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Previous studies have demonstrated differences of clinical signs and functional brain network organizations be-
tween the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences un-
derlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22
left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging.
After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was
applied to classify the leftmTLE from the rightmTLE and extract the anatomical connectivity differences between
the left and rightmTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right
mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls.
Comparedwith the rightmTLE, the leftmTLE exhibited a different connectivity pattern in the cortical-limbic net-
work and cerebellum. The majority of the most discriminating anatomical connections were located within or
across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical net-
work alterationsmay give rise to a portion of the complex of emotional andmemory deficit between the left and
rightmTLE.Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which
exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The
current study demonstrated that anatomical connectivity differences between the left mTLE and the right
mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left
and right mTLE.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Epilepsy is a chronic brain disorder affecting about 1% of the popula-
tionworldwide,whilemesial temporal lobe epilepsy (mTLE) is themost
common type of intractable epilepsy (Almeida et al., 2012)

Recent studies have reported default mode (Liao et al., 2011;
McCormick et al., 2013), language (Waites et al., 2006) and sensorimo-
tor network (Voets et al., 2012) disturbances in mTLE, suggesting that
mTLE is referred to as a systemdisorder involving network dysfunctions
(Bernhardt et al., 2011; Engel, 2001; Riederer et al., 2008; Waites et al.,
2006). The left and the rightmTLE are reported to exhibit different clin-
ical performances in emotion, cognition and verbal memory (Hermann
et al., 2008). Resting-state fMRI studies showed that the left and right
mTLE differed in default mode network (Voets et al., 2012), memory
and cognitive network organization (Doucet et al., 2013). Generally, it
is reported that left TLE patients have more marked cognitive disorders
.edu.cn (D. Hu).

. This is an open access article under
and impaired executive functions than right TLE patients (Pereira et al.,
2010). However, anatomical connectivity, underlying functional vari-
ance between the left and right mTLE, is seldom adopted to investigate
the direct anatomical differences between the left and right mTLE. As
the left and the right mTLE with HS have visually the same brain lesion,
only the side matters, the anatomical differences in the left and right
mTLE may reveal the variation in neuropathology between them.

Besson et al. demonstrated the anatomical connectivity variance be-
tween mTLE and controls, however, no significant connectivity differ-
ences were observed in direct univariate statistical comparison of the
leftmTLE versus the rightmTLE (Besson et al., 2014). The difficulty in in-
vestigating the direct anatomical connectivity differences between the
left and right mTLE is possibly due to the limitations of conventional
univariate statistical analysis, which consider the connections indepen-
dently. Because of the complexity of neuronal networks, the anatomical
connectivity differences between the left and right mTLE are encoded
by multiple connections which could likely be detected by multivariate
pattern analysis (Walther et al., 2009). Multivariate pattern analysis
takes inter-regional correlations into account (Shen et al., 2010) and is
therefore may have increased sensitivity in extracting stable patterns
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Demographic and clinical data.

Variable Left mTLE Right mTLE Control p-Value

Sample size 22 21 39
Gender (M/F) 14/8 11/10 22/17 0.45a*
Age (median,
range in years)

26.2 ± 7.4
(18–42)

28.33 ± 7.8
(18–43)

26.11 ± 7
(18–44)

0.97a*

Education (years) 11.1 ± 2 11.5 ± 2.3 11.4 ± 2.28 0.82a*
Duration of episode
(years)

12.2 ± 7 12.9 ± 7.4 0.74b*

Onset of epilepsy
(years)

14 ± 9.9 15.6 ± 9.8 0.59b*

mTLE = mesial temporal lobe epilepsy; M = male; F = female.
a Pearson3s chi-square test.
b Two-sample t-test.
* No significant difference between groups (significance defined as p b 0.05).
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from neuroimaging data and detecting subtle and spatially distributed
differences in the brain (Pereira et al., 2009b); as such,multivariate pat-
tern analysis provides a promising approach for investigatingmTLE that
is likely to affect networks of the brain (Gong et al., 2011). Compared
with group analysis, multivariate pattern analysis is capable of
extracting stable structural or functional patterns from neuroimaging
data, and can identify potential neuroimaging-based biomarkers to dif-
ferentiate patients from controls at an individual subject level (Pereira
et al., 2009a; Zhu et al., 2008). In fact, there has been increasing interest
in multivariate pattern analysis methods to investigate network distur-
bances in brain-network diseases such as depression (Zeng et al., 2012),
schizophrenia (Shen et al., 2010) and Alzheimer3s disease (Zhou et al.,
2010). Therefore, multivariate pattern analysis should be well suited
to explore the direct anatomical connectivity differences between the
left and right mTLE.

Clinically speaking, to study the variation of neuropathology be-
tween the left and rightmTLE and to provide a biomarker for identifica-
tion of them, it would be valuable to investigate the direct differences
between the left and right mTLE from connectivity perspective. In the
current study, we therefore adopted multivariate pattern analysis to
characterize the direct anatomical network differences between the
left and right mTLE.
2. Materials and methods

2.1. Ethics statement

This studywas approved by the Research Ethics Review Board of the
Institute of Mental Health of Southern Medical University. Each partici-
pant was informed of the details of the project, and written informed
consent was obtained from all participants in accord with the standards
of the Declaration of Helsinki. We confirmed that all potential partici-
pants who declined to participate or otherwise did not participate
were eligible for treatment (if applicable) and were not disadvantaged
in any way by not participating in this study. We certify that we have
participated sufficiently in the work to take public responsibility for
the appropriateness of the experimental design and method, and the
collection, analysis, and interpretation of the data. We have reviewed
the final version of the manuscript and approve it for publication. We
certify that this manuscript has not been published in whole or in part
nor is it being considered for publication elsewhere. In addition, the au-
thors of this manuscript have no conflicts of interest.
2.2. Participants

We enrolled 43 consecutive right-handed patients suffering from
unilateral HS and mTLE who received a presurgical evaluation at the
Guangdong 999 Brain Hospital. The diagnosis and lateralization of the
seizure focus to the left mTLE (n = 22) or the right mTLE (n = 21)
that were determined based on a comprehensive evaluation, including
a detailed history, video-EEG telemetry and neuroimaging. An increase
in the T2 fluid-attenuated inverted recovery signal in the hippocampus
was used as the diagnostic criterion for HS, and the site of HS was
concordant with the epileptogenic site in all patients. None of the pa-
tients had a mass lesion (including tumor, vascular malformation or
malformations of cortical development) or suffered from traumatic
brain injury or any psychiatric disorders, but all patients experienced
secondary generalized seizures. After MRI acquisition, all patients re-
ceived anterior temporal lobectomy. Following qualitative histopatho-
logical analysis, HS was detected in all patients. So far, there is no
seizure recurrence in post-operation patients. Thirty-nine age-,
gender- and education-matched right-handed healthy control partici-
pants were recruited for this study. All controls were healthy and free
of neurological or psychiatric disorders at the time of the study. The de-
mographic and clinical data are presented in Table 1.
2.3. Imaging protocol

All participants were scanned using a 1.5 T Philips Intera MR
scanner. During scanning, foam pads were used to reduce head
motion and scanner noise. Diffusion-weighted images were obtained
using a single-shot echo-planar imaging sequence according to the
following parameters: repetition time (TR) = 11,000 ms; echo
time (TE) = 71.6 ms; field of view (FOV) = 230 × 230 mm; matrix
size = 144 × 144; voxel dimensions = 1.6 × 1.6 × 2 mm; slice thick-
ness = 2 mm; 32 non-collinear diffusion directions with a b-value of
800 s/mm2 and one additional volume without diffusion weighting
(b=0 s/mm2); and 73 transverse slices without gaps, covering the en-
tire brain.We also acquired high-resolution 3Dbrain anatomical images
using a T1-weightedMP-RAGE sequence according to the following pa-
rameters: TR = 25 ms, TE = 4.6 ms, FOV = 240 × 240 mm, matrix
size=256 × 256, and 140 contiguous axial slices with slice thickness=
1 mm.

2.4. DTI data processing

Images obtained in DICOM format were initially converted to
ANALYZE format. Subsequently, the diffusion tensor images were
corrected for distortions caused by head motion and eddy currents
using affine registration in Eddy Current Correction. After completing
these preprocesses, the resulting images were brain extracted using
the Brain Extraction Tool (Smith, 2002), and a diffusion tensor model
was fit to each voxel using DTIFit to generate images of FA and other
parameters.

2.4.1. Cortical parcellation
One critical step in network construction was the parcellation of the

cortex into regions of interest (ROIs) (Li et al., 2012). Here, we adopted
an automatic ROI parcellation method to parcellate the cortex into 116
ROIs, which comprised the nodes in the network (Fang et al., 2012).
First, we registered the b0 images to T1-weighted images. Then,we reg-
istered the transformed T1-weighted images to the T1-ICBM152 tem-
plate in MNI space (Andersson et al., 2007). Finally, the resulting
transformation matrix was inverted to warp the automated anatomical
labeling atlas to the diffusion-MRI native space.

2.4.2. White matter probabilistic tractography
For each DTI set, the Gaussian kernel size was set to 6 for smoothing

prior to reconstruction. Then, the local probability distribution of the
fiber directions was estimated for each voxel using BedpostX (Behrens
et al., 2003b). Here, we selected a computational model that enabled
the automatic estimation of two fiber directions within each voxel,
which helped to alleviate the fiber-crossing problem and improved
the fiber tracking sensitivity in the brain. We adopted ProbtrackX for
probabilistic tractography, which tracked fibers between each pair of
ROIs by sampling 5000 streamline fibers per voxel using a turning
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threshold of 60 degrees. All toolboxes in data processing were included
in the FMRIB Software Library3s Diffusion Toolbox (FSL) (Smith et al.,
2004).

2.4.3. Network construction
We combined the output of the cortical parcellation and white mat-

ter tractography steps to create an adjacencymatrix of brain connectiv-
ity. Every ROI in the cortical parcellation became a node in the graph
(Sporns, 2011). The ROI associated with node v is denoted as ROI(v). If
ROI(v) contained n voxels, the total number of fibers connecting to
ROI(v) was 5000 × n. Given the number of fibers from ROI(v) to
ROI(u) as m, the connections between the nodes ROI(v) and ROI(u)
were defined as edge e (v, u) = m

5000�n . The fibers estimated from
ROI(v) to ROI(u) did not necessarily match the fibers estimated from
ROI(u) to ROI(v) because the seed location was randomized in probabi-
listic tractography. The connectivity strength between ROI(v) and

ROI(u) was defined as E (v, u) = e ðv ; uÞ þ e ðu ; vÞ
2 . Thus, we obtained a

symmetric adjacency matrix of 116 × 116 nodes for each participant
(Behrens et al., 2003a). We applied a threshold value of 0.01 to reduce
false-positive connections between pairs of ROIs (Gong et al., 2009). Re-
moving the diagonal elements, we selected the upper triangle elements
as the classification features. The construction process is displayed
graphically in Fig. 1.

2.5. Feature selection and classification

2.5.1. Analysis of whole-brain connections
Due to noise, low image resolution, registration error and individual

differences, the highly discriminating features, which accounted for
only a small portion of the entire feature matrix, were obscured. Thus,
our initial step was to select the most discriminating features to con-
struct the feature space for further analysis. We applied a two-sample
t-test to identify the features that were significantly different between
groups. These significantly different features were considered the fea-
tures that had the most discriminating power. As a manifold learning
Fig. 1. Extraction of awhole-brain anatomical network. TheDTI image is presented in a re-
constructed color-coded tensor map, showing the directions of the principal axis of diffu-
sion using the standard scheme. Blue codes for the superior–inferior, red for left–right, and
green for anterior–posterior orientation. (1) Cortical parcellation. The DTI images are
mapped with an AAL atlas in the diffusion-MRI native space. (2) Probability distribution
estimation. The computationalmodel enabled the automatic estimation of twofiber direc-
tions within each voxel. The color-coding of the estimated fibers is based on a standard
RGB code applied to the vector at every segment of each fiber. Blue indicates the rostro-
caudal direction; red indicates themedio-lateral plane; and green indicates thedorso-ven-
tral orientation. (3) Whole-brain anatomical network construction. Probabilistic
tractography is performed between each pair of ROIs, with only direct connections
being retained. Steps 1 and 2 are combined to construct the whole-brain anatomical
network.
technique, locally linear embedding (LLE) is capable of obtaining a
low-dimensional embedding of the data while preserving the intrinsic
data structures (Roweis and Saul, 2000). Therefore, we adopted LLE to
reduce the feature space dimensionality to amoremanageable level. Fi-
nally, a support vector machine (SVM) with the default Gaussian radial
basis function kernel was applied for classification (Cortes and Vapnik,
1995). Here, we set up two-way group comparisons in turn for the left
mTLE, right mTLE and controls. Additionally, we used a three-
way LIBSVM with default parameters to identify the left mTLE, right
mTLE and control subjects in a single classification. The LIBSVM adopts
a series of one-against-one comparisons to accomplish multi-class
classification.

2.3.2. Cross-validation and significance assessment
Because the sample size is limited in this study, we adopted a leave-

one-out cross-validation (LOOCV) strategy to estimate the generaliza-
tion rate (GR) of the SVM classifier. The performance of each classifier
was quantified for its sensitivity (SS), specificity (SC) and GR based on
the results of the LOOCV. The SS indicates the proportion of patients
that were classified correctly, and the SC represents the proportion of
controls that were classified correctly. GR represents the overall propor-
tion of correctly classified samples. We adopted the same strategy (fea-
ture extraction, SVM and LOOCV) for the two-way group comparisons.

To assess the statistical significance of the observed classification ac-
curacy values, we applied permutation tests to evaluate the probability
of obtaining GRs higher than those obtained using the correct labels by
chance. Given the null hypothesis that the observed group differences
could have occurred by chance when classifying randomly re-labeled
data, we randomly assigned labels to each image and repeated the en-
tire cross-validation procedure 10,000 times (Dosenbach et al., 2010).
We counted the number of times that the GR for the permuted labels
was higher than that obtained using the correct labels. We derived a p
value for each classification by dividing this number by 10,000.

2.5.3. Analysis with temporal lobe masked out
To assess the direct influence of HS, we repeated the two-way group

comparison analyses using connectionswith temporal lobemasked out.
We removed the connections involving temporal lobe ROIs bilaterally
and took the remaining connections as features in comparison. The
comparison analyses were performed according to the same strategy
and parameters as that in the whole-brain classification.

3. Results

3.1. Whole-brain classification

Using the LOOCV strategy, the SVM classifier achieved 93.0% accura-
cy for the left mTLE versus the right mTLE, 93.4% accuracy for the left
mTLE versus controls and 90.0% accuracy for the rightmTLE versus con-
trols. Three-way classification showed a total accuracy of 86.6% (for de-
tails, see Table 2).
Table 2
Comparison of classification performance.

Features Result

GR SS SC PT p-value

LTLE vs RTLE 93.0% 95.5% 90.5% b0.0001
LTLE vs controls 93.4% 81.8% 100.0% b0.0001
RTLE vs controls 90.0% 81.0% 94.9% b0.0001
LTLE vs RTLE (temporal lobe mask) 90.7% 95.5% 85.7% b0.0001
LTLE vs controls (temporal lobe mask) 90.2% 81.8% 94.9% b0.0001
RTLE vs controls (temporal lobe mask) 88.3% 81.0% 92.3% b0.0001

LTLE RTLE Control Accuracy
Three way classification 86.4% 81.0% 89.7% 86.6%

GR=generalization rate; SS=sensitivity; SC=specificity; PT=permutation test; LTLE /
RTLE = left/right mesial temporal lobe epilepsy; vs = versus; ROI = region of interest.
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Because the training data differed for each LOOCV, the selected fea-
tures varied slightly in each LOOCV. However, 43, 97 and 94 discrimi-
nating features, referred to as the consensus features (Dosenbach
et al., 2010), were detected in every LOOCV for the left mTLE versus
the right mTLE, the left mTLE versus controls and the right mTLE versus
controls, respectively. These three sets of consensus features were con-
sidered the most discriminating features in the classification. The left
mTLE exhibited variant connectivity patterns from the right mTLE in
cortical-limbic network and cerebellum (Fig. 2, Table S1). Several ROIs,
such as the orbitofrontal gyrus, insula, cingulate cortex, precuneus, hip-
pocampus and parahippocampal gyrus, exhibited high region weights
in the classification of the left mTLE versus the right mTLE. The
orbitofrontal gyrus showed the greatest discriminative power in the
classification and the anatomical connections between the orbitofrontal
gyrus and the limbic area, the middle and superior prefrontal cortices
were more decreased in the right mTLE than in the left mTLE. Addition-
ally, connections from the hippocampus and parahippocampal gyrus to
the cerebellum and occipital cortexmay play important role in the neu-
ropathology ofmTLE. All the consensus connections were diminished in
both the left and the right mTLE compared to the controls (for detail,
please see SI, Tables S2 and S3). However, the discriminating connec-
tions in cerebellum and connections with occipital gyrus and ACC
were more decreased in the left mTLE compared to those in the right
mTLE. For visual assessment, the diameter of the sphere was scaled by
the corresponding region weight of the ROI (Fig. 2).

3.2. Classification using a temporal lobe mask

Classification was also performed on the connections in which the
temporal lobe was not involved. The classifications for the left mTLE
versus rightmTLE, leftmTLE versus controls and rightmTLE versus con-
trols resulted in accuracies of 90.7%, 90.2% and 88.3%, respectively
(Table 2).

4. Discussion

In this study, we adopted a probabilistic diffusion tracking method
and multivariate pattern analysis to investigate the anatomical connec-
tivity differences between the left and right mTLE. This study demon-
strated that the left mTLE can be distinguished from the right mTLE
Fig. 2. Region weights and distribution of the consensus anatomical connections. The results
displayed on a surface rendering of the brain. The thickness of the connections adjusts accord
and increased connectivity in the left mTLE compared to the right mTLE. The connections are a
connections in the cerebellum and connections with occipital gyrus and ACC were more decrea
resents the corresponding regionweight of the ROI. The ROIs are color-coded according to brain
cerebellar cortex; deep blue= temporal cortex; purple=occipital cortex). R=Right hemisphe
sup= superior; ORB= orbital frontal; SFG= superior frontal; ACG= anterior cingulum; SMA
PUT= putamen; HIP = hippocampus; PHG= parahippocampal; TPO = temporal pole; CUN=
parietal; PoCG = postcentral; Cer = cerebelum.
using anatomical connectivity with satisfactory classification accuracy
(93.0%) and sensitivity. Moreover, the majority of different connections
between the left mTLE and right mTLE were located in cortical-limbic
network and cerebellum.
4.1. Different anatomical networks between the left and right mTLE

4.1.1. Cortical-limbic network
In direct comparison of the left and right mTLE, the left mTLE

showed different connectivity patterns from the right mTLE in
cortical-limbic network, involving cortical connections with limbic
lobe such as the orbitofrontal gyrus, insula, cingulate cortex, hippocam-
pus and parahippocampal gyrus. The frontal lobe and limbic lobe exhib-
ited the largest region weights in this study. The frontal lobe represents
a major route of seizure propagation from the mesial temporal focus,
and impaired emotional and cognitive functions of frontal lobe have
been reported in TLE (Takaya et al., 2006). Different connections of the
orbitofrontal cortex with other prefrontal cortical regions (Cavada
et al., 2000) and limbic areas such as insular and putamen (Phillips
et al., 2003) (Lothe et al., 2008) may be related to variation in emotion
regulation between the left and right mTLE (Cardinal et al., 2002). The
ipsilateral hippocampus and parahippocampal gyrus are key compo-
nents in the generation and propagation of seizure in mTLE subserving
memory (Pereira et al., 2010; Sehatpour et al., 2008), and altered con-
nections to the hippocampus and parahippocampal gyrus may be relat-
ed to deficits in encoding episodic and working memories observed in
mTLE (Dörfel et al., 2009; Ranganath, 2010; Squire and Zola-Morgan,
1991). The cingulate cortex, an integral part of the limbic system, is a
critical region involved in emotion processing (Hadland et al., 2003)
andmemory (Kozlovskiy et al., 2012; Kozlovskiy et al., 2013). The ante-
rior cingulate cortex, connectingwith the frontal cortex, makes it a cen-
tral station for processing top-down and bottom-up stimuli and
assesses the salience of cognition, emotion and memory (Bush et al.,
2000; Kozlovskiy et al., 2013). The posterior cingulate cortex together
with precuneus and thalamus are involved in mediation of attention,
motivation, emotion and memory (Maddock et al., 2001; Maddock
et al., 2003; Pearson et al., 2011). Different connections of the cingulate
cortexwith the frontal cortex, thalamus and precuneusmay account for
the different disturbances in emotion andmemory between the left and
right mTLE. Given this evidence, it was tempting to speculate that the
of classification for the left mTLE versus the right mTLE. The consensus connections are
ing to their connectivity strength. Green and orange connections represent the decreased
ll decreased in the left and right mTLE compared to controls. However, the discriminating
sed in the left mTLE compared to those in the right mTLE. The diameter of the sphere rep-
areas (red= frontal cortex; orange= limbic cortex; yellow=parietal cortex; sky blue=
re, L= left hemisphere.med=medial;mid=middle; ope=opercular; tria= triangular;
= supplementary motor area; INS = insula; AMYG= amygdala; PCG= post cingulum;
cuneus; MOG=middle occipital; PCUN= precuneus; LING = lingual; SPG= superior

Image of Fig. 2
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altered cortical-limbic network could lead to different clinical perfor-
mances in emotion and memory between the left and right mTLE
(Doucet et al., 2013).

4.1.2. Cerebellum
Relative to the right mTLE, the left mTLE showed connectivity varia-

tion in the cerebellum, including several abnormal connections be-
tween the cerebellum and the limbic regions. The posterior cerebellar
lobe is primarily involved in cognitive function (Stoodley, 2012) and
the atrophy of the posterior cerebellar lobe has been found to be associ-
ated with the chronicity of epilepsy (Oyegbile et al., 2011). The vermis
has long been labeled the limbic cerebellum subserving themodulation
of affective processing and emotion (Bobee et al., 2000; Stoodley and
Schmahmann, 2010). In addition, the cerebellum has anatomical con-
nections with the limbic regions, such as the parahippocampal, which
are involved in emotion arousal (Zeng et al., 2011). We speculated
that the aberrant cerebellar connectivity and their connections with
the limbic regions may partially underlie the divergent emotional dys-
function between the left and right mTLE.

4.2. Classification

In the present study, based on pair-wise comparisons, the left mTLE
was identified from the rightmTLEwith 93.0% accuracy, 93.4% of the left
mTLEwere differentiated from the controls and 90.0% of the rightmTLE
were differentiated from the controls. The results from permutation
tests and receiver operating characteristic (ROC) curves, displayed in
Figs. S1 and S2, also demonstrated the efficiency of the classifier, sug-
gesting that the most discriminating anatomical connections could
serve as biomarkers of mTLE and seizure localization. As the patients
in this study experienced secondary generalized seizures, it is hard to
identify the left mTLE from the right mTLE from the clinical perfor-
mances. The classifier distinguished them from each other, indicating
that our classifier may be effective while clinical performances are less
indicative in seizure localization. To assess the direct influence of HS,
we focused on additional classifications using connections with the
temporal lobe masked out. The classification achieved 90.7% accuracy
for the left mTLE versus the right mTLE, 90.2% accuracy for the left
mTLE versus controls and 88.3% accuracy for the rightmTLE versus con-
trols, respectively (permutation test and ROC results are displayed in
Fig. S1 and Fig. S2). These results suggested that focus showed little im-
pact in classification and our classifier can be used in mTLE with no vi-
sual lesion.

Most MRI classification studies focus on two-group comparisons.
However, the potential categories are usually not binary in clinical prac-
tice but include several distinct possibilities; for instance, classifying the
left mTLE versus right mTLE versus controls; major depression versus
bipolar depression versus controls and patients versus healthy siblings
versus controls. Therefore, it is rather practical to perform three-way
classifications for clinical applications. We included the left mTLE,
right mTLE and controls for three-way classification in a single analysis.
The accuracy for this three-way classification was 86.6% (left mTLE ac-
curacy = 86.4%; right mTLE accuracy = 81.0%; control accuracy =
89.7%). These results confirmed that the left mTLE can be identified
from the right mTLE and the three-way classification may have poten-
tial for use in future clinical applications.

In this paper, we used the automatic anatomical labeling (AAL)
atlas for cortical parcellation. In some studies, Freesurfer brain
parcellation (Hagmann et al., 2008), parcellation based on fiber density
(Zhang et al., 2010) was used for brain parcellation. However, no brain
parcellation is perfect, then our parcellation can be a comparison and
complimentary for those studies. As the classification accuracy is quite
good, the AAL parcellation method is effective in this study. Some
brain parcellation, such as random parcellation (Hagmann et al., 2007)
that parcellate brain into thousands of regions may not very suitable
for classification. As they parcellate the brain into very small regions,
the variability is too big for each region across the whole data set,
which may lead the classifier a poor generalization rate for new data.
In addition, AAL atlas is the most used and popular atlas for structural
connectivity construction (Fenchel et al., 2008; Lawrence et al., 2014;
Sandor and Leahy, 1994; Tzourio-Mazoyer et al., 2002; Yan et al.,
2011). So, AAL atlas is selected in this study.

4.3. Limitations

There are several limitations that should be acknowledged. First, as
LOOCV trains training data and predicts test data for N times, it is rather
computing consuming. Additionally, LOOCV has high variance (Efron,
1983). In this study, we also applied 10-fold cross-validation strategy
for classification, but the result was not as good as the LOOCV, which
suggested the bigger the sample size, the better the classification accu-
racy. The relatively small sample size reduces our confidence in the re-
sults. It would be desirable to utilize themethod presented in this paper
with larger samples. Second, the AAL atlas comprises differently sized
anatomical regions that may affect obtained connections. So, in the fu-
ture, better brain parcellation methods should be adapted to construct
the brain network. Third, probabilistic tractography has some intrinsic
problems, such as spurious fiber orientations and multi-crossing fibers
(Parker and Alexander, 2005); thus, more advanced techniques, such
as Diffusion Spectrum Imaging and High Angular Resolution Diffusion
Imaging, should be used in the future to confirm our results. Finally,
there is no clinical data or EEG data that can be used for correlation anal-
yses in this study. We will collect clinical and EEG data in the future to
strengthen our results.

5. Conclusion

In conclusion, this study adds a machine learning approach and an-
atomical network perspective to the current studies of temporal lobe
epilepsy. The results demonstrated that the left mTLE can be identified
from the right mTLE with 93.0% accuracy. The left mTLE and right
mTLE exhibited a different connectivity pattern in cortical-limbic net-
work and cerebellum, indicating that disease-related anatomical net-
work differences may give rise to part of complex variance of
emotional and memory deficit between the left and right mTLE. More-
over, the anatomical network differences can be use to differentiate
the left mTLE from the right mTLE and anatomical connectivity had its
potentiality in prediction and diagnosis of the left and right TLE even
with no HS.
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