease, aging, and effects of the envi-
ronment [5]. Expression proteomics, quantitative study of
protein expression between samples that differ by some
variable, is used to identify novel proteins in signal trans-
duction or disease-specific proteins [6, 7]. The application
of proteomic technologies to clinical specimens has the
potential to revolutionize the treatment of many diseases:
From biomarker discovery and validation to personalized
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therapies, proteomic techniques allow a greater under-
standing of the dynamic processes involved in disease,
increasing the power of prediction, diagnosis, and prog-
nosis [8–11]. Detailed measurements of protein levels
allow for characterizing protein modifications and identi-
fying the targets of drugs [12].
The analysis of proteomic data typically involves a com-

parison of protein expression of the entire proteome
or its subproteomes between samples. However, data
from proteomic and phosphoproteomic experiments are
not error-free. Of various measurement errors, missing
values are particularly severe. They arise when signals
from some proteins are not detected by the instrument.
Due to the technical setup of measurements, proteomic
data often contain a considerable fraction of missing
(zero) values. To avoid mathematical difficulties (such
as infinite or very large logarithmic fold changes in
pairwise comparisons involving a missing value), miss-
ing values are typically removed by a process which is
referred to as imputation: All missing values are replaced

© The author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3144-3&domain=pdf
https://orcid.org/0000-0001-8865-9085
mailto: matus.medo@unifr.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Medo et al. BMC Bioinformatics          (2019) 20:563 Page 2 of 12

by samples from a given distribution [7]. Besides the
need to choose the distribution’s parameters, the often-
ignored drawback of value imputation is that it has the
potential to distort the analysis results. We use two
real datasets to show that imputation indeed signifi-
cantly alters the analysis results. We propose a method
for differential expression analysis of proteomic data
where missing values can be taken into account nat-
urally, without the need to replace them by random
numbers.
To demonstrate that the new method performs well, we

use transcriptomic data where missing values do not pose
a problem. Standard methods for differential expression
analysis, such as the edgeR package [2] which performs
well in many cases [13], can be therefore used to pro-
duce reliable results on transcriptomic data. We use the
thus-obtained results as a benchmark with which we com-
pare the results produced by the newly proposed method.
Subsequently, we introduce artificial missing values in
the analyzed data to demonstrate that the new method
is significantly more robust to the presence of missing
values than edgeR. We conclude by analyzing phospho-
proteomic data where problematic missing values occur
naturally. An implementation of the new method
in Python is available at https://github.com/8medom/
ProtRank (see “How to use the ProtRank package” section
for a brief usage description).

Results
Missing values in proteomic data and their impact
The simplest way how to deal with missing values is to
ignore them and analyze only the proteins that have no
missing values at all. This is problematic for two reasons.
First, proteomic data typically involve a large fraction
of missing values and the proteins that have no miss-
ing values can be thus correspondingly scarce. In the
case of the phosphoproteomic data analyzed later (see
“Description of the phosphoproteomic data” section for
details), for example, the overall fraction of missing values
is 43.6% and only 37.9% of all proteins have no miss-
ing values. The data on the remaining 62.1% of proteins
would be wasted in this case. Second, the missing val-
ues can contain important information: A protein can
be absent in the results not due to a measurement error
but because of actual biological processes—application of
an inhibitive treatment, for example. For this reason, we
need an approach that can analyze proteomic data where
missing values are still present.
A comparison between expression values in differ-

ent samples is usually based on logarithmic fold change
values. Denoting the counts of gene g in samples 1 and 2 as
ng,1 and ng,2, respectively, the logarithmic fold change of
sample 2 compared to sample 1 is defined as xg(1 → 2)
:= log2 ng,2/ng,1 (we use “gene count” as a generic term

for data from a proteomic/phosphoproteomic/transcrip-
tomic measurement). To avoid an undefined expression
when either of the counts is zero, a small prior count n0 is
usually added to both of them, so that the logarithmic fold
change becomes

xg(1 → 2) := log2
ng,2 + n0
ng,1 + n0

. (1)

We use n0 = 1 through the paper. However, this approach
is not effective in proteomic data where missing values
appear also in comparisons where the other count is very
large. The resulting logarithmic fold change, though not
infinite, is then still large and has the potential to distort
the statistical analysis of the data. The different patterns
of missing values in various datasets are illustrated by
Fig. 1 which shows the distributions of positive values in
pairwise comparisons involving zero and a positive count.
The distributions are shown for two different datasets: A
transcriptomic dataset analyzed in [14] and a phospho-
proteomic dataset analyzed in [Koch et al, manuscript
in preparation] (see “Description of the transcriptomic
data” section and “Description of the phosphoproteomic
data” section for the datasets’ descriptions). To allow for
easy comparison, the counts are scaled by the dataset’s
median in both cases. While in the transcriptomic data,
zeros occur in comparisons with small counts (and hence
bulk of the shown distribution is close to zero), the phos-
phoproteomic data are very different and contain a large
number of proteins whose count changes from a large

Fig. 1 The distribution of positive counts in pairwise comparisons
where the other count is zero. We compare here transcriptomic and
phosphoproteomic data. To make the two datasets directly
comparable, the positive counts are scaled by the datasets’ respective
median counts

https://github.com/8medom/ProtRank
https://github.com/8medom/ProtRank
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value (larger than, for example, the median count) to zero
or vice versa. Missing values involved in such compar-
isons are referred to irregular zeros from now on. Another
way of looking at irregular zeros is provided by the fol-
lowing probabilistic statement: For counts greater than
the dataset’s median in the phosphoproteomic dataset,
the probability that the other value in the comparison
is zero is 0.11. The same probability is 4.6 · 10−5 in the
transcriptomic dataset.
When irregular zeros are present in the data, n0 nec-

essary to shrink the logarithmic fold change values com-
puted with Eq. (1) is prohibitively large (of the order of
the median count): It would significantly shrink also the
logarithmic fold change values in comparisons without
irregular zeros, and the differential expression analysis
would be thus still distorted towards comparisons involv-
ing irregular zeros. In summary, setting n0 > 0 is useful
to shrink the logarithmic fold changes for low counts
towards zero, but n0 itself cannot solve the problem of
irregular zeros.
Methods aiming specifically at the analysis of proteomic

data acknowledge the problem of missing values and deal
with it by various “imputation” techniques. For example,
the authors of the Perseus computational platform for
proteomic data [7] suggest to replace the missing values
with values drawn from the dataset’s empirical distribu-
tion which in addition is to be scaled and shifted. While
scaling is said to prevent the imputed values from hav-
ing high weight in the subsequent statistical evaluation,
down-shifting is motivated by the fact that low-expression
proteins are more likely to remain undetected and thus
lead to zero measured counts.
Since there are typically many missing values that need

to be imputed, it is not surprising that their imputation
has the potential to dramatically change results of the sub-
sequent differential expression analysis. To demonstrate
that, we apply imputation with various values of the scale
and shift parameters (see “Imputation of missing values”
section for details) to the transcriptomic data which, as
shown in Fig. 1, are free of irregular zeros and hence the
results obtained with usual tools can be considered as
reliable. In particular, we compare the significant genes
identified by the edgeR package [2] in the original tran-
scriptomic dataset with the significant genes identified by
edgeR after all missing values are imputed. Figure 2 shows
that the impact of imputation is substantial: Around 80%
of the originally identified significantly changing genes are
lost by the recommended shift −1.8 and scale 0.5. While
comparatively better results are obtained with scale 0 and
shift either −2 or 0 (the bottom left and right corners,
respectively), around 70% of the original significant genes
are still lost. Of the two “favorable” settings, we thus use
imputation with zero shift and scale one from now on (i.e.,
the missing values are replaced with the dataset’s mean).

Fig. 2 The impact of imputation on differential expression analysis.
The fraction of the significant genes identified by edgeR in the
original transcriptomic data that are lost when the data are analyzed
by edgeR after imputing missing values with various shift and scale
parameters. Significance was evaluated with edgeR using the false
discovery rate (FDR) threshold of 0.20. Results are averaged over 30
imputation realizations

The other setting, shift −2 and 0, while comparatively
well-performing in this evaluation, is sensitive to irregular
zeros (results not shown).

Robustness of differential expression analysis methods to
irregular zeros
Having seen that the often-used imputation of missing
values does not provide a definitive answer to the prob-
lem of irregular zeros, our main contribution is to propose
a ranking-based approach to find significantly changing
genes. By contrast to R’s RankProd package [15, 16], which
is also based on ranking the genes by fold-change values,
we rank comparisons that involve a missing value sepa-
rately from those that do not involve a missing value (see
“ProtRank description” section for a detailed description).
The need for a double ranking is motivated by the fact
that, as shown in “Missing values in proteomic data and
their impact” section, it is impossible to rely on logarith-
mic fold changes when irregular zeros are present. At the
same time, the missing values are not necessarily a man-
ifestation of an erroneous or noisy measurement and can
contain useful information: If a gene goes from a posi-
tive value to zero consistently in multiple comparisons,
this may be an indication that the gene is downregu-
lated in the comparison. We propose a method that takes
both cases into account: The logarithmic fold changes and
their magnitude relatively to other genes’ fold changes
are computed for comparisons without missing values,
all comparisons where a zero count changes in a positive
count are assigned the same relatively high virtual rank,
and all comparisons where a positive count changes in
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a zero count are assigned the same relatively low rank.
Since this method is rank-based and aims in particular at
proteomic and phosphoproteomic data where the missing
values problem is particularly common, we call the new
method ProtRank.
To demonstrate the new method’s robustness with

respect to irregular zeros, we compare it with the behavior
of edgeR which is probably the most popular tool for dif-
ferential expression analysis [2] that we use both with and
without imputation of missing values. We apply the meth-
ods on the transcriptomic dataset used in the previous
section which, as we have seen, is essentially free of irreg-
ular zeros. We introduce the irregular zeros in the dataset
by choosing at random a given fraction of positive values
in the original dataset and changing them in zeros; in this
way, we obtain perturbed datasets. We aim to study how
does the noise in the particular form of zeros introduced
in the data at random influence each respective method:
EdgeR without imputation, edgeR with imputation, and
the newly introduced ProtRank.
Since the original transcriptomic dataset is essentially

free of irregular zeros, the significant genes identified by
edgeR in the original dataset provide a natural bench-
mark against which results obtained with other methods
can be compared; this set of original significant differ-
entially expressed (DE) genes is denoted O. We denote
the set of significant DE genes identified by method m
in perturbed data as Pm and compare it with the orig-
inal set O. For this comparison, we use precision and
recall which are metrics commonly used in data mining
literature [17, 18]. Precision is defined as the fraction of
the perturbed significant genes that are also original sig-
nificant genes, |Pm ∩ O| / |Pm|. Recall is defined as the
fraction of originally identified significant genes that are
also among the perturbed DE genes, |Pm ∩ O| / |O|. Both
metrics range from 0 (worst result) to 1 (best result). We
use the described approach to evaluate the original edgeR

package, edgeR with imputation, and the newly devel-
oped ProtRank method. In each case, we use the false
discovery rate (FDR) threshold of 0.20 to decide whether
a gene is significant or not. To make the impact of irregu-
lar zeros explicit, we also assess the fraction of zero counts
corresponding to the identified significant DE genes.
Figure 3 summarizes the results of the robustness anal-

ysis. EdgeR without imputation naturally obtains the per-
fect result on unperturbed data (zero fraction of added
zeros) as the benchmark DE genes are also obtained with
edgeR on unperturbed data. However, its sensitivity to
irregular zeros is high: When as few as 1% of positive
counts are turned into zeros, recall drops under 20%
(i.e., more than 80% of the originally identified signifi-
cant genes are lost). The method’s precision decays slower
but still much faster than is the case for the other meth-
ods. By contrast, edgeR with imputation is quite resistant
to additional irregular zeros as its precision and recall
decrease by roughly 40% when as much as 10% of zeros
are added in data at random. Albeit stable, the results are
quite bad with precision and recall decreasing from 0.31 to
less than 0.20 (this is in agreement with Fig. 2). ProtRank
is even more robust to irregular zeros: Its precision is sta-
ble and its recall decreases by roughly 40% similarly to
edgeR with imputation. The most important observation
is that precision and recall achieved by ProtRank are sig-
nificantly better than that of edgeR with imputation in the
whole range of perturbation fractions. ProtRank outper-
forms edgeR without imputation in terms of recall (which
is the more important of the two metrics as it quantifies
howmany of the originally found DE genes do we still find
in the perturbed data) for all perturbation fractions except
for the two smallest ones.
The last panel shows that the significant genes chosen

by ProtRank have the smallest fraction of zero counts of
the three methods. EdgeR without imputation is expect-
edly sensitive to the introduced zeros and the chosen

Fig. 3 The impact of zeros added at random in the data. Precision (a) and recall (b) of various differential expression analysis methods computed
with respect to the significant DE genes identified by edgeR in the original data. The fraction of zero counts among the identified DE genes (c)
shows how much is each method influenced by the added zeros. The error bars show the standard deviation values computed from the analysis of
10 independent perturbed sets for each fraction of added zeros
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significant genes have more than 40% of zero counts when
as few as 1% of positive counts are changed in zeros.
This shows that the irregular zeros, that we introduce at
random and without any relation to differential expres-
sion of genes, chiefly determine which genes are chosen
by edgeR as significantly differentially expressed. While
less sensitive to the fraction of added zeros itself, edgeR
with imputation also chooses significant genes with many
zero counts (that are in turn changed in positive values by
imputation). This high starting value shows that the impu-
tation process itself, albeit assumed to solve the problem
of missing values, biases the selection of significantly DE
genes towards the genes that have many missing values.
By contrast, ProtRank chooses significant genes with few
zero counts and the fraction of zero counts increases
slowly with the fraction of added zeros.
To better understand the difference between the results

produced by the three considered methods, we evalu-
ate the positions of the DE genes identified by edgeR in
the other two rankings: The ranking produced by edgeR
with imputation and the ranking produced by ProtRank
(in the rankings, the genes are ranked by the significance
of their differential expression from the most to the least
significant). In Fig. 4, we visualize the comparison using
the well-known receiver operating characteristic (ROC)
curve [19, 20] and the precision-recall (PR) curve that
has been advocated for use in biological data in [21]. The
ROC curve in Fig. 4a, especially, the inset focusing at the
top of the rankings, show that the ProtRank’s ranking has
the edgeR’s DE genes at higher positions than edgeR with
imputation does.
The reason why [21] suggest to use the PR curve instead

of the ROC curve is that the number of positive instances
(in our case represented by the correctly identified dif-
ferentially expressed genes) is much smaller than the

number of negative instances (in our case represented by
the genes that are correctly identified as not differentially
expressed). The ROC curve involves true negatives in its
computation which, due to their abundance, give rise to
ROC curves that have a large area under them; this area is
a common way to quantify a ROC curve. This is well vis-
ible in panel Fig. 4a where the areas under the two ROC
curves are 0.98 and 0.87, respectively. The PR curves in
Fig. 4b overcome this limitation and make a clear distinc-
tion between the two evaluated methods: The area under
the ProtRank’s PR curve, 0.45, is four times as large as the
area 0.11 produced by edgeR with imputation.
We finally do a reverse check and examine the posi-

tions of the significant DE genes identified by edgeR with
imputation and ProtRank, respectively, in the ranking of
genes by the significance of their differential expression
produced by edgeR. The result is shown in Fig. 4 where
it is immediately visible that the significant genes cho-
sen by ProtRank are all highly ranked in the original gene
ranking produced by edgeR without imputation. In fact,
all ProtRank’s significant genes (we use the FDR thresh-
old of 0.20 again) are in the top 2.2% of the ranking of
genes by edgeR in the unperturbed data. By contrast, a
substantial fraction of genes chosen by edgeR with impu-
tation are scattered through the lower parts of the original
gene ranking. This shows that in the absence of irregu-
lar zeros, results obtained with ProtRank are similar to
those obtained with edgeR without imputation of missing
values.

Results on the phosphoproteomic data
We now return to the phoshoproteomic data that initially
motivated the development of the statistical framework
that we introduce in this paper (see “Description of the
phosphoproteomic data” section for a detailed dataset

Fig. 4 A comparison of the significant genes and rankings obtained with respective methods. a The receiver operating characteristic (ROC) curves
based on comparing with the DE genes identified by edgeR; the bottom-left corner is magnified in the inset. b The precision-recall (PR) curves
based on comparing with the DE genes identified by edgeR. c The receiver operating characteristic (ROC) curves based on comparing with the DE
genes identified by ProtRank and edgeR with imputation, respectively, in the ranking of genes produced by edgeR on the original data
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description). Since the complete analysis of the data, sup-
plemented by extensive biological experiments, will be
part of a forthcoming manuscript [Koch et al, manuscript
in preparation], we provide here only a general evaluation
of the identified significantly differentially expressed
phosphopeptides. Without the loss of generality, we use
the data corresponding to four samples measured one
hour after irradiation (SAMT_IR1h_1, SAMT_IR1h_2,
SAYH_IR1h_1, SAYH_IR1h_2) and four correspond-
ing controls (SAMT_C_1, SAMT_C_2, SAYH_C_1,
SAYH_C_2). As explained in “Description of the phos-
phoproteomic data” section, SA, MT, and YH are three
respective mutations that the sample cells can have; labels
1 and 2 mark two biological duplicates that were available
for each mutation combination. In the measurement data,
there are 6201 peptides that have at least one positive
count in the eight aforementioned samples. The dataset
contains 31% of zero counts, many of which are irregular
zeros (i.e., they correspond to a pair of samples where
the given phosphopeptide’s count in the other sample is
larger than the median count).
The numbers of DE phosphopeptides identified by

respective approaches using the FDR threshold 0.20 are:
1278 for edgeR without imputation, 93 for edgeR with
imputation, and 45 for ProtRank. The result obtained with
edgeR without imputation is clearly excessive with more
than 20% of all peptides being identified as significantly
differentially expressed. This is due to the irregular zeros
that distort the results; this is shown by 63% of the DE
phosphopeptides’ counts being zeros, which is more than
double of the overall fraction of zero counts in the data.
EdgeR with imputation does not have a similar problem
and yields a similar number of differentially expressed
phosphopeptides as ProtRank.
To gain further insights, we evaluate median counts

(computed from the positive counts only) of the iden-
tified DE phosphopeptides, in particular in comparison
with median counts of all phosphopeptides. Denoting the
fraction of the identified DE phosphopeptides in the count
bin b as f DEb and the fraction of all phosphopeptides in
the count bin b as f 0b , the ratio f DEb /f 0b quantifies the rela-
tive representation of DE phosphopeptides from the given
count bin b.When the relative representation is more than
one, the given count bin b is over-represented among the
identified DE phosphopeptides. When the relative repre-
sentation is less than one, the given count bin b is under-
represented among the identified DE phosphopeptides.
The result is shown in Fig. 5 which shows that the

three evaluated approaches greatly differ in how their
representation changes with the median phosphopep-
tide count. While edgeR without imputation and Pro-
tRank show little bias over the whole range of median
counts, edgeR with imputation shows a strong bias against
phosphopeptides whose counts are close to the overall

Fig. 5 The relative representation of DE phosphopeptides identified
by various methods as a function of their log-transformed median
count. The representation value of one indicates that
phosphopeptides with the given median count are neither
over-represented nor under-represented among the identified DE
phosphopeptides

average count. EdgeR’s behavior is a direct consequence
of the imputation process that replaces missing values
with mean count (in our case) and thus makes it possible
that the phosphopeptides with low or high median count
can have high apparent changes between their low/high
actual counts and the average counts introduced by impu-
tation. This is well visible in Fig. 5 where bins close to
the average count are strongly under-represented, and
bins containing phosphopeptides with low/high counts
are over-represented.
To summarize the results obtained on the phosphopro-

teomic data: ProtRank yields a plausible number of DE
phosphopeptides which furthermore show no systemic
biases. By contrast, edgeR without imputation produces
an excess number of DE phosphopeptides and edgeR with
imputation is strongly skewed toward phosphopeptides
that have either low or high counts.
The complex experimental setup of this dataset allows

us to illustrate another ProtRank’s asset: The possibility to
simultaneously address all possible differential expression
patterns (see “ProtRank description” section for details).
In the case of the given dataset, for example, it is possible
that the two types of samples (SAMT and SAYH) react to
irradiation in a different way: Some phosphopeptides can
increase upon irradiation in SAMT samples and decrease
upon irradiation in SAYH samples, for example. Besides
the baseline comparison of all irradiated samples with
their counterpart controls, ProtRank makes it possible to
consider two separate groups—SAMT samples and SAYH
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samples, in this case. The rank score of each gene is then
computed in such a way that the genes that consistently
increase upon irradiation in both SAMT and SAYH sam-
ples, the genes that consistently decrease upon irradiation
in both SAMT and SAYH samples, as well as the genes
that increase upon irradiation in SAMT and decrease in
SAYH samples (and vice versa), are assigned a high rank
score. From the 45 genes identified by ProtRank as dif-
ferentially expressed, 18 increase upon irradiation in both
SAMT and SAYH, 18 decrease in both SAMT and SAYH,
6 increase in SAMT and decrease in SAYH, and 3 decrease
in SAMT and increase in SAYH. The increase in SAMT
and decrease in SAYH combination produces a particu-
larly robust signal with two of the identified genes having
FDR < 0.01.
Similar multi-directional analyses are also possible

using other tools—such as edgeR that we use here
for comparison—but they need to be manually done
separately for each combination of directions, and the
obtained results have to be compiled whilst explicitly
taking into account that they come from multiple com-
parisons. ProtRank allows the same analysis to be carried
out in two lines (first defining the groups of comparisons
to be made, second calling ProtRank’s main gene-ranking
function).

Comparison with Perseus and Proteus
We have shown so far that ProtRank overcomes the
problem of missing values without the need to impute
them and, at the same time, produces results that are in
the absence of irregular zeros to a large extent compara-
ble with results produced by the state-of-art differential
analysis tool edgeR [2]. We now proceed by briefly com-
paring the ProtRank results with the results obtained by
two other existing tools: (1) Perseus, a well-established
computational platform for proteomic data [7] which uses
imputation to deal with missing values and (2) Proteus,
a recent R package for the analysis of quantitative pro-
teomics data [22]. As we further argue in Discussion, a
comprehensive comparison of the available tools should
also include the use of synthetic datasets benchmarked
against a number of different real datasets. We see this as
an important task for future research.
With Perseus, we used the transcriptomics dataset

which, as we have seen, is essentially free of irregu-
lar zeros and EdgeR is therefore expected to produce a
meaningful differential expression analysis result. We first
log-transformed the counts and then imputed the miss-
ing values [7]. While the software offers two different
imputation approaches, the default imputation based on
the mean and the standard deviation for each sample
and the “global” imputation based on the mean and the
standard deviation for all samples, the results are quali-
tatively similar for both of them. We used the function

“multiple-sample test” to identify the genes that are dif-
ferentially expressed between the primary and recurrent
tumor samples. Despite trying various analysis settings,
Perseus identifies a small number of genes as differen-
tially expressed. We thus focus our comparison on the
top 100 most differentially expressed genes, even when
they are not marked as significant. Of them, less than 10%
are among the 114 significantly DE genes identified by
edgeR. The area under the precision-recall curve is 0.04 as
opposed to 0.45 achieved by ProtRank. In other words, the
ranking of genes produced by Perseus substantially differs
from the ranking of genes produced by edgeR. This is in
line with our previous observation that imputation has the
potential to dramatically alter the differential expression
analysis results. By changing a chosen fraction of counts
to zeros, we can further probe the Perseus’s robustness
with respect to artificially introduced zeros. When 0.02
of all counts are chosen at random and changed to zeros,
40% of the original top 100 genes remain in the top 100
on average. When the fraction of zeros introduced at ran-
dom increases to 0.10, 25% of the original top 100 genes
remain in the top 100 on average. These results are similar
to those achieved by ProtRank.
Proteus is designed to use an evidence file from

MaxQuant as input and currently lacks the possibility to
use a simple table of peptide intensities instead; to apply
Proteus on the datasets studied here so far is therefore
not possible. Instead, we use the peptide intensities pro-
duced by the example described in [22] in “Missing values
in proteomic data and their impact” section. This dataset
contains data on 34,733 peptides measured in two bio-
logical conditions, named A and B, and seven replicates
each (14 samples in total). The dataset has the properties
expected for a mass spectrometry proteomics measure-
ment: 26% of all counts are zeros and 6.5% of all A
vs. B comparisons involve irregular zeros. EdgeR is not
expected to produce high quality results for such input
data. Proteus and ProtRank yield similar numbers of sig-
nificant DE peptides, 317 and 344, respectively, for the
significance threshold of 0.05, for example. The overlap
between these two sets of DE peptides is 120 with fur-
ther 100 peptides in each set identified as DE by the other
tool at the significance level of 0.20. Similar findings follow
on the aggregated protein intensities data obtained with
the Proteus’s function makeProteinTable (the result-
ing dataset contains 3525 proteins). Proteus and ProtRank
then yield 42 and 76 significant DE proteins, respectively,
at the significance threshold of 0.05, and the overlap of
these two sets is 29. The conclusion is that the DE analysis
results obtained with Proteus and ProtRank are similar.

Discussion
We have shown that the presence of irregular zeros—
missing values that in the differential expression (DE)
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analysis occur in comparisons with substantial measured
values—in proteomics data importantly influences the
resulting lists of DE genes produced by common statisti-
cal tools such as edgeR. We stress that for other kinds of
input data, such as transcriptomics data, edgeR is a good
statistical tool that produces high-quality results.
There are two main directions that we see for the future

development of ProtRank. Firstly, the computationally
intensive bootstrap step (which is used to estimate the
false detection rate, FDR) could be replaced by an approx-
imate analytical procedure. The first motivation for such
an approach is provided by Fig. 7 where the aggregate
bootstrap scores decay exponentially at the top positions
of the gene ranking. Analytical estimates of the bootstrap
score distribution could then be used as a replacement for
the actual bootstrap procedure.
Secondly, a different recent method, Proteus, address-

ing the problem of missing values in proteomics [22] came
to our attention in the final stages of this manuscript’s
preparation.We have shown in “Comparison with Perseus
and Proteus” section that albeit similar, the results pro-
duced by ProtRank and Proteus differ in the evaluation
of numerous peptides and proteins. A detailed compar-
ison of these methods on various proteomic and phos-
phoproteomic datasets as done, for example, in [13] for
methods designed for transcriptomic data, is the natural
first step. The natural limitation of such a comparison is
that the ground truth (the “correct” list of differentially
expressed peptides or phosphopeptides) is not known.
This can be alleviated by evaluating the methods also
on synthetic datasets. Upon careful calibration, synthetic
datasets can share many of real datasets’ features which
makes the subsequent evaluation of methods more credi-
ble [23]. Combined benchmarking of methods on real and
synthetic datasets could help establish a comprehensive
robust statistical framework for the analysis of proteomic
data.

Conclusions
We propose here a novel method for differential expres-
sion analysis of proteomic and phosphoproteomic data.
The main advantage of this newmethod is that it is robust
to the missing values that are common for proteomic
and phosphoproteomic measurements. As a result, it
does not require the imputation step which is com-
monly used to eliminate the missing values [7], yet we
show here that it at the same time importantly affects
the obtained results. In data where missing values are
absent, the new method—which we refer to as Pro-
tRank because it is based on rankings—produces similar
results as edgeR which is a widely-used method for dif-
ferential expression analysis. When missing values are
artificially introduced in the data, ProtRank’s results are
more stable than the results produced by edgeR which

is a demonstration of ProtRank’s robustness to missing
values.
ProtRank requires no parameters to be fine-tuned for

the analysis. It also does not employ any normalization
of counts in individual samples as this would not change
the gene ranking that is taken into account by the method
(only the numeric fold change values would change
upon normalization). Importantly, ProtRankmakes it pos-
sible to automatically address more complex differen-
tial expression patterns such as the case discussed in
“Results on the phosphoproteomic data” section where
irradiation was applied on samples with variousmutations
and it was, in principle, possible that samples with one
mutation react to irradiation differently than samples with
other mutations. An implementation of ProtRank is avail-
able at https://github.com/8medom/ProtRank as an easy
to use Python package.

Methods
Description of the transcriptomic data The transcrip-
tomic data from head and neck squamous cell carcinoma
patient-derived cell lines have been originally analyzed
in [14] (the authors have used edgeR for the differen-
tial expression analysis). Out of the 15 cell lines used in
that study, we keep eight of them for pairwise differential
expression analysis: Cell lines UM-SCC-11A, -14A, -74A,
and -81A from primary tumors, and cell lines UM-SCC-
11B, -14B, -74B, and -81B from recurrent tumors. This
corresponds to four pairwise comparisons (recurrent vs.
primary) in total. Each sample has been measured once
with RNA sequencing which produced integer counts
of 18,369 distinct transcripts (see [14] for details of the
experimental setup). In the data, 11.9% of all counts are
zero and the median of positive counts is 932. The frac-
tion of pairwise comparisons where one count is greater
than this median and the other count is zero, is less than
0.01% (3 comparisons out of 35,359); irregular zeros are
thus essentially absent in this dataset.

Description of the phosphoproteomic data NIH3T3
mouse embryonic fibroblasts, kindly provided by Laura S.
Schmidt (NIHNCI, Bethesda, MD), were transfected with
the pBabe puro c-met WT plasmid [24] (gift from Joan
Brugge, Addgene plasmid #17493; http://n2t.net/addgene:
17493) upon site-directed mutagenesis with either the
wild-type or one of five mutated forms (M1268T, Y1248H,
S1014A, M1268T/S1014A, Y1248H/S1014A) of the MET
receptor tyrosine kinase and were irradiated with a sin-
gle dose of 10 Gy (Gammacell GC40, MDS Nordion,
Ontario, Canada). Samples from the six cell lines have
been subjected to phosphoproteomic analysis via non-
targeted mass spectrometry before irradiation, 1 h after
irradiation, and 7 h after irradiation. Since two biological
duplicates of each of the cell lines have been analyzed, the

https://github.com/8medom/ProtRank
http://n2t.net/addgene:17493
http://n2t.net/addgene:17493
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phosphoproteomic results are available for 6× 3× 2 = 36
samples in total. Integer peptide counts of 7572 unique
peptides are available for each sample. In the data, 43.6%
of all counts are zero and the median of positive counts
is 1,294,600. The fraction of pairwise comparisons where
one count is greater than this median, yet the other count
is zero is 10.8%; irregular zeros are frequent in this dataset.
An in-depth analysis of this dataset will be presented in
[Koch et al, manuscript in preparation].

Phosphoproteomic data experimental setup Cell cul-
tures were washed, scraped in phosphate-buffered saline
and spun down for 5 min at 1000 rpm. Resulting pel-
lets were resuspended in 8M urea solution containing
0.1M ammonium bicarbonate and disrupted by sonica-
tion. Supernatants were centrifuged at 12000 rpm for 10
min and protein concentration was determined by BCA
Protein Assay (Pierce). Disulfide bonds were reduced with
tris(2-carboxyethyl)phosphine at a final concentration of
5mM at 37◦C for 30 min and alkylation of free thiols was
performed with 10mM iodoacetamide at room tempera-
ture for 30 min in the dark. The solution was subsequently
diluted with 0.1M ammonium bicarbonate to a final con-
centration of 1.5M urea and digestion was performed
overnight at 37◦C by sequencing-grade modified trypsin
(Promega) at a protein-to-enzyme ratio of 50 : 1. Acid-
ification was performed by adding formic acid to a final
pH < 3 in order to stop protein digestion. Peptides were
desalted on a C18 Sep-Pak cartridge (Waters) and one-
tenth of the resulting eluate was processed individually for
total proteome analysis. Phosphopeptides were enriched
from 1mg of initial peptide mass with TiO2 as previously
described [25]. For mass spectrometry analysis, samples
were resuspended in 20μl of 2% acetonitrile, 0.1% formic
acid, and 1μl of each sample was used for injections. LC-
MS/MS analysis was performed with an Easy nLC 1000
system (Thermo) connected to an Orbitrap Elite mass
spectrometer (Thermo) equipped with a NanoFlex elec-
trospray source. Peptides were separated on an Acclaim
PepMap RSLC C18 column (150mm ×75μm, 2 um par-
ticle size, Thermo) using a gradient of 5–30% buffer B
(98% acetonitrile, 2% water, 0.15% formic acid) over 180
min at a flow rate of 300 nl/min. The Orbitrap Elite was
operated in data-dependent acquisition mode, each cycle
consisting of one MS scan followed by 15 MS/MS scans
of the most abundant precursor ions. Collision-induced
dissociation was performed with the following settings:
Isolation width, 2m/z; normalized collision energy, 35;
activation time, 10ms. Acquired MS data files were sub-
sequently processed for identification and quantification
using Maxquant version 1.5.2.8 [26]. Settings were kept as
default with the following specifications: ’First search pep-
tide tolerance’ was set to 50 ppm and ’Main search pep-
tide tolerance’ to 10 ppm. The considered modifications

were oxidation (Met) and phosphorylation (Ser/Thr/Tyr).
’Label free quantification’ and ’Match between runs’ were
enabled, with a match time window of two minutes. The
search was performed against the mouse UniProt FASTA
dataset UP000000589.

Imputation of missing values As can be seen in Fig. 6,
the bulk of the distribution of the logarithm of positive
gene counts can be well fitted with the normal distribu-
tion with mean μ0 = 7.7 and standard deviation σ0 = 1.3.
In line with [7], we thus replace the missing values with
exp(V ) where V is drawn from the normal distribution
with mean 7.7 + δσ0 and standard deviation λσ0. The
exponential transformation is needed here to go from the
logarithmic counts used for display in Fig. 6 back to the
natural range and scale of gene counts. Parameters δ and
λ are referred to as shift and scale, respectively. While [7]
recommends the choice δ = −1.8 and λ = 0.5, the inves-
tigation of the parameter space in Fig. 2 suggests δ = 0,
λ = 0 to be a better choice when imputed data are used as
input for the edgeR package and analyzed by applying its
functions calcNormFactors (to normalize the data),
EstimateDisp (to estimate the common and tagwise
dispersion in the data), glmFit (to fit a generalized linear
model), and glmLRT (to perform the likelihood ratio test
and thus determine the results’ significance).

ProtRank description Counts ng,i of all genes (g =
1, . . . ,G; we use “gene” as a generic term here) in all sam-
ples (i = 1, . . . , S) serve as input data for the analysis.
The samples are organized in C = S/2 pairwise compar-
isons (c = 1, . . . ,C) that represent a change of conditions
(before and after treatment, typically) for a given system

Fig. 6 Distribution of the logarithm of the positive counts in the
phoshoproteomic data (solid line) and the normal distribution with
μ0 = 7.7 and σ0 = 1.3 that fits the bulk of the distribution



Medo et al. BMC Bioinformatics          (2019) 20:563 Page 10 of 12

(a cell line or a patient). The comparisons are further
organized in groups of comparisons that are expected
to go in the same direction. In the analysis described in
“Results on the phosphoproteomic data” section, one
group of comparisons includes SAMT samples and the
other group of comparisons includes SAYH samples. If
the change is expected to be in the same direction in all
samples (as would be the case when analyzing data from
biological or technical duplicates of a system), there is only
one group including all analyzed sample comparisons.
The opposite extreme where each comparison forms a
separate group is also possible, but groups involving more
comparisons (including duplicates of the same condi-
tions or comparisons of several samples that are expected
to react uniformly) are likely to produce better results.
Denoting the set of all comparisons as C, we can write
C = {G1, . . . ,GN } where N is the number of comparison
groups. Then group Gn is composed of individual com-
parisons, Gn = {cn,1, . . . , cn,Mn} where Mn is the number
of comparisons in group n. Finally, comparison cn,j is com-
posed of two samples, cn,j =

{
sBn,j, sAn,j

}
which correspond

to the sample before and after treatment, respectively.
We first consider a single comparison of samples sBn,j

and sAn,j. For all genes g that have been registered in both

these samples, we denote their number as �
(
sBn,j, sAn,j

)
, we

compute their logarithmic fold change values

xg
(
sBn,j → sAn,j

)
= log2

ng,sAn,j + n0
ng,sBn,j + n0

(2)

and consequently compute their rank rg
(
sBn,j → sAn,j

)
by

the logarithmic fold change from the highest (ranked 1)
to the lowest

[
ranked �

(
sBn,j, sAn,j

)]
. This rank is further

rescaled to the rank score

σg
(
sBn,j → sAn,j

)
=

rg
(
sBn,j → sAn,j

)
− 0.5

�
(
sBn,j, sAn,j

) (3)

which, thanks to the shift by 0.5, is symmetrically dis-
tributed in the range [ 0, 1] (the lowest rank score is as far
from zero as the highest is from one). The rank score σ is
the basis of ProtRank’s gene ranking.
Before proceeding, we have to assign a rank score to

the genes that have zero counts in either (or both) of the
compared samples. Since the change from a zero count
to a positive count corresponds to a large positive loga-
rithmic fold change, we assign those pairs uniform rank
score σ0 which is the method’s parameter. We set σ0 =
0.1 which corresponds to assigning the change from zero
to a positive count the same score as assigned to a pair
of two positive counts with the 10th percentile logarith-
mic fold change. In general, lower values of σ0 result in

a higher fraction of zero counts among the identified dif-
ferentially expressed genes. The precise choice of σ0 is
made less important by Eq. (4) which log-transforms the
computed scores. Analogously, the change form a positive
count to zero corresponds to a large negative logarithmic
fold change.We assign those pairs with score 1−σ0 which
is the same as the score assigned to a pair of two positive
counts with the 90th percentile logarithmic fold change.
Finally, pairs with two zero counts are ignored in the com-
putation of the final score because they provide no useful
information for the differential expression analysis.
To rank the genes based on all comparisons, we now

have to aggregate individual rank scores into a final rank
score. Similarly to [15, 16], this is done by multiplying the
logarithm of individual rank scores from all comparison
groups as

N∏
n=1

Mn∏
j=1

[
− ln σg

(
sBn,j → sAn,j

)]
. (4)

Terms corresponding to comparisons involving two zero
counts are ignored from the aggregation process. To
understand why the logarithmic transformation here is
preferable to directly multiplying individual rank scores,
consider the case where a gene has the largest positive
logarithmic fold change of all in one comparison and the
largest negative logarithmic fold change in another one.
Assuming that there are, for example, N = 5000 genes
in total, the respective rank scores are 0.5/N = 10−4 and
1− 0.5/N = 1− 10−4, respectively. Their direct multipli-
cation then yields approximately 10−4 which is the same
value as a gene whose logarithmic fold change is 50th
largest in both cases (both individual rank scores would
then be approximately 10−2). This is obviously an unde-
sired outcome as the two mentioned genes are far from
being similarly differentially expressed. The problem is
overcome by aggregating according to Eq. (4): The first
gene then scores 9.21 × 10−4 ≈ 10−3 which is far less
than the second gene whose score is 4.6 × 4.6 ≈ 21.2.
In other words, Eq. (4) favors the genes whose expression
changes similarly in all comparisons at the cost of genes
whose expression changes wildly in different directions.
Given the final score obtained with Eq. (4), genes with

the highest final rank score are candidates for differen-
tially expressed genes. However, this would seek only for
genes with small rank score (that is, large positive logarith-
mic fold change) in all comparisons. To achieve our goal
of allowing to search for genes with different direction of
change in respective comparison groups, we introduce the
set of group directions D = {d1, . . . , dN }, where dn = −1
corresponds to searching for genes with large negative
logarithmic fold change in group n (i.e., high rank score
σ ) and dn = 1 corresponds to searching for genes with
large positive logarithmic fold change in group n (i.e., low
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rank rank score σ ). The final rank score is then computed
as the minimal rank achieved out of all possible group
directions,

σg = min
D

N∏
n=1

Mn∏
j=1

[
− ln

(1
2

− dn
2

+dn σg(sBn,j → sAn,j)
)]

,

(5)

where the inner-most term simplifies to σg
(
sBn,j → sAn,j

)

when dn = 1 (seeking for genes upregulated in group n)
and to 1 − σg

(
sBn,j → sAn,j

)
when dn = −1 (seeking

for genes downregulated in group n). Terms correspond-
ing to comparisons involving two zero counts are again
ignored from computing the aggregate score. Genes are
then ranked by their final rank score from the highest to
the lowest.
To decide which genes are significantly differentially

expressed in the data, we use nonparametric boot-
strap [27, 28]: We create simulated score tables by
randomizing the gene rank scores for each individual
comparison. The original final rank scores of the genes
are then compared with their final rank scores in boot-
strap realizations. This allows us to determine which rank
scores in the original data are perhaps small but still likely
to occur by chance, and which are so small that they cor-
respond to differentially expressed genes (see Fig. 7 for an
illustration). Now take gene g that is ranked rg by Eq. (5);
the most differentially expressed gene has rank 1. In each
bootstrap realization, we compute the number of genes
whose final rank score is better than the real final rank

Fig. 7 The rank plot of the gene rank score computed by ProtRank in
the transcriptomic data (real and bootstrapped data). The shaded
region indicates the standard deviation in bootstrap realizations. At
the FDR threshold of 0.20, ProtRank finds 116 significant DE genes. In
the bootstrap data, there are 23 genes that have a better average
score than the 116th gene in the real data (23/116 ≈ 0.198)

score of gene g, and compute their average number Ng
over all realizations. The false discovery rate for gene g
is then estimated as Ng/rg . As one proceeds down the
ranking, the quantity Ng/rg can sometimes decrease. In
such a case, we assign the gene with the false discov-
ery rate estimated for the previous better-ranked gene.
This forces the estimated false discovery rate to increase
monotonously.

How to use the ProtRank package A Python imple-
mentation of the new method can be downloaded
from https://github.com/8medom/ProtRank. The github
repository contains the package file ProtRank.py as well
as the synthetic dataset sample_dataset.dat and
the Python script sample_dataset_analysis.py
which provides a simple example of how to use the Pro-
tRank package.
The elementary package usage comprises two steps:

loading the data for analysis using load_data func-
tion and carrying out the differential expression analysis
using rank_proteins function. To analyze the afore-
mentioned synthetic dataset, the minimal example is:

what_to_compare = [[[’A1’, ’B1’],
[’A2’, ’B2’], [’A3’, ’B3’], [’A4’, ’B4’]]]

description = ’A_vs_B’
dataset = ProtRank.load_data(’

sample_dataset.dat’)
significant = ProtRank.rank_proteins(

dataset, what_to_compare, description)

Variable significant stores the list of the identified
differentially expressed proteins (identified by the index of
the corresponding rows).
In addition, basic statistical properties of the dataset

can be displayed using data_stats function, and the
logarithmic fold changes computed for selected rows (typ-
ically those corresponding to the identified differentially
expressed genes; we can use the list significant cre-
ated by the code above, for example) can be visualized
using plot_lfc function.

Availability and requirements
Project name: ProtRank
Project home page: https://github.com/8medom/
ProtRank
Operating system: Platform independent
Programming language: Python
Other requirements: Python packages Numpy, Scipy,
Pandas, Matplotlib
License: GNU General Public License v3.0
Any restrictions to use by non-academics: None

Abbreviations
DE: differentially expressed (genes); FDR: false discovery rate; PR:
precision-recall (curve); ROC: receiver operating characteristic (curve)
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