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Abstract

Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and
metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in
their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent
fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-
cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory
CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs).
Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosup-
pression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are

rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
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1 Introduction

The tumor microenvironment is a complex ecosystem con-
sisting of a heterogeneous population of cells, including
tumor cells and recruited stromal cells [1]. These stromal
cells, along with tumor cells, form a solid “castle” both
physically and chemically. This abnormal and stiffened
structure of tumor vasculature and lymphatic vessels results
in interstitial hypoxia, acidic interstitial pH, and drug reten-
tion, creating an immunosuppressive and anti-drug barrier
in the TME [2]. Furthermore, the heterogenous composition
of the TME leads to the release of high levels of chemokines
and cytokines, such as transforming growth factor p (TGF-
p), interleukin 6 (IL-6), and tumor necrosis factor-a (TNFa).
These molecules promote chronic inflammation and extra-
cellular matrix (ECM) remodeling [3].
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Cancer-associated fibroblasts (CAFs) are a significant
component of the TME. However, their characterization
remains imprecise due to their heterogeneity in origin, phe-
notype, and function. CAFs have been reported to derive
from various sources, including quiescent fibroblasts, mes-
enchymal stem cells (MSCs), epithelial cells, adipocytes,
and pericytes, through different but interconnected signaling
pathways [4]. Given the diversity of origins and the specific
TME of different tumors, CAFs can exhibit multiple pheno-
types. In 2018, Bartoschek et al. employed single-cell RNA
sequencing to identify several distinct subclasses of breast
CAFs, which they classified as vascular CAFs (vCAFs),
matrix CAFs (mCAFs), developmental CAFs (dCAFs),
and circulating CAFs (cCAFs). These subclasses originate
from perivascular cells, resident fibroblasts, malignant cells
that have undergone epithelial-to-mesenchymal transi-
tion (EMT), and proliferating vCAFs, respectively [5]. As
detection technology evolves and interest in CAF research
grows, two major CAF subtypes have been widely recog-
nized: myofibroblastic CAFs (myCAFs) involved in ECM
remodeling, and inflammatory CAFs (iCAFs) regulating
tumor immunity [6]. Several markers have been identified
for the identification of CAFs, such as a-SMA, FAP, and
COLI1A1, but none of these markers is highly specific [7].
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Therefore, it is urgently needed to develop a well-established
system for accurately distinguishing the heterogenous CAFs.

Tumor-targeted therapy, which has been under develop-
ment since the early 2000s, has emerged as a viable and
remarkable option for cancer patients. These therapies
include various approaches such as drugs, viruses and gene
therapy [8, 9]. Among the significant components in solid
tumors, CAFs play an indispensable role. Consequently,
targeted therapies aimed at CAFs have been in prosperous
development, ranging from direct CAF depletion to molecu-
lar CAF reprograming. However, the majority of these CAF-
targeted therapies have faced challenges during clinical tri-
als, likely due to the lack of a specific CAF marker or the
occurrence of severe adverse effect.

In this review, we provide a comprehensive definition of
CAFs, taking into consideration their peculiar heterogeneity
in origin, phenotype, and markers. Furthermore, we make
an effort to examine and discuss the diverse regulatory func-
tions of CAFs in tumorigenesis, progression, and metastasis,
with a particular focus on the unique molecular pathways
involved. Additionally, we endeavor to outline the latest
advancements in CAF-targeted therapies, with the ultimate
goal of establishing an efficient TME-targeted therapy to
overcome the challenges faced in cancer treatment.

2 CAF and its heterogeneity

Fibroblasts are universal and fundamental cells that play a
crucial role in building connective tissue. They are spin-
dle-shaped cells with ability of adhesion, signifying their
diverse functions in synthesis, construction, and wound heal-
ing [10]. In response to tissue injury, quiescent fibroblasts
undergo reversible activation to facilitate tissue repair and
regeneration. During this process, the activated fibroblasts
express a-SMA and vimentin, undergo a transformation into
a stellate shape, and exhibit enhanced secretory and migra-
tory function [11]. However, in the context of tumorigen-
esis, various stimuli drive the injury-activated fibroblasts
towards a state of increased secretion and proliferation but
reduced contractility. This state is known as CAF [12]. Con-
sequently, CAFs play a role in promoting cancer progres-
sion. Unlike the highly preserved resident fibroblasts, CAFs
are composed of heterogenous subsets with specific division
of duties (Fig. 1).

2.1 The heterogeneity of CAFs in origin

Accumulating evidences have shown that CAFs derive from
a heterogenous population of cells. Quiescent tissue fibro-
blasts and MSCs can be induced to transform into stellate-
shaped myofibroblasts when activated by several cytokines,
chemokines, and exosomes. For example, TGF-p has been
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confirmed to activate fibroblasts through both SMAD and
non-canonical signaling pathways [13]. Leukemia inhibi-
tory factor (LIF), a member of the IL-6 pro-inflammatory
cytokine family, promotes and sustains the pro-invasive con-
version of fibroblasts through crosstalk between the JAK1/
STAT3 and RhoA/ROCK/MLC?2 signaling pathways [14].
Li et al. demonstrated that aggressive cancer cells from both
lung cancer and melanoma can produce methylmalonic acid,
an oncometabolite increased with aging, which activates
fibroblasts through reactive oxygen species (ROS)-activated
nuclear factor kappa-B (NF-kB) and TGF-f signaling [15].
Furthermore, Fang et al. reported that hepatocellular car-
cinoma cells-derived exosomal miR-1247-3p target $-1,4-
galactosyltransferases III (B4GALT3), a protein involved
in glycosylation, leading to the activation of integrin f1/
NF-«B signaling in fibroblasts in lung metastatic niche [16].
In addition to soluble factors, hypoxia has been reported to
activate hypoxia-inducible factor 1 (HIF-1) and induce auto-
crine TGF-f signaling to promote prostate cancer-associated
myofibroblast activation [17]. Apart from quiescent fibro-
blasts and MSCs, there are various non-fibroblastic sources
that have the potential to be induced to transdifferentiate
into CAFs.

EMT is a pivotal process present universally in both phys-
iological and pathological scenarios. During EMT, a polar-
ized epithelial cell undergoes multiple biochemical changes,
leading to the loss of epithelial phenotype and the acqui-
sition of mesenchymal phenotype. The mesenchymal phe-
notype exhibits enhanced migratory and invading capacity,
elevated resistance to apoptosis, and increased productivity
of ECM components [18]. EMT is classified into three sub-
types. Type-1 EMT is involved in embryo implantation and
development, causing neither fibrosis nor an invasive fibro-
blastic phenotype. Type-2 EMT is associated with wound
healing, tissue regeneration, and organ fibrosis in response to
stimuli like trauma or inflammatory damage, and the trans-
formed fibroblasts are typically marked by the expression of
fibroblast-specific protein 1 (FSP1, also known as S100A4),
a-SMA, and collagen I [19]. On the other hand, type-3 EMT
usually occurs in epithelial neoplastic cells, playing a critical
role in the acquisition of malignant phenotypes with inva-
sion and disseminating capacities [20]. EMT can be initiated
and promoted by multiple cytokines, microRNAs, exosomes,
and hypoxia. These factors activate various transcriptional
regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2,
leading to the downregulation of epithelial markers (e.g.,
E-cadherin, occludin, claudin-1, B-catenin) and the acquisi-
tion of mesenchymal markers (e.g., N-cadherin, vimentin,
fibronectin) through signaling cascades, including Wnt/f-
catenin, Notch, Sonic hedgehog, NF-kB, receptor tyrosine
kinases, PI3K/AKT/mTOR, Hippo, and TGF-f pathways,
among others [21]. While it is widely accepted that can-
cer induces type-2 EMT for “wound” healing, it remains
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Fig. 1 Heterogeneity of CAFs in origin and phenotype. CAFs can be
derived from various origins, including quiescent fibroblasts, MSCs,
epithelial cells, endothelial cells, adipocytes, pericytes, macrophages,
and mesothelial cells, stimulated by respective factors. Moreover,
CAFs also exhibit diverse phenotypes, such as myofibroblastic CAFs,
inflammatory CAFs, and antigen-presenting CAFs. These distinct
phenotypes share several collective markers while also express par-
ticular function-associated markers. MSC, mesenchymal stem cell;
IL-1, interleukin 1; IL-17A, interleukin 17A; TNF, tumor necrosis
factor; TGF-f, transforming growth factor f; LIF, leukemia inhibi-
tory factor; ROS, reactive oxygen species; EMT, epithelial-to-mesen-

uncertain whether type-3 EMT is involved in the origina-
tion of CAFs from resident epithelial cells or if it modulates
crosstalk with type-2 EMT through genomic alterations.
Endothelial cells also serve as major sources of CAFs
through a process known as endothelial-mesenchymal

cell

chymal transition; PAI-1, plasminogen activator inhibitor 1; EndMT,
endothelial-mesenchymal transition; NF-kB, nuclear factor kappa-B;
PFT, pericyte-fibroblast transition; MMT, macrophage-myofibroblast
transition; iCAF, inflammatory CAF; myCAF, myofibroblastic CAF;
apCAF, antigen-presenting CAF; CXCL12, C-X-C motif chemokine
ligand 12; PDPN, podoplanin; a-SMA, a-smooth muscle actin;
LRRC15, leucine-rich repeat-containing protein 15; TnC, tenascin-
C; CNNI, calponin 1; ANTXRI1, anthrax toxin receptor 1; ITGA1l,
integrin al1; SPARC, secreted protein acidic and rich in cysteine;
CDH11, cadherin-11

transition (EndMT) [22]. EndMT is initiated by specific
inductors secreted by cancer cells, such as TGF-f, IL-1p,
tumor necrosis factor-o (TNF-a), NF-kB transcription factor,
and endotoxin [23-25]. TGF-f, among the most common
EndMT inducers, exists in three isoforms (TGF-p1, TGF-f2,
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and TGF-$3). EndMT is primarily induced by the first two
isoforms, which bind to the corresponding TGF-f transmem-
brane receptor type II (TGFBR2) and phosphorylate TGF-f
receptor type I (TGFPR1 or ALKS). This activation leads
to the phosphorylation of Smad2/3, which forms a complex
with Smad4, translocates to the nucleus, and triggers the
expression of multiple genes specific for EndMT, including
NOTCHI1, TWIST1, SLUG, and SNAI1/2. EndMT can also
be induced through alternative signaling pathways, such as
TGFB/ALKS/PI3K/Akt pathway.

Adipocytes in TME are also recognized as a source of
CAFs, known as cancer-associated adipocytes (CAAs).
CAAs undergo dedifferentiation and transition into fibro-
blast-like cells termed adipocyte-derived fibroblasts (ADFs),
with an increased expression of CAF markers such as fibro-
blast-specific protein-1 (FSP1), but not a-SMA [26]. This
process is often initiated by Wnt3a secreted by tumor cells
through the Wnt/p-catenin pathway, as discovered in breast
cancer by Bochet et al. [27]. Consistent with Bochet’s find-
ing, Iyoshi et al. identified omental adipocyte-derived fibro-
blast dissected from the metastatic lesions of ovarian can-
cer and found it exhibiting both mesenchymal stem cell and
myofibroblast-like features, according to the expression of
CD73 and a-SMA. This pro-tumoral phenotype of omental
adipocyte-derived fibroblast is also found to be induced by
Wnt3a instead of Wnt5a [28]. The incompatible expression
of a-SMA in ADFs may indicate different subpopulations of
CAFs originating from adipocytes in different tumor context.
Hence, deciphering the heterogeneity of adipocytes-derived
CAFs might be instructive for the therapy of fat-rich cancers.

Pericyte, known for promoting angiogenesis and vessel
maturation in cancers, can also undergo a transition into
CAF-like phenotypes, termed pericyte-fibroblast transi-
tion (PFT) [29]. PFT is mainly induced by platelet-derived
growth factor type BB (PDGF-BB) and the relevant PDGF-
BB-PDGFRp axis. In the acute phase of benign inflam-
mation, microvascular endothelial cells contribute to most
circulating PDGF-BB, while during the chronic inflamma-
tion of cancer, the tumor bulk can produce a high level of
PDGEF-BB, promoting angiogenesis and initiating PFT [30].
Hosaka et al. induced mouse pericytes with PDGF-BB, and
whereafter found it losing Ng2 expression while gaining
of Fspl and a-Sma in pericytes, additionally discovering
the function of stimulating tumor growth and metastasis in
PDGF-BB-primed pericytes [31].

Furthermore, there are several other origins of CAFs,
such as a subset derived from the macrophage lineage found
in non-small-cell lung carcinoma, regulated by Smad3-
induced macrophage-myofibroblast transition (MMT) [32].
Mesothelial cells can also transform into a typical antigen-
presenting CAFs (apCAFs) when induced by IL-1 and TGF-
B, discovered in pancreatic cancer [33]. The exact origin of
CAFs still lacks precise elaboration, and further approaches
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like lineage tracing, fate-mapping, pseudotime analysis,
and RNA velocity may help uncover new primogenitors of
CAFs.

2.2 The heterogeneity of CAFs in phenotype

Previous studies have indicated that a-SMA, FAP, vimen-
tin, FSP1 (also known as S100A4), PDGFRa, and PDGFRf
could serve as markers to define CAFs. These studies have
also shown that CAFs play a tumor-promoting function in
various ways. However, the lack of a specific CAF marker
and the discovery of tumor-restraining CAFs have driven
research on the functional phenotypes of CAFs [11, 34].
Due to the various origins of CAFs, it is evident that CAF
subpopulations exhibit significant diversity. The proximity
of CAFs to cancer cells and the presence of different soluble
factors in the TME may also contribute to this heterogeneity
[35]. With the advancement of single-cell RNA sequencing,
researchers have identified multiple and distinct populations
of CAFs with characteristic markers. Table 1 shows sev-
eral markers found in CAFs and its subpopulations; how-
ever, none of these markers have been strictly proven to be
specific.

myCAFs are a subpopulation of CAFs that exhibit simi-
larities with myofibroblasts involved in the wound heal-
ing process. Due to these similarities, myCAFs have been
reported to play a major role in producing ECM compo-
nents and remodeling ECM [36]. Based on the heterogenous
expression of SDC1, LAMPS, and CD9, Kieffer et al. fur-
ther divided ANTXR1* myCAFs into different subtypes:
SDC1*LAMP5~ ecm-myCAF, which expresses genes cod-
ing for ECM proteins; LAMP5TSDC1%/~ TGFp-myCAF,
expressing the TGFp pathway; SDC1 "LAMP5-CD9*
wound-myCAF, expressing wound healing proteins; and
acto-myCAF, programming acto-myosin pathway. This high-
lights the high heterogeneity in the myCAF phenotype [37].
However, it has been shown that the phenotype of myCAF is
flexible rather than fixed. Mosa et al. demonstrated that high
and low levels of Wnt induce myCAF and iCAFs subtype,
respectively, indicating the regulation of tumor growth and
malignancy through CAF subtypes transition under the influ-
ence of the Wnt/f-catenin pathway [38].

iCAFs have been identified in multiple cancers, indi-
cating their universal presence within CAF clusters. It has
been demonstrated that iCAFs share similar transcriptional
profiles and signaling pathway activation with senescent
fibroblasts [34]. In pancreatic cancer, iCAFs derived from
pancreatic stellate cells (PSCs) exhibit significantly lower
a-SMA expression but intensely high expression of inflam-
matory cytokines, such as IL-6 and IL-11, compared to the
homologous myCAFs [39]. Similarly, in bladder carcinoma,
single-cell sequencing in COL1A1* fibroblasts has revealed
a PDGFRA™ iCAF cluster that exhibit strong expression
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Table 1 List of CAF markers with the functional features and expression in specific subtypes
Marker  Name Features Expression in CAF subpopulations Ref
FSP1 Fibroblast-specific protein-1, SI00A4 A reliable marker to detect quiescent, Normal fibroblasts [52]
non-proliferating (Ki677) fibroblasts;
non-FAP expressing CAF subpopula-
tions observed
PDGFR  Platelet-derived growth factor receptor ~ Universal in fibroblasts, associated with Normal fibroblasts [53]
tamoxifen resistance
VIM Vimentin Associated with EMT Normal fibroblasts [54]
FAPa Fibroblast activation protein o The most viable CAF markers for Nonspecific CAF [52, 53, 55]
potential clinical application
Cav-1 Caveolin-1 Loss of caveolin-1 Induces CAF phe- Nonspecific CAF [56]
notype
COL1A1 Collagen type I al COL1A1/integrin 1 promotes tumor Nonspecific CAF [57]
migration and invasion
BIRCS Survivin Regulate the interplay between mitosis, Nonspecific CAF [58]
apoptosis, and autophagy cancer cells
TWIST1 Twist-related protein 1 An EMT inducer and a suppressor of Nonspecific CAF [59]
CAFs’ senescence
GPR77 G protein-coupled receptor 77 Correlated with chemoresistance via Nonspecific CAF [60]
cancer stemness
NG2 Neural-glial antigen 2 Also expressed in pericytes Nonspecific CAF [61]
CD90 Thy-1 Associated with cell—cell and cell- Nonspecific CAF [62]
matrix interactions;
oa-SMA a-Smooth muscle actin, smooth muscle  Associated with wound healing, causing myCAF [5]
aortic alpha-actin (ACTA2) myofibroblast contractility
LRRC15 Leucine-rich repeat-containing protein A highly restricted marker associated myCAF [63]
15 with anti-tumor T cell immunity
TnC Tenascin-C A member of ECM; promote tumor myCAF [64]
migration and invasion
CNNI1 Calponin 1 Upregulated during myofibroblastic myCAF [65]
differentiation
ANTXR1 Tumor endothelial marker 8§ (TEMS) A highly conserved transmembrane myCAF [66]
receptor expressed on CAFs, endothe-
lium, and pericytes
ITGA1l Integrin all Receptor for collagen remodeling and myCAF [67]
CAF migration; expressed in a subset
of non-pericyte-derived CAFs
SPARC  Secreted protein acidic and rich in Downregulation of SPARC promotes myCAF [68, 69]
cysteine EMT
RGS5 Regulator of G-protein signaling 5 A surface marker of pericytes; associ-  myCAF-like in bladder carcinoma, [61, 70, 71]
ated with angiogenesis and metastasis ~ iCAF in cholangiocarcinoma
CD26 Dpp4 CD26" NFs transit into pro-tumorigenic iCAF [72]
iCAFs
CXCL12 C-X-C motif chemokine ligand 12 Interacting with T cells via CXCL12- iCAF [73]
CXCR4/CXCR7
PDPN Podoplanin Associated with immune cell infiltration iCAF, apCAF [33, 74]
and recruitment of dendritic cells
CD74 MHC class II invariant chain, Ii Associated with presenting antigens to  apCAF [47,75]
CD4* T cells and the modulation of
immune response
CDHI11  Cadherin-11 Promote immunosuppression and ECM  apCAF [76]

deposition

of cytokines and chemokines, including CXCL12, IL6,
CXCL14, CXCL1, and CXCL2, compared to RSG5™
myCAF cluster. The pro-proliferation effect of this cluster

has been confirmed [40]. On the other hand, in cholangio-
carcinoma, iCAFs identified in COL1A1" fibroblasts show
high expression of RSG5, Lrat, and Reln, with enrichment
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of inflammatory, growth factor, and antigen-presentation
genes as well as receptor-ligand, growth factor, and cytokine
activity pathways [41]. These findings collectively confirm
the inflammatory cytokine-secreting property of iCAFs
while also indicating the heterogeneity of iCAFs in differ-
ent organs.

The generation of the inflammatory phenotype in iCAFs
has been demonstrated to be induced by various factors,
including cytokines, circRNAs, T cells, and hypoxia. Biffi
et al. illustrated that IL.-1 induces leukemia inhibitory factor
(LIF) expression to activate JAK/STAT signaling pathways,
generating an iCAF phenotype, and TGF-f antagonizes this
process by downregulating IL1R1 expression, promoting dif-
ferentiation into myCAFs [42]. Wnt activity in CAFs is also
associated with distinct subtypes, where low and high levels
induce an iCAF subtype or contractile myCAFs, respectively
[38]. Besides cytokines, Zheng et al. found that the upregu-
lation of circCUL2 expression in normal fibroblasts (NFs)
induces the iCAF phenotype and promotes tumorigenesis
and metastasis of pancreatic ductal adenocarcinoma (PDAC)
cells via miR-203a-3p/MyD88/NF-kB/IL6 axis [43]. Tc17,
a novel protumorigenic CD8* T cell subtype in PDAC, has
been demonstrated to induce iCAF differentiation via syner-
gism of IL-17A and TNF [44]. Furthermore, Schworer et al.
revealed that hypoxia drives fibroblasts to gain an inflamma-
tory gene expression signature and synergizes with cancer
cell-derived cytokines to promote an iCAF phenotype in an
HIF-1a dependent fashion, and experimental evidence sup-
porting this finding [45, 46].

In 2019, Elyada et al. unveiled a new population of CAFs
expressing MHC class II and CD74 but lacking classical
co-stimulatory molecules, leading to their designation as
antigen-presenting CAFs (apCAFs) [47]. These apCAFs
were found to originate from mesothelial cells through
mesothelial-mesenchymal transition, which is induced via
IL-1/NF-kB and TGF-p/Smad signaling pathway [33, 48].
The presence of MHC II molecules on apCAFs enables them
to present antigens to CD4 + T cells. However, due to the
absence of co-stimulation molecules (such as CD40, CD80,
and CD86) on apCAFs, they promote the formation of regu-
latory T cells, which may suppress the immune response
[49]. Although it has been observed that patients with a high
abundance of apCAFs in PDAC have a decreased survival
probability, the specific mechanism by which apCAFs pro-
mote cancer progression is still not fully understood [50].
Future research and evidence are required to elucidate the
exact role and impact of apCAFs in cancer development and
progression.

In addition to the well-known subtypes of CAFs, such
as myCAF, iCAF, and apCAF, there are other rare subtypes
of CAFs that have been identified through single-cell RNA
sequencing, highlighting the high diversity of CAF popula-
tion and the different criteria used for their classification. For
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example, there are vascular CAFs (VCAFs) characterized
by their high expression of angiogenic or microvasculature-
associated genes, like CAD146. Another subtype is the
PLA2G2A" metabolic CAFs (meCAFs), which have been
found to be correlated with the presence of immune cells
[51]. As CAF-detecting techniques continue to advance, it
becomes increasingly important to establish a uniform clas-
sification system for CAFs to facilitate more precise and
targeted therapies. The heterogeneity of CAFs underscores
the need for a comprehensive understanding of their distinct
subtypes and functional roles in the TME, which may ulti-
mately lead to more effective treatment strategies for cancer
patients.

3 Methodologies in CAF research

Research on CAFs presents challenges due to their high
heterogeneity and context-dependent nature. The expanding
field of TME research has led to the gradual establishment of
a comprehensive methodology for studying CAFs. In in vitro
investigations, primary CAFs derived from patients are the
preferred choice due to their accessibility and similarity to
TME in vivo. Protocols for establishing CAFs in vitro from
surgically resected tissues involve steps such as tissue extrac-
tion, digestion, CAF dissociation, and incubation [77]. How-
ever, limitation persists, including the loss of heterogeneity
in isolated CAFs and the limited number of passages for pri-
mary CAFs (usually up to 20-25 passages) [78]. To address
senescence during cell expansion, some researchers use len-
tivirus containing human telomerase reverse transcriptase
(hTERT) to immortalize patient-derived CAFs [79]. In addi-
tion to in vitro studies, CAF-targeted animal models have
been developed. For instance, transgenic a-SMA-tk mice
are created by ligating a fragment with a-SMA (or other
CAF-specific genes) promoter and a truncated version of
the herpes simplex 1 virus thymidine kinase (HSV1-tk).
Subsequent injection of ganciclovir induces selective deple-
tion of a-SMA myofibroblasts in vivo [80]. Beyond genetic
engineering, direct tumor injection of pharmaceuticals and
orthotopic xenograft implantation with control/treated CAFs
are also effective in studying CAF biology [81].

Detecting the heterogeneity of CAFs is crucial and single-
cell analysis has been instrumental in understanding distinct
CAF subpopulations and their markers. With the rapid devel-
opment of single-cell analysis techniques, including multi-
omic analysis, spatial transcriptomics, and proteomics, more
sophisticated methods are applied in CAF detection [82, 83].
Flow cytometry, immunohistochemistry, and immunostain-
ing are also vital for CAF taxonomy. Commonly used probes
like a-SMA, vimentin, FAP, FSP1, and PDGFR serve as
reliable CAF markers when used in combination [84].
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The highlight of CAF research lies in understanding the
crosstalk between CAFs and other cell types, particularly
cancer cells. Coculture analysis is the most efficient way to
explore the interactions. However, traditional 2-dimensional
cell line coculture system and patient-derived tumor xeno-
grafts model have limitations in mimicking human stromal
compartments, immune microenvironment, and organ-spe-
cific functions for detailed research [85, 86]. The invention
of 3-dimensional organoid technology allows in vitro tumor
research to closely replicate the structural and functional
aspects of counterpart organs, facilitating personalized pre-
cision oncology [87]. Despite the challenges, advanced mod-
els like organoid-on-a-chip have demonstrated comparable
responses to therapies with greater precision in predicting
outcomes in CAF research [88]. As tumor research technolo-
gies evolve, it is expected that more accurate and efficient
techniques for CAF research will emerge.

4 CAF in cancer progression and metastasis
4.1 CAFs contribute to cancer stemness

Cancer stemness refers to the self-renewal and propagation
abilities of cancer stem cells (CSCs), which play a critical
role in tumor aggressiveness, drug resistance, and metastasis
[89]. CSCs can be identified by several markers, including
CD44, CD24, CD133, LGRS, SOX2, AQPS, ESA, PAFI,
and CXCR4, although none of these markers is highly spe-
cific [90-94]. As a central component of the TME, CAFs
are believed to interact with CSCs and maintain a favorable
tumor niche, mainly through paracrine signaling [95]. A
group of CAF-derived molecules has been found to pro-
mote cancer stemness. For instance, Su et al. identified a
CDI10*GPR77* subset of CAFs in breast and lung cancer,
driven by NF-kB activation, which induces CSC enrich-
ment by secreting IL-6 and IL-8 [60]. Ma et al. found that
interferon secreted from bladder cancer cells can induce
SLC14A1* CAFs, which in turn promote stemness of blad-
der cancer cells via WNT5a/f-catenin pathway [96]. In hepa-
tocellular carcinoma, CAF-derived hepatocyte growth factor
(HGF) enhances cancer cell stemness through the extracel-
lular signal-regulated kinase (ERK)1/2-FRA1-HEY1 sign-
aling pathway [95]. Additionally, CAF-secreted exosomes
have been shown to sustain cell stemness in various cancers
[97, 98]. Furthermore, CAFs indirectly recruit myeloid-
derived suppressor cells (MDSCs) and enhance the stemness
of CD33* MDSCs in a FAP-dependent paracrine manner
[99]. Thus, targeting these paracrine pathways could be a
potentially effective approach to combat tumor stemness.
The WNT signaling pathway represents a promising target
for specific therapy. Canonical WNT signaling supports the
rapidly cycling CSCs, while noncanonical WNT signaling

supports the quiescent CSCs [100]. Moreover, WNT signal-
ing broadly mediates the communication between CAFs and
CSCs, further emphasizing its importance in tumor stemness
regulation.

4.2 CAFs promote angiogenesis

Angiogenesis is a critical process whereby tumors develop
new blood vessels to obtain an increased supply of oxygen
and nutrients [101]. Hypoxia has been identified as a key
driver for tumor angiogenesis. Under hypoxic conditions,
cancer cells secrete vascular endothelial growth factor A
(VEGFA) which binds to VEGF receptor 2 (VEGFR2) on
nearby endothelial cells (ECs) of blood vessels or circulat-
ing bone marrow-derived endothelial progenitor cells, and
triggering angiogenesis [102]. This process involves the
breakdown of the basal lamina and ECM, proliferation of
ECs, growth of new vascular sprouts, and vessel matura-
tion. Other signaling molecules, such as delta ligand-like
4 (DLL4) and angiopoietin 2 (ANGPT?2), also play crucial
roles in angiogenesis [103]. CAFs, originating from the
chronic wound-healing response within the tumor, secret
pro-angiogenic growth factors that promote angiogenesis.
These factors include VEGFA, CXC-chemokine ligand 12
(CXCL12), fibroblast growth factor 2 (FGF2), and plate-
let-derived growth factor (PDGF) [104]. CXCL12, also
known as stromal cell-derived factor 1 (SDF-1), has been
shown to enhance tumor growth and angiogenesis through
the CXCL12/CXCR4 pathway [105]. This binding initiates
divergent signaling pathways, including G-protein/PI3K/
AKT/NF-kB axis and Ras-MEK1/2-Erk1/2 axis, resulting
in various angiogenic responses [106]. Similarly, FGF2,
a member of the heparin-binding growth factor family,
binds to FGF receptors (FGFRs) and triggers multiple pro-
angiogenic activity, while also participating in crosstalk
with VEGF [107]. Additionally, the PDGF/PDGF receptor
(PDGFR) signaling plays a significant role in connective
tissue development and wound healing [108]. Studies have
demonstrated that CAFs with upregulated PDGF-C induce
angiogenesis even when VEGF is inhibited, suggesting that
the PDGF/PDGFR pathway might compensate for the inhi-
bition of VEGF-mediated angiogenesis [109].

In addition to the direct activation of paracrine ways,
CAFs have been reported to promote angiogenesis through
various indirect mechanisms. One crucial biomechanical
characteristic of the TME, driven by stromal cells, particu-
larly CAFs, is matrix stiffness [110]. CAFs secrete lysyl
oxidase (LOX), an enzyme that catalyzes the covalent
cross-linking of collagens and elastin, contributing to the
determination of matrix stiffness [111]. Additionally, CAFs
secrete lysyl hydroxylase 2 (LH2), which induces hydrox-
ylysine aldehyde-derived collagen cross-links in the ECM,
further increasing matrix stiffness [112]. Numerous studies
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have demonstrated a link between matrix stiffness and the
production of VEGF. For instance, Sack et al. found that on
harder ECM surfaces, endothelial cells exhibit an increased
capability of binding VEGF and reduced VEGF internaliza-
tion, regulated by integrins f1 [113]. Li et al. unraveled a
matrix stiffness/integrins p1/Piezol activation/Ca** influx/
HIF-1a ubiquitination/VEGF pathway in hepatocellular
carcinoma angiogenesis, with involvement of CXCL16 and
IGFBP2 pathways [114]. However, contradictory results
were reported by Bao et al., who discovered a YAP/RUNX2/
SRSF1 axis in neuroblastoma angiogenesis, wherein
VEGEF 45 secretion is repressed with increasing matrix stiff-
ness [115]. Notably, the disparity in results may be attributed
to variations in the stiffness levels of the gels used in the
research of Bao et al. (1 kPa, 8 kPa, and 30 kPa, respec-
tively), which might as well be scaled up to a minished range
so as to simulate an actual intratumoral microenvironment.
Hence, more precise experiments are needed to clarify the
functional impact of matrix stiffness on angiogenesis.

As mentioned earlier, hypoxia is a key driver of tumor
angiogenesis. Hypoxia-inducible factor (HIF) transcription
factors are pivotal in hypoxia signaling in cancer and stro-
mal cells. They translocate to the nucleus in response to the
absence of oxygen and activate the expression of hypoxia-
related genes, including VEGF [116]. CAFs activated by
hypoxic TME can induce abnormalities in the blood vessel
by secreting various proangiogenic factors [117]. Further-
more, CAFs produce soluble factors like CCLS5, triggering
the HIF-1a pathways to promote angiogenesis [118].

4.3 CAFs mediate immunosuppression

Chronic inflammation, immune cell infiltration, and evasion
of cancer cells from the immune response are considered
some of the hallmarks in cancer progression [35]. Previous
studies have established the paradoxical role of the immune
system in both promoting and restraining cancer, referred
to as “cancer immunoediting.” This dynamic process con-
sists of three sequential phases: elimination, equilibrium,
and escape [119]. During the elimination phase, the innate
and adaptive immune systems cooperate to recognize and
eradicate dysplastic cells before they can develop into clini-
cally detectable tumors. However, if a few variant cancer
cells acquire poorly immunogenic or immunoevasive prop-
erties that enable them to survive the immune attack, they
may enter the equilibrium phase. In this phase, neoplastic
cells are still restricted, and their cellular immunogenicity is
shaped by the adaptive immune system, primarily involving
T cells and related cytokines. As the edited cancer cells face
constant immune selection pressure during the equilibrium
phase, they may develop immunosuppressive and/or immu-
noevasive phenotypes, ultimately leading to immune escape.
Once in the immune escape phase, the cancer cells are no
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longer restricted by the immune system, leading to uncon-
trolled growth, clinically apparent tumors, and even metas-
tasis [120]. Despite its importance, the intricate mechanism
of cancer immunoediting is still not fully understood, which
presents a challenge for effective immunotherapy targeting
cancer.

CAFs, as the major components in the TME, have been
reported to mainly exert an immunosuppressive function in
facilitating cancer immune evasion. TGF-p, which can be
secreted by CAFs, is a significant mediator in the regula-
tion of the immune microenvironment. TGF- signaling is
known to impact T cell differentiation and proliferation by
dampening the stimulation of specific transcription factors
triggered by Ca®" influx [121]. In a T cell excluded cohort of
ovarian tumor, the upregulation of TGF-f and the activation
of stroma are identified as important mechanisms of T cell
exclusion. TGF-f can reduce MHC-I expression in ovarian
cancer cells in vitro and also activate fibroblasts to induce
extracellular matrix production, constructing a physical bar-
rier to hinder T cell infiltration [122]. Additionally, TGF-f
has been demonstrated to suppress dendritic cells, inhibit the
development of cytolytic natural killer cells (NK cells), and
reduce their secretion of IFN-y. Moreover, it polarizes mac-
rophages towards the M2 phenotype with anti-inflammatory,
immune-suppressive, and pro-angiogenic functions [123,
124]. Apart from TGF-p secretion, CAF-derived CXCL12
is a powerful chemokine involved in immunosuppressive
regulation. It reduces CD8* T cells migration, sequestering
them from the panstromal compartment, and inhibits NK
cell proliferation, maintaining them in a quiescence state
[125, 126]. Another essential molecule secreted by CAFs
in immune microenvironment is IL-6, which is abundantly
expressed in iCAF subtype [127]. IL-6 is associated with the
accumulation of tumor-infiltrating lymphocytes and plays
a role in regulating the survival, activation, and function
of neutrophils through the IL-6/STAT3/PD-L1 signaling
pathway [128, 129]. Moreover, CAFs also secret inhibitory
immune checkpoints (iICPs) to create an immunosuppres-
sive milieu in the TME, including PD-1 and LAG3 [130].
These pieces of evidence strongly indicate that CAFs play a
crucial role in assisting the tumor’s immune escape process.

4.4 CAFs dedicate in metabolic changes in cancer

Despite living in a nutrition-limited TME, cancer cells are
highly skilled in perpetual proliferation, which is supported
by the metabolic change that occur in the TME. About a cen-
tury ago, Warburg et al. observed that even in the presence
of abundant oxygen, cancer cells exhibited an enhanced and
accelerated conversion of glucose to lactate for ATP forma-
tion, a phenomenon known as the “Warburg Effect” [131].
Warburg attributed this phenomenon to the dysfunction of
mitochondria in tumor cells. As further research in cancer
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metabolism progressed, it became evident that, in contrast
to the Warburg Effect, some tumor cells retain the ability to
utilize mitochondria and undergo oxidative phosphorylation
(OXPHOS), indicating the dynamic nature of the Warburg
Effect in different TME. In some cases, CAFs are reported
to adapt their metabolism in response to factors secreted by
cancer cells. In this scenario, CAFs switch to aerobic gly-
colysis and produce high levels of energy-rich intermediate
metabolites, which are then transferred to cancer cells to fuel
the mitochondrial tricarboxylic acid cycle and OXPHOS,
leading to the production of ATP for cancer cell prolifera-
tion [132]. This phenomenon is referred to as the “Reverse
Warburg Effect,” acting as a supplementary mechanism to
the classic Warburg Effect.

The Reverse Warburg Effect is strongly driven by cancer
cell-promoted oxidative stress. Cancer cells release reactive
oxygen species (ROS), which reciprocally elevate oxidative
stress in the stromal components, enabling autophagosomes
to fuse with lysosomes and leading to the destruction of
mitochondria in CAFs. This process also results in the deg-
radation of caveolin-1 (Cav-1) through the HIF-1a/ NF-xB
pathway [56, 133]. The downregulation of Cav-1 in CAFs,
in turn, elevates ROS levels in cancer cells, creating a posi-
tive feedback loop that further enhances oxidative stress and
impedes NF-kB pathway [134]. TGF-f, which has a firm
and universal association with cancer metabolism, can also
regulate the expression of a-SMA and NOX4 in fibroblasts,
thereby influencing ROS levels and stimulating oxidative
stress [135]. Through the Reverse Warburg Effect, oxidative
cancer cells can receive lactate from hypoxic cancer cells. In
addition, CAFs experience oxidative stress due to the cancer
cells-secreted ROS, which triggers aerobic glycolysis. As
a result, CAFs produce lactate and pyruvate, which can be
utilized for further metabolic process in adjacent oxidative
cancer cells. Although the transmission of ROS has been
substantiated in the Reverse Warburg Effect, there have been
few studies elucidating the mechanism by which cancer cells
and CAFs perform initiation and adaption to such metabolic
changes. Still, targeting the Reverse Warburg Effect, either
in cancer cells or through CAFs, is theoretically feasible
and could potentially decrease cancer cell metabolism. By
disrupting this metabolic interplay between cancer cells and
the stromal microenvironment, new therapeutic strategies
may be developed to target cancer metabolism and inhibit
tumor growth effectively.

4.5 CAFs facilitate cancer metastasis

Cancer metastasis is a complex process involving multiple
stages. It begins with tumor cells migrating and invading
nearby tissues, followed by intravasation, circulation, and
extravasation, and ultimately colonization at the target site
[136]. CAFs play a significant role in promoting metastasis

through both paracrine signaling ways and physical interac-
tions (Fig. 2).

The motility of cancer cells is closely related to their abil-
ity to migrate and invade, which is often facilitated by the
process of EMT. EMT is characterized by the loss of polar-
ity, adhesion, and tight junctions, leading to cancer cells
adopting a mesenchymal phenotype that promotes migra-
tion and invasion. However, it remains controversial whether
EMT is essential for every metastatic event [137, 138]. CAFs
have been shown to enhance cancer cell migration and inva-
sion by secreting various factors, including chemokines and
exosomes. For example, in gastric cancer, CAFs activated
by TGF-B1/Smad2/3 signaling can highly express hyaluro-
nan and proteoglycan link protein 1 (HAPLN1), promoting
tumor migration and invasion [139]. In esophageal squa-
mous cell carcinoma, plasminogen activator inhibitor-1
(PAI-1) derived from CAF-like cells enhances migration and
invasion abilities through the Akt-Erk1/2 signaling pathways
via the PAI-1/low-density lipoprotein receptor-related pro-
tein 1 (LRP1) axis [140]. CAF-secreted exosomes contain-
ing miR-18b and miR-382-5p have also been reported to
promote cancer cell migration and invasion through EMT
[141, 142]. Additionally, CAFs can promote EMT induc-
tion by increasing matrix stiffness signaling mediators such
as TWIST1/G3BP2 pathway and EPHA2/LYN/TWIST]1
pathway [143, 144]. Apart from inducing EMT, CAFs can
directly drive cancer cell migration through physical forces.
Labernadie et al. identified a mechanism in which CAFs
exert physical force on cancer cells through the heterophilic
adhesion involving N-cadherin on the CAF membrane
and E-cadherin on the cancer cell membrane, mediated
by p-catenin recruitment and «-catenin/vinculin interac-
tion [145]. Erdogan et al. demonstrated that CAFs produce
and align a fibronectin (Fn)-rich matrix via the nonmuscle
myosin II/PDGFRa/a531-integrin/Fn pathway to mediate
CAF-cancer cell association and directional migration [146].
Additionally, CAFs express membrane-anchored metallo-
proteinases (MT1-MMPs) that have collagenolytic effect,
facilitating tumor cell penetration of connective tissue barri-
ers and trafficking within the three-dimensional ECM [147].

Intravasation is a crucial process that occurs before tumor
cells can enter the circulation and spread to distant sites.
During angiogenesis, the formation of new blood vessels,
the vessels are often considered immature, lacking proper
junctional contacts between endothelial cells, and are leaky
and vulnerable due to abnormal pericyte coverage. These
features enable cancer cells to easily intravasate through the
blood barrier [148]. Several factors, such as TGF-$, VEGF,
and SOX2, have been shown to play roles in regulating both
the intravasation and extravasation processes during metas-
tasis [149, 150]. CAFs not only promote hematogenous
metastasis (metastasis through the blood vessels) but also
play a role in facilitating lymphatic metastasis (metastasis
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Fig.2 The role of CAFs in cancer progression and metastasis. © Sev-
eral specific subsets of CAFs secrete exosomes, ILs, and Wnt5a to
promote cancer stemness. @ CAFs directly produce soluble factors,
including VEGFA, CXCL12, FGF2, and PDGF, to trigger angio-
genesis by binding to the receptors on endothelial cells. On the other
hand, CAFs secrete of LOX and LH2 to enhance ECM stiffness,
which facilitates VEGF/VEGFR interaction via integrins. ® CAF-
derived TGF-p can impact T cell differentiation and proliferation,
dampen MHC-mediated immune identification, and reduce T cell
infiltration through fortifying matrix stiffness. Moreover, TGF-p can
also suppress dendritic cells and inhibit the development of cytolytic
NK cells. CXCL12 secreted from CAFs can reduce T cells migra-
tion and inhibits NK cells proliferation. @ Various factors produced
from CAFs can enhance cancer cell migration and invasion by induc-

through the lymphatic vessels). This promotion of lymphatic
metastasis has been reported to involve various signaling
pathways, such as periostin/integrin/FAK/Src/VE-cadherin
pathway, VEGFC/VEGFR3 pathway, and IL-6/IL-6R path-
way [151-153].

Despite their role in motivating tumor cells, CAFs them-
selves are not quiescent. In 2015, Ao et al. examined a
functional subpopulation of CAFs in the peripheral blood
of patients with metastatic breast cancer, referred to as
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ing EMT. Additionally, CAF-promoted matrix stiffness contributes
to EMT. ® CAFs secret TGF-p, VEGF, and SOX2 to regulate the
intravasation of blood vessels. ® A cCAF subtype is involved in the
metastasis through the blood vessels, marked by CD44. @ Metastasis-
associated cytokines and exosomes derived from CAFs in primary
tumor facilitate the formation of the distant PMN. CAF, cancer-
associated fibroblast; HAPLN-1, hyaluronan and proteoglycan link
protein 1; PAI-1, plasminogen activator inhibitor-1; IL-6, interleu-
kin 6; IL-8, interleukin 8; CSC, cancer stem cell; VEGFA, vascular
endothelial growth factor A; CXCL12, CXC-chemokine ligand 12;
NK cell, natural killer cell; LOX, lysyl oxidase; LH2, lysyl hydroxy-
lase 2; EMT, epithelial-to-mesenchymal transition; CTC, circulating
tumor cell; cCAF, circulating CAF

circulating CAF (cCAF), the presence of which was asso-
ciated with clinical metastasis [154]. Sharma et al. also
detected this heterotypic cluster of cells in patient blood
and preclinical mouse models of breast cancer, and they
found that CD44, an adhesion and stemness marker, might
be an important mediator in this context [155]. Furthermore,
Hurtado et al. utilized a metastasis model in zebrafish and
observed that CAFs exert a pro-survival and pro-prolifer-
ative effect on circulating tumor cells (CTCs) when they
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remain joined as cell clusters. This clustering led to pro-
duction of soluble factors associated with breast cancer cell
survival and proliferation [156]. Identifying and targeting
cCAFs at an early stage of tumor development could be a
potent therapeutic approach to reduce cancer metastasis and
relapse, especially since the detection of cCAFs in patients
with localized breast cancer has also been reported [154].

CTCs that extravasate at the target site face a challeng-
ing microenvironment that is often hostile for their survival.
Interestingly, even before the metastasis process begins,
the host metastasis site microenvironment at the future
metastatic site has already been selectively modified by the
remote primary tumor. This modified microenvironment is
referred to as pre-metastatic niches (PMN) [157]. The forma-
tion of PMN is largely attributed to cytokines and exosomes
released by the tumor and the TME. CAFs play a dual role in
activating the PMN. On the one hand, metastasis-associated
factors derived from CAFs in primary tumor facilitate the
formation of pre-metastatic niche. For example, a long non-
coding RNA called LncSNHGS5 expressed in breast CAFs
is found to mediate angiogenesis and vascular permeability
in the PMN of the lung through the IncSNHG5-ZNF281-
CCL2/CCLS5 signaling axis [158]. Similarly, extracellular
vesicles (EVs) derived from CAFs in salivary adenoid cystic
carcinoma induce remarkable changes in lung fibroblasts,
enhancing their tumor-permissive abilities. The uptake of
CAF EVs by lung fibroblasts is mediated through integrin
a2f1 [159]. On the other hand, fibroblast activation into
CAF is recognized as the initial phase during PMN forma-
tion. Research by Pein et al. has shown that breast cancer
cells secrete IL-1a and IL-1f, which induce lung fibroblasts
to produce CXCL9 and CXCL10 via NF-xB signaling, lead-
ing to inflammatory phenotypic changes in lung fibroblasts
[160]. Besides cytokines, Ji et al. discovered that primary
colorectal tumors release integrin beta-like 1 (ITGBL1)-
enriched EVs, which stimulate the TNFAIP3-mediated
NF-xB signaling pathway to activate remote fibroblasts
and transform them into CAFs. These CAFs subsequently
induce the formation of the PMN by secreting proinflam-
matory cytokines such as IL-6 and IL-8 [161]. After activa-
tion, CAFs play critical roles in ECM remodeling, metabolic
changes, immunosuppression, and angiogenesis, all of which
contribute to the formation of the PMN, as discussed earlier
[162].

4.6 CAFs reinforce therapeutic resistance

Therapeutic resistance in cancer often leads to a poor prog-
nosis in patients, and the underlying mechanisms behind it
remain complex and dynamic. Konieczkowski et al. pro-
posed a convergence-based framework for understanding
cancer drug resistance, with pathway reactivation, path-
way bypass, and pathway indifference being major causes

of resistance [163]. Besides genomic changes in tumor
cells, the involvement of CAFs has been extensively dem-
onstrated in cancer therapeutic resistance, with their role
being multifaceted.

CAF’s influence on the mechanical TME can promote
matrix stiffness, thereby reducing the infiltration of chemi-
cal drugs. For instance, gastric CAFs expressing calponin 1
activate ROCK1/MLC pathway, leading to increased matrix
stiffness and contributing to 5-fluorouracil (5-Fu) resist-
ance in cancer cells by activating YAP [164]. CAF-derived
exosomes also play a significant role in mediating cancer
therapy resistance in the TME [165]. Annexin A6 in CAF-
derived EVs can activate the integrin pf1-focal adhesion
kinase (FAK)-YAP signaling pathway, leading to the for-
mation of a tubular network in the ECM, reinforcing chemo-
therapeutic resistance [166]. In breast cancer, CAF-derived
circulating EVs containing the full mitochondrial genome
promote estrogen receptor (ER)-independent OXPHOS,
inducing therapy-induced dormant cancer stem-like cells
and leading to endocrine therapy resistance [167]. Target-
ing the YAP signaling pathway may hold promise in over-
coming the mechanical resistance encountered in targeted
therapy. In the context of immunotherapy, CAFs induced by
the IL-17/Actl/HIF1a pathway can initiate collagen depo-
sition to enhance PD-L1 resistance, leading to a decrease
in cytotoxic T cell infiltration [168]. Another CAF sub-
type, ecm-myCAF, has been found to upregulate PD-1 and
CTLAA4 protein levels in regulatory T lymphocytes (Tregs),
increasing TGFP-myCAF cellular content and mediating
primary resistance to immunotherapy. Therefore, combin-
ing tumor-targeted therapy with CAF-targeted therapy has
been considered a potential approach to address resistance.
Examples of this approach, such as FAP5-DM1, an anti-
FAP monoclonal antibody conjugated to maytansinoid, have
shown long-lasting inhibition of tumor growth and complete
regressions in xenograft models of multiple cancers [169].
Additionally, CAFs have been found to promote resistance to
radiotherapy. Upon irradiation, CAFs are polarized towards
the iCAF subtype via IL-1a with oxidative DNA damage,
leading to p53-mediated therapy-induced senescence in
iCAFs, which in turn results in chemoradiotherapy resist-
ance and disease progression [170].

4.7 tumor-restraining CAF

The tumor-promoting role of CAFs has been extensively
studied; however, recent research suggests the existence of
specific subtypes of CAFs with tumor-restraining charac-
teristics termed cancer-restraining CAF (rCAF) [171]. The
presence of rCAFs may pose a challenge to CAF-depleting
therapies, as achieving a balance between tumor-promoting
CAFs (pCAFs) and rCAFs is crucial. Despite this, only a few
markers for identifying rCAFs have been identified. In 2019,
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Mizutani et al. discovered Meflin, a glycosylphosphatidylin-
ositol-anchored protein and a marker of mesenchymal stro-
mal/stem cells that maintain their undifferentiated state, to
be expressed by PSCs, which are one of the sources of CAFs
in PDAC. Meflin* CAFs were found to be correlated with a
favorable patient outcome, and Meflin deficiency promoted
the alignment of stromal collagen fibers, which is considered
an aggressive tumor signature [172]. Similarly, Bhattacha-
rjee et al. showed that myCAF-expressed type I collagen
suppresses tumor growth by mechanically restraining tumor
spread, overriding signaling mechanisms induced by matrix
stiffness [173]. And deletion of type I collagen accelerates
the PDAC emergence via SOX9/Cxcl5 [174]. These findings
suggest that collagen fibers produced by CAFs may contrib-
ute to their tumor-suppressing properties. In a transgenic
mouse model, the depletion of a-SMA™ myofibroblasts in
pancreatic cancer mechanistically resulted in a tumor with
more progressive and invasive tumor feature. Paradoxically,
this was accompanied by a decrease in overall immune infil-
tration and an increase in the frequency of FoxP3* Treg
cells [175]. These seemingly contradictory findings could
be explained by the restraining influence of stromal compo-
nents, particularly collagen deposition in models character-
ized by abundant collagen, such as PDAC [176]. Further-
more, the diverse subpopulations of CAFs, originating from
different progenitors and influenced by distinct factors, exert
varying effects on tumorigenesis depending on the specific
context [172, 177]. Therefore, exploring the regulatory rela-
tionship between different contexts and CAF subtypes using
multiple animal models may offer a promising avenue for
breakthrough in therapies targeting CAFs.

5 CAF-targeted cancer treatment

Cancer-targeted therapy has emerged as a viable and remark-
able option for cancer patients since the early 2000s, encom-
passing a range of approaches such as drugs, viruses, and
gene therapy [8, 9]. However, due to the genomic instability
of cancer cells, the development of therapeutic resistance is
inevitable. This has shifted the focus towards targeting non-
tumor cells in the TME due to their relatively stable geneti-
cal nature, presenting a promising avenue for therapy [178].
Among these non-tumor cells, CAF have been recognized
for their significant role in tumor progression and are now
an emerging target for precise targeted therapy within the
TME. Despite the potential of CAF-targeted therapy, there
are ongoing challenges and obstacles. One major challenge
it the lack of a specific CAF marker, which hinders the direct
depletion of CAFs and makes it challenging to specifically
target them. Additionally, there is a concern about potential
adverse effect if normal tissue cells are unintentionally dam-
aged during the therapy. Fortunately, as our understanding
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of CAF biology in cancer continues to advance, several
preclinical studies and clinical trials have been reported,
demonstrating promising results in this area. In the realm of
CAF-targeted cancer therapy, NOX4 inhibition has emerged
as a promising strategy, given its demonstrated efficacy in
reversing the myCAF phenotype and facilitating intratu-
moral CD8% T-cell infiltration in mouse models [179, 180].
Setanaxib (GKT137831), a pharmacologic NOX4 inhibitor,
has successfully completed its phase I trial (NCT04327089)
and is currently being investigated in combination with pem-
brolizumab in patients with recurrent or metastatic head and
neck squamous cell carcinoma (NCT05323656). Moreover,
LRRC15 has been identified as a particularly noteworthy
myCAF biomarker due to its significant role in mediating
CD8* T cells infiltration and influencing immunotherapy
response [63, 181]. A newly developed antibody—drug con-
jugate targeting LRRC15, known as ABBV-085, has dem-
onstrated safety, tolerability, and promising anti-solid tumor
activity in its phase I study (NCT02565758). These develop-
ments highlight the potential for more precise CAF-targeted
therapy to be developed [182]. Further details on the evolv-
ing CAF-targeted therapies are shown in Table 2.

6 Conclusion

The pivotal role of the TME in cancer progression has long
been emphasized, with CAFs being the most well-described
components. However, the heterogeneity of CAFs poses
challenges for the application of clinical CAF-targeted
therapy. This heterogeneity can be attributed to two main
factors: (1) diverse origin of CAFs: CAFs can arise from
different cell types, including quiescent fibroblasts, MSCs,
adipocytes, and pericytes, through various activating path-
ways; (2) heterogeneous TME: The TME in various tumors
is heterogeneous and can induce CAF activation via different
signaling pathways, such as TGF-p, interleukin, PDGF, and
CXCL12, among others. Phenotypically, this heterogeneity
is reflected in the diverse expressing levels of multiple mark-
ers in distinct CAF clusters, as well as multifarious functions
in ECM remodeling, inflammation, immunoregulation, and
antigen presenting. The roles of CAFs in cancer progression,
metastasis, and immunosuppression through both physical
interactions and paracrine signaling have been extensively
studied. Several therapeutic treatments targeting CAFs have
been explored and put into clinical trials. However, none
of these treatments have shown significant effectiveness
or safety in clinical settings. Despite the challenges, the
advanced discovery of specific markers and signaling path-
ways, such as LRRC15, offers hope that CAF-targeted ther-
apy will progress from bench to bedside in the near future.
As researchers continue to unravel the complexities of CAF
heterogeneity and their precise roles in tumor biology, novel
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therapeutic strategies may emerge to effectively target CAFs
and improve cancer treatment outcomes.
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