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In our paper (1), we argue for strong bias in the arrival of
variation toward phenotypes with simple descriptions. Eval-
uating evidence for such hypotheses about developmental
bias is hard because one needs to answer counterfactual
questions (2, 3). Not only “What do we observe in nature?”
but also “What could have happened, but did not occur?”
We therefore focused on relatively simple systems where
such questions are potentially tractable. For protein com-
plexes, this bias translates into a hugely enhanced proba-
bility of obtaining symmetric structures. For RNA structure
and a gene regulatory network, the pattern of simpler
outcomes is similarly pronounced, but has a less evocative
interpretation.

The interesting comment of Ocklenburg and Mundorf
(4) provides an opportunity to discuss the big question of
whether such developmental bias also carries through for
evolution at larger lengths-scales. A good place to start
may be the classic examples of large-scale structures that
are generated by relatively simple algorithmic processes
such as the fractal structure of lungs and vasculature, the
shapes of plants (5), and, potentially, brain structure. While
the morphological patterns observed on these scales are
algorithmically simple, they are not necessarily symmetric
(symmetry being a special case of the more general bias
toward simplicity).

The second big question, which lies at the heart of the
comment (4), is whether nervous systems and brain archi-
tecture are examples where asymmetry has a functional
advantage in biology. We see no reason to disagree. In-
deed, complex/asymmetric structures abound across bio-
logical scales, from molecular machines, through cellular
and tissue structures, to organismal body plans. In many
cases, functional advantages of asymmetry can be deter-
mined. Even protein clusters show small deviations from
perfect symmetry, in part because perfect symmetry creates
unnatural chemical bonds and angles at the interfaces
between the units (6, 7). Positive and negative adaptive
pressure away from perfect symmetry may also hold for

brains. Interestingly, functional hemispheric asymmetries
are much stronger than anatomical asymmetries, suggest-
ing a complex evolutionary coupling between function and
structure (8).

Finally, we predict two measurable consequences of this
balancing between a general favoring of simplicity from the
algorithmic nature of evolution and specific selective pres-
sures on form. Firstly, earlier evolutionary morphologies
should be simpler than later ones, where there has been
time to explore a larger set of rarer potential variation that
may, in turn, be more adaptive. Secondly, random muta-
tions should lead to simpler structures, and possibly even
recapitulate evolutionary histories. We cite examples from
mammalian dentition (9) and leaf formation in angiosperms
(10) in our discussion section, and we could include others
such as protein complexes (11). Could these specific hypoth-
esized effects, or other signatures of the interplay between
bias in the arrival of variation and the adaptive pressures
of natural selection, be observed in the evolution of brains?
Surely such questions rank among the greatest scientific
challenges of our time.
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