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The thrombospondin family comprises of five multifunctional glycoproteins, whose best-
studied member is thrombospondin 1 (TSP1). This matricellular protein is a potent
antiangiogenic agent that inhibits endothelial migration and proliferation, and induces
endothelial apoptosis. Studies have demonstrated a regulatory role of TSP1 in cell
migration and in activation of the latent transforming growth factor beta 1 (TGFb1).
These functions of TSP1 translate into its broad modulation of immune processes.
Further, imbalances in immune regulation have been increasingly linked to pathological
conditions such as obesity and diabetes mellitus. While most studies in the past have
focused on the role of TSP1 in cancer and inflammation, recently published data have
revealed new insights about the role of TSP1 in physiological and metabolic disorders.
Here, we highlight recent findings that associate TSP1 and its receptors to obesity,
diabetes, and cardiovascular diseases. TSP1 regulates nitric oxide, activates latent
TGFb1, and interacts with receptors CD36 and CD47, to play an important role in cell
metabolism. Thus, TSP1 and its major receptors may be considered a potential
therapeutic target for metabolic diseases.
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INTRODUCTION

Thrombospondin 1 (TSP1) was discovered in 1971 (1, 2) as a glycoprotein that is secreted by
activated platelets, suggesting that the protein’s main function would be associated with hemostasis.
However, pioneering studies have uncovered a variety of functions of TSP1, including regulation of
cell migration, apoptosis, and angiogenesis (3–6).

TSP1 has a trimeric 450 kDa complex structure that includes a heparin-binding domain with a
procollagen homology domain at the amino terminus (7), and type I, II, and III repeats at the
carboxyl-terminal end (2, 8). The type I repeats are also called thrombospondin structural repeats
(TSR) (9). Within the TSRs, the sequence (CSVTCG) shows a specific affinity for CD36 (also known
as fatty acid translocase, FAT) (10). CD36 is a glycosylated protein, member of the class B scavenger
receptor family (11). Through binding with CD36, TSP1 induces apoptosis in endothelial cells (4).
Abbreviations: TSP1, thrombospondin 1; TGFb1, transforming growth factor beta 1; Thbs1 -/- mice, mice lacking TSP1
protein; CD47, cluster of differentiation 47; CD36, cluster of differentiation 36; MMP, matrix metallopeptidase; AMPK, 5′-
adenosine monophosphate-activated protein kinase; NO, nitric oxide; cAMP, cyclic adenosine monophosphate; HIF1a,
hypoxia inducible factor 1 alpha; IL-6, interleukin- 6; TNFa, tumor necrosis factor alpha; ApoE, apolipoprotein E; VEGF,
vascular endothelial growth factor; siRNA, small interfering RNA; Mdm2, mouse double minute 2 homolog; let-7d, lethal-7d;
ROS, reactive oxygen species; USF2, upstream stimulatory factor 2.
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Importantly, the sequence RFK is located between the first and
second TSRs and mediates the activation of the latent form of
transforming growth factor beta1(TGFb1) (12).

The type III repeats of TSP1 contain domains that interact
with neutrophil elastase (13), and inhibit the angiogenic effects of
fibroblast growth factor 2 (FGF2) (14). Finally, the carboxyl-
terminal domain of TSP1 shows affinity for CD47, also known as
integrin associated protein (IAP), an important TSP1 receptor.
CD47 regulates the effects of nitric oxide (NO) in metabolic
diseases and has major functions in immunity and hemostasis
(15). This domain also interacts with integrins modulating cell
adhesion and spreading (Figure 1).

TSP1 exerts a wide range of functions as its domains can bind
to receptors and specific proteins anchored or secreted in the
extracellular matrix. TSP1 is an antiangiogenic protein that
modulates cell migration and adhesion; it controls the
deposition of collagen in the stroma and modulates immunity
(2, 5, 16, 17). Recently, there has been an increasing interest in
metabolic alterations as major causes of many pathological
conditions. This has rekindled the interest in TSP1 and other
matricellular proteins as molecules that may be associated with
the modulation of metabolic alterations. This review revisits the
functions of TSP1, emphasizes its role in the pathophysiology of
major metabolic alterations such as obesity, cardiovascular
diseases, and diabetes mellitus, and discusses recent advances
in metabolomics that are linked to TSP1.
TSP1 IN CARDIOVASCULAR DISEASES

TSP1 is weakly expressed in the normal heart (18). In fact, in
mice lacking TSP1 (Thbs1 -/- mice), minimal effects are observed
in heart vascularization, ventricular dimensions, and
cardiovascular functions as compared to the control mice (18).
However, studies in patients with known cardiovascular
conditions have indicated that measuring TSP1 level in plasma
Frontiers in Endocrinology | www.frontiersin.org 2
is useful for the diagnosis and prognosis of these conditions (19,
20). Moreover, polymorphisms in the TSP1 gene are linked to a
genetic propensity to myocardial infarction, underlining its
importance in this condition (21).

In a myocardial infarction model, Thbs1 -/- mice display more
intense and diffuse inflammation surrounding the infarcted area
of the heart (22). These effects of TSP1 seem to be sex-dependent.
A preclinical study using a myocardial infarction model showed
that female mice displayed lesser heart inflammation than the
male mice. Leukocytes were isolated and identified as
neutrophils, using antibodies specific for nuclear factor
(NF)kB-p65 or peroxisome proliferator-activated receptor
(PPAR)g. The lower concentration of TSP1 in the leukocytes of
female mice was evident after 7 days as well as lower levels of IL-6
in plasma (23).

Lesser TSP1 and production of ROS would significantly
ameliorate inflammation and reduce the binding of TSP1 with
the receptor cluster of differentiation, CD36. This multifunctional
receptor has relevant functions in metabolic and immune
interactions, including the uptake of circulating fatty acids into
the cells (24). CD36 is highly expressed in cardiomyocytes and its
deletion reduces lipid uptake and storage, and the induction of
genes related to fatty acids metabolism (25, 26). CD36
downregulates 5′-adenosine monophosphate-activated protein
kinase (AMPK); however, upon binding with fatty acids, CD36
will promote the activation of AMPK enhancing fatty acid
oxidation (27).

TSP1 largely contributes to the rapid remodeling of the
extracellular matrix. TSP1 directly and indirectly upregulates
and binds to MMPs (28); TSP1 promotes the activation of MMPs
by inducing profibrotic genes or by activation of latent TGFb1.
This is an important mechanism in cardiovascular pathology
(29). TGFb1 also accelerates the differentiation of inactive
fibroblasts into myofibroblasts and induces the transcription of
pro-fibrotic genes. In addition, this growth factor exacerbates the
inflammatory response (30). An increase in cleaved TSP1 has
been detected in adults with dilated cardiomyopathy, wherein
FIGURE 1 | Schematic diagram representing the structure of TSP1, its major ligands and functions. TSP1 displays an amino terminus that interacts with integrins
and proteoglycans. The type I, II, and III repeats and the carboxyl-terminal end are also represented herein. The type I repeats also named TSRs contain the binding
domain for CD36, responsible for endothelial apoptosis. The sequence RFK that activates the latent form of transforming growth factor beta1(TGFb1) is also found
within these repeats. The type III repeats of TSP1 contain domains that interact with neutrophil elastase and inhibit FGF2. Finally, the carboxyl-terminal domain of
TSP1 binds to CD47. This domain interacts with integrins modulating cell adhesion, spreading and migration. TSP1 binds to a diversity of relevant proteins and
growth factors not shown in this figure in lieu of clarity.
March 2021 | Volume 12 | Article 638536

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Gutierrez and Gutierrez Thrombospondin 1 and Metabolic Diseases
fibrosis is more profuse. These results suggest that TSP1
promotes the activation of latent TGFb1 and MMPs in the
adult cardiac heart, and enhances cardiac muscle remodeling
and fibrosis (31), thereby indicating a clear role of TSP1 in
cardiovascular pathology during the aging process.

Hypoxia could lead to oxidative stress and production of
reactive oxygen species (ROS) by mitochondria. In a model of
ischemic reperfusion injury in young and aged hearts, ROS
production was induced by the damage with concomitant high
expression of TSP1 and dynamin-related protein (Drp-1). Drp-1
is a key protein involved in mitochondrial fission and ROS
signaling. Inhibitors of TSP1 may potentially reduce
cardiomyocyte damage and aging by reducing production of
Drp-1 (32).

Oxidative stress and ROS generation lead to accelerated
aging. TSP1, along with CD47, contributes to the aging process
in cardiac muscle and endothelial cells. CD47 is expressed in
many cell types (33). The binding of CD47 to TSP1 is significant
in cardiovascular physiology; notably, the hearts of aging mice
deficient in TSP1 and CD47 display elevated heart rates and
increased cardiac output. These may be compensatory changes
but, levels of cAMP were elevated following a nitric oxide (NO)
challenge, suggesting an intrinsic ionotropic and chronotropic
activity in the cardiac muscle (34).

The role of TSP1 is quite relevant in vascular diseases such as
atherosclerosis. This progressive disease is triggered by
endothelial injury and inflammation. Damage to endothelial
cells occurs because of changes in blood flow, lipid products,
and inflammatory mediators that alter the endothelial barrier.
Gradual fibrosis and accumulation of leukocytes and lipids
within the intima of the vessel wall occur, and smooth muscle
cells (SMCs) migrate from the media in response to cytokines
released by inflammatory and immune cells. TSP1 is highly
expressed in the arterial wall upon endothelial damage (35)
that favors the adherence and penetration of monocytes and
macrophages to the arterial wall. TSP1 also enhances the
migration and adhesion of macrophages, SMCs, and fibroblasts
into the vessel wall and promotes the migration and proliferation
of SMCs (36).

During inflammatory conditions such as atherosclerosis,
hypoxia inducible factor-1 alpha (HIF1a) enhances the release
of interleukin-6, tumor necrosis factor alpha, and TSP1, all of
which act as profibrotic factors and alter the vascular
homeostasis (8, 37, 38). In pathologies such as pulmonary
hypertension, hypoxia inducible factor-2 alpha (HIF2a) is also
required for the upregulation of TSP1 in pulmonary vasculature
under hypoxic conditions (39).

TSP1 alsomodulates vasodilation and perfusion of tissues via the
regulation of NO (34, 40). TSP1 decreases the levels of cAMP and
cGMP by inhibiting NO produced by endothelial cells, limiting the
smooth muscle cell response, and blocking vasodilation (41–43).
Mice lacking TSP1 and CD47 display hypotension, and are more
resistant to stress-induced hypertension (15, 44).

TSP1 and CD47 are upregulated in aged arteries (45), and
when aortic rings from older individuals were treated with an
antibody against CD47, they showed similar sprouting to the
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aortic rings treated with vascular endothelial growth factor
(VEGF). These results revel new and exciting insights into
reversing atherosclerosis and the aging process (45).

Lack of TSP1 may contribute to the stabilization of
atherosclerotic plaque by inhibiting efferocytosis (46). This
function is mediated by the interaction of TSP1 with CD47.
CD47 is a surface protein that signals a “Don’t Eat Me”
message to phagocytic cells. CD47 inactivates macrophages
by binding to the signal regulatory protein alpha (SIRPa) in
Mac3+ cells (47) and by inhibiting the activation of integrins
(48). Similar to TSP1, CD47 is increasingly upregulated during
the entire atherogenic process (49). Mice lacking CD47 are
more susceptible to atherosclerosis, and treatment with an
inhibitory antibody against CD47 induces the same effect as
that of decreasing efferocytosis. CD47 deficiency enhances the
activation of natural killer cells (NK) by inducing the release
of interferon gamma (INFg). Additionally, treatment of
mice with an anti-NK antibody prevents the formation of
plaques (47).

The interaction between TSP1/CD47 is critical for the
migration and proliferation of SMCs (50). CD47 can impair
the efferocytosis of SMCs thereby, promoting their proliferation
(Figure 2). Dedifferentiated SMCs from atheromas overexpress
CD47 and complement component 3 (C3). C3 is a key protein of
the complement system, whose subunits C3a and C3b act as
effectors in opsonization, phagocytosis and inflammation. These
CD47+ and C3+ SMCs can evade efferocytosis from polarized M1
murine RAW 264.7 macrophages. Therefore, these SMCs can
proliferate and migrate during the process. Additionally,
blocking CD47 reestablishes efferocytosis of these SMCs and
prevents atherosclerosis (51).

Lack of TSP1 seems to have a protective role in the ApoE-/-

mouse model as it is associated with decreased inflammation and
improved glucose metabolism (52). However, earlier studies had
suggested that TSP1 deficiency promotes atherogenesis and
vascular inflammation in the same mouse model (46). It is
possible that the functions of TSP1 depend on the vessel type,
stage of the lesions, and association with obesity, diabetes, or
other metabolic diseases (53). Undoubtedly, the influence of
TSP1 on cardiovascular diseases is even more complex and
multifactorial due to the variability in activation and
functioning of endothelial co-receptors. As an example, TSP1
may activate endothelial receptors CD36 or CD47 differentially
or they can induce different responses depending on the type of
integrin expressed; for instance, TSP1 inhibits endothelial
migration in the microvasculature via binding with CD36 (11,
54), but it could also enhance chemotaxis by binding to integrins
a3b1and a6b1in HDMEV (7). In addition, possible interactions
between CD47 and CD36 should be considered (33).
Undoubtedly, the influence of TSP1 on cardiovascular diseases
is complex and multifactorial (Figure 2).

The activation of latent TGFb1 via TSP1 enhances fibrosis
and stiffness in arteries in abnormal conditions without a normal
laminar vascular flow (55). These same mechanisms may be
implicated in aortic dissection and other arterial pathologies (37,
44, 56). Peptides able to block TSP1 binding to receptors and
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inhibit its activation of latent TGFb1may be promising
therapeutic agents for cardiovascular diseases and other
metabolic diseases (57).

Fibrous plaque leads to ulceration, hemorrhage and scar
tissue deposits. Activation of the cascade of coagulation plays
an important role in the formation of the atheroma leading to
thrombosis and embolism. These complications are first caused
by the slowing and turbulence of the blood flow. The next steps
involve the adhesion of platelets to the endothelium with the
consequent platelet activation and aggregation.

There is evidence of TSP1 as a promoter of platelet
aggregation and activation (58). Interestingly, only TSP1
released from alpha granules of activated platelets will suppress
cAMP signaling and increase phosphodiesterase 3 (PDE3A)
favoring hemostasis (59). CD36 seems to be required, in part,
for these processes as platelet-secreted TSP1 can increase the
expression of phosphatidylserine by interacting with CD36,
enhancing the stabilization of the thrombus (60). Recent
studies also show that a CD47-derived peptide, TAX2, inhibits
thrombosis by blocking platelet phosphorylation upon contact
with collagen. This TAX antibody significantly retarded
thrombosis in two models of arterial occlusion (61), and its
antithrombotic properties are suspected to be mediated by
Frontiers in Endocrinology | www.frontiersin.org 4
regulation of NO/cGMP signaling (58). These findings may
lead to new therapeutic avenues for metabolic diseases
involving thromboembolism.
TSP1 IN GLUCOSE METABOLISM
AND DIABETES MELLITUS

In a prediabetic condition, glycemic levels are not high enough to
establish a diagnosis of diabetes. However, chronic inflammation,
endothelial damage, and extracellular remodeling could lead to
diabetes and its complications. TSP1 is associated with all these
processes and it is also involved in glucose metabolism as observed
in animal and clinical models.

The link between TSP1 and glucose metabolism is evidenced
by the fact that aged Thbs1 -/- mice show impaired glucose
tolerance (62). These mice display hypertrophic pancreatic
tissues that produce less proinsulin. Additionally, the pancreas
of Thbs1 -/- mice release lesser glucose upon insulin secretion
(63). This impaired glucose tolerance could be caused by
abnormal oxidation of glucose and mitochondrial dysfunction.
Further, the pancreatic tissues of Thbs1 -/- mice show a higher
FIGURE 2 | Mechanisms mediated by TSP1 in cardiovascular diseases. The interaction of TSP1 with CD47 inhibits nitric-oxide (NO) levels, thereby decreasing
vasodilation and compromising organ perfusion. Hypertension and endothelial injury can in turn, activate the coagulation system, promoting the initiation of thrombus.
CD47 suppresses the activation of phagocytic and natural killer (NK) cells during atherogenesis, dampening the inflammatory response and efferocytosis by
interacting with signal regulatory protein alpha (SIRPa) and inhibiting integrins. TSP1 activates the latent transforming growth factor beta1 (TGFb1) enhancing
inflammation and fibrosis in the heart and vascular system. Additionally, this growth factor activates matrix metalloproteinases (MMPs), thereby contributing to matrix
remodeling in atherosclerosis. Inflammation-induced hypoxia activates hypoxia inducible factor-1 and 2 alpha (HIF1/2a) and increases the levels of interleukin 6 (IL6)
and tumor necrosis factor alpha (TNFa) promoting even more the inflammatory process and atherosclerosis. Inflammation also enhances the production of reactive
oxygen species (ROS) and cell damage. CD36, as a scavenger receptor B, promotes cellular uptake of lipoproteins and formation of foamy macrophages, which are
part of the atherosclerotic plaque. Additionally, by interacting with TSP1, CD36 stabilizes the thrombus in the arterial wall and stimulates the proliferation and
migration of smooth muscle cells (SMCs), contributing even further to the atherosclerotic process.
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expression of uncoupling protein 2 (UCP2), which is an inner
membrane mitochondrial protein involved in oxidation and ROS
metabolism (64). Polymorphisms of UCP2 have been linked to
human obesity and diabetes. In addition, islets of Thbs1 -/- mice
produce more lactate, indicating a switch to glycolysis, which
results in reduced production of ATP and proinsulin. This was
also confirmed when the islets of Thbs1 -/- mice showed higher
production of lactate dehydrogenase A, a key glycolytic enzyme
responsible for lactate production. These results indicate that
TSP1 is vital to maintain the pancreatic homeostasis during
normal glycemic conditions.

Vascular perfusion and regulation of angiogenesis are both
crucial for the normal functioning of the pancreas and insulin
output. The pancreatic islets have more vascularization and
blood flow than the acinar component. Additionally, the islet’s
endothelium is highly fenestrated and it is actively involved in
the production and secretion of insulin. Endothelial cells of the
pancreatic islets produce TSP1 (63); however, they also secrete
VEGF (62). Reduction of VEGF in islets impairs the release of
insulin into the vascular system and these mice with decreased
production of VEGF by their pancreatic islets exhibit impaired
glucose tolerance as well (65). Therefore, a balance between both
proteins is needed to maintain a healthy secretion of insulin and
normal glucose blood levels.

Under normal glycemic conditions, the cGMP-dependent
protein kinase (PKG) decreases the gene expression of TSP1
and consequently, the activation of latent TGFb1 by TSP1.
However, during hyperglycemia, TSP1 gene expression is
enhanced by the downregulation of PKG (66). This status will
lead to the upregulation of the transcription nuclear protein
upstream stimulatory factor 2 (USF2). It has been reported that
USF2 can bind to a region located in the TSP1 promoter, and
enhance TSP1 transcription (67). Glycosylated proteins such as
glycated albumin also modulate TSP1 expression by upregulating
USF2 (29). This mechanism could promote higher levels of TSP1
in diabetes and lead to complications such as diabetic
nephropathy. Interestingly, recent studies show that USF2, is
in fact, a tumor suppressor that reduces cell proliferation,
migration and oxidative stress (68), protective functions also
exerted by TSP1 in some inflammatory diseases and cancers
(69, 70).

Undoubtedly, high levels of glucose promote oxidative stress
(71, 72). Oxidative stress, insulin resistance, and increased levels
of glycosylated products likely lead to endothelial dysfunction in
hyperglycemia (73). Glycosylation and the expression of TSP1 in
SMCs could be mediated by activation of the hexosamine
pathway (Figure 3). Sugars and activators of this pathway may
directly enhance the proliferation of SMCs and promote the
transcriptional expression of TSP1. The treatment of SMCs with
an anti-TSP1 antibody and a TSP1 siRNA reverses their
proliferation, thereby suggesting a direct link between the
hexosamine catabolic pathway, glycosylation, and TSP1 in
diabetes (36, 67).

High expression of TSP1 has been observed in SMCs during
hyperglycemia. CD47 regulates the migration of SMCs under
hyperglycemic conditions by interacting with SIRPa (50). This
Frontiers in Endocrinology | www.frontiersin.org 5
binding blocks the migration of SMC mediated by the insulin-
like growth factor 1 receptor (IGF1R) signaling (50). When
CD47 binds to TSP1, or to a peptide derived from the CD47
domain of TSP1, the binding of CD47 to SIRPa is reduced due
activation of the IGF1R signaling (50). However, high levels of
glucose protect CD47 from degradation and promote its
association with SIRPa (74, 75). Further, protein and mRNA
levels of TSP1 and its receptor CD47 were enhanced in
endothelial cells isolated from wound lesions of diabetic Wistar
rats (76). By using a CD47-blocking siRNA, endothelial cells
show increased proliferation, migration, and tube formation.
These results suggest that angiogenesis in diabetes may be
regulated by the TSP1-CD47 axis (76). As age predisposes the
body to insulin resistance and hyperglycemia, CD47 will further
inhibit SMCs proliferation and angiogenesis. Indeed, CD47-null
aging mice have demonstrated better responses to glucose than
control mice (45).

Currently, novel antibodies inhibiting the interaction between
SIRPa and CD47 are in preclinical phases, while other anti-
CD47 antibodies such as AO-176 are currently under evaluation
in clinical trials for the treatments of several types of cancers.
Some of these antibodies target tumor macrophages, enhancing
efferocytosis of tumor cells (77, 78).

CD36 also plays a significant role in lipid and glucose
metabolism, and can promote insulin resistance and
hyperinsulinemia (79, 80). However, its functions in these
conditions seem contradictory. In a clinical trial that involved
patients with a metabolic syndrome, CD36 mRNA was
downregulated in the blood mononuclear cells of patients who
consumed a healthy low-fat diet (81). In another study,
decreased expression of CD36 in muscle was associated with
increased risk of type 2 diabetes (82). In fact, deficiency of human
CD36 is frequently observed in Asian and African populations,
and is linked to insulin resistance (80). In spite of this, mice
lacking CD36 are protected from insulin resistance, even under a
high-fat diet (25).

CD36 is a multifunctional protein with effects that could be
independent of its interaction with TSP1. Instead of having a
concerted effect, TSP1 could block the translocase fatty acid
activity of CD36 in metabolic syndrome (83). Conversely, the
addition of TSP1 or the mimetic peptide ABT526 to hepatocytes
cultured under high sucrose levels and insulin significantly
decreased hepatic steatosis. In this study, TSP1 inhibited sterol
regulatory element-binding protein 1 (SREBP1), an insulin-
activated protein with important functions in glucose and lipid
metabolism. SREBP1 regulation mediated by TSP1 seems to
require CD36 as these results were not reproduced in CD36-
deficient hepatocytes (84).

CD36 may have different effects depending on the type of cell
and organ in which it is expressed; for example, loss of CD36
reduces the expression of genes related to glucose metabolism in
cardiomyocytes but enhances their expression in endothelial cells
(85). Additionally, mice lacking CD36, when fed with a low fat
diet, show high gluconeogenesis and decreased hepatic glycogen
levels; indicating a prediabetic status that seems to be conditional
to the type of diet consumed (86). Further research is needed to
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understand the specific role of CD36 and its interactions with
TSP1 in diabetes.

Adding more complexity to the role of TSP1 in hyperglycemia
is the fact that its expression could be regulated by microRNAs.
Overexpression of miR-467 inhibits TSP1 secretion by
endothelial cells during hyperglycemia, and enhances
angiogenesis in breast tumors (87). In addition, microRNAs
can upregulate TSP1 and genes involved in the TGFb1
pathway (88). Furthermore, microRNAs can protect pancreatic
cells from damage induced by free fatty acids (FFAs). This was
demonstrated when a rat insulinoma cell line (INS) was
transfected with a TSP1 vector, and the transfected cells
became considerably resistant to palmitate (a FFA)-induced
apoptosis (89). Conversely, when INS cells were transfected
with the 3′-UTR of TSP1 and miR-182-5p, they showed a
significant decrease in TSP1 expression, indicating that this
microRNA was able to target TSP1 (89).

Diabetes mellitus leads to severe complications involving the
cardiovascular system, kidney, retina, and nervous system,
resulting in a persistent microvascular injury in tissues and
delayed healing (90). The slow wound healing observed in
diabetes, could be explained in part by the elevation of TSP1
and inhibition of VEGF observed during capillary regression
under hyperglycemic conditions (91). In addition, through its
binding to CD36 or even CD47, TSP1 could prevent tube
formation and migration of endothelial cells and depress the
phagocytic response, hindering the healing process. TSP1 is also
involved in the pathophysiology of diabetic cardiomyopathy,
Frontiers in Endocrinology | www.frontiersin.org 6
obesity, and neuropathy (92–95). Indeed, neuropathy is one of
the most devastating sequelae of diabetes, and nervous system
damage has been associated with impaired angiogenesis and
increased TSP1 expression (96).

One common complication of diabetes is nephropathy. Both
TSP1 and TGFb1 are involved in this condition. TSP1 is highly
expressed in glomerular mesangial cells as diabetic nephropathy
progresses (97). Activation of latent TGFb1, mediated by TSP1,
is necessary for the normal functioning of pancreatic islets.
However during chronic hyperglycemia, TGFb1 can worsen
diabetic nephropathy by inducing fibrosis (98). Thus, blocking
this activation could be an alternative mechanism for preventing
this complication. For instance, fibrosis in rat peritoneal tissues
can be reversed by the treatment with a TSP1-derived peptide.
This peptide blocks the activation of latent TGFb1, and
significantly reduces fibrosis both in vivo and in vitro (99).

Clinical studies suggest that TSP1 could be a potential diagnostic
marker for diabetes. In patients with glucose intolerance, TSP1
mRNA levels in adipose tissues were significantly lower when
patients were treated with pioglitazone, a drug that improves the
response to insulin (94). In a randomized study, plasma samples
from 398 patients with prediabetes were evaluated, and proteomics
studies indicated that TSP1 was correlated with high levels of
glucose after 2 h of fasting (100). Reduced levels of TSP1 in
serum positively correlated with improved glucose intolerance and
diminished liver fat content (84). In another clinical trial evaluating
metabolic syndrome, TSP1 serum levels showed a strong association
with high HbA1c in males (101). These results confirm TSP1 as a
FIGURE 3 | Effects of TSP1 and ligands in glucose metabolism and diabetes mellitus. TSP1 protects the pancreatic endothelium and controls angiogenesis by
enhancing insulin production and release. TSP1 also blocks the formation of uncoupling protein 2 (UCP2), a mitochondrial protein involved in oxidation and reactive
oxygen species (ROS) metabolism. Under normal glycemic conditions, TSP1 inhibits glycolysis promoting the production of more ATP and pro-insulin. However,
under hyperglycemic conditions and by activating TGFb1, TSP1 accelerates the inflammation and fibrotic changes in multiple organs, especially in the kidney, leading
to diabetic nephropathy and other diabetic complications. The TSP1 receptors CD36 and CD47 can inhibit the proliferation and migration of endothelial and smooth
muscle cells, thereby contributing to endothelial dysfunction in diabetes. In this context, CD47 regulates SMC migration by binding mainly to TSP1 while limiting its
association with SIRP1a. Activation of the hexosamine pathway and glycosylated products can induce further endothelial damage, with generation of ROS and delay
of the wound-healing process in diabetes. Hyperglycemia will inhibit PKG and induce upstream stimulatory factor 2 (USF2), promoting the upregulation of TSP1 in
diabetes. However, all these effects mediated by TSP1 in the glucose metabolism may be regulated by microRNAs.
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protein linked to hyperglycemic mechanisms but further research is
required to better understand its role in glucose metabolism and
diabetes (Figure 3).
TSP1 IN ADIPOCYTE METABOLISM
AND OBESITY

Adipose tissue is one of the most highly vascularized tissues of
the body, and angiogenesis is expected to be involved in its
remodeling and metabolism. Besides the well known role of
TSP1 in the inhibition of angiogenesis (6, 102), early studies have
shown that a lack of TSP1 could decrease abdominal fat without
resulting in any change to vascular density (103). Thbs1 -/- mice
are resistant to obesity following ingestion of a high-fat diet and
display normal levels of leptin, an important adipokine
associated with increased body weight (104). However, studies
have demonstrated that TSP1 is upregulated in the visceral fat of
obese mice; similar findings were reported in clinical studies as
well (104–107).

Adipogenesis as well as the growth and distribution of the
adipose tissues are associated with angiogenesis. Endothelial cells
produce cytokines and growth factors such as VEGF that fuel
lipogenesis and adipose tissue expansion (108). These pro-
angiogenic factors could also promote the trans differentiation of
white adipocytes into brown adipocytes. However, a decrease in
vascularity has been observed through the transition of brown fat
into white adipose tissue during obesity (109, 110). TSP1 may be
involved in these processes by interacting with Argonaute 1(AGO1)
a protein required for gene silencing (111). Downregulation of TSP1
was detected in endothelial cells and adipose tissues of mice lacking
AGO1 fed with a high fat, high sugar diet. These mice showed lower
body weight and normal insulin response (112). Their adipose
tissues display higher vascularity and typical features of brown fat
compared to control mice. Conversely, TSP1 and AGO1 were
upregulated in endothelial cells from obese and diabetic type 2
donors, suggesting that TSP1 may promote obesity and insulin
resistance by reducing angiogenesis.

Certainly, TSP1 contributes to adipose tissue metabolism in
several ways apart from performing its antiangiogenic functions.
The relevance of TSP1 in inflammation and obesity seems to be
mediated principally by macrophages. The phenotype of Thbs1-/-

macrophages is characterized by lower pro-inflammatory
activation and by decreased secretion of cytokines (113, 114).
Adipose tissues that lack TSP1 display reduced leukocytic
infiltration, and Thbs1 -/- macrophages secrete lower levels of
inflammatory cytokines (115). In a diet-induced animal model of
obesity, the influx of CD68+ macrophages and angiogenesis in
Thbs1 -/- adipose tissues was similar to that of the control tissues
(113). Moreover, sensitivity to insulin was also similar to that
observed in the Thbs1 +/+ obese mice. However, obese mice with
a targeted deletion of TSP1 only in F4/80+ macrophages show
impaired leukocytic infiltration in the adipose tissues.
Additionally, these adipose tissues display reduced fibrosis,
improved insulin resistance, and decreased production of pro-
inflammatory cytokines (52). These changes were more evident
Frontiers in Endocrinology | www.frontiersin.org 7
when obesity was already established, indicating a chronic and
progressive mechanism.

These same studies showed a decrease in the activation of
latent TGFb1, both in vitro and in vivo, and indicated that TSP1
deficiency and a decline in latent TGFb1 activation could be
protective against inflammation and obesity. Peptides derived
from the 3TSR of TSP1 containing the domain able to activate
the latent TGFb1 have been shown to enhance the influx of
CD68+ macrophages in models of inflammation and cancer
(116, 117).

As obesity is considered a chronic inflammatory condition,
signaling between macrophages and adipocytes occurs during its
development and progression. CD36 significantly contributes to
enhance the macrophages’ inflammatory functions in adipose
tissues (118). The interaction of CD36 with TSP1 may also
regulate the damage induced by saturated FFAs during obesity
and dyslipidemia. The high expression of TSP1 after the
treatment of podocytes with FFA corroborates these results.
Additionally, FFA-induced podocyte apoptosis was inhibited in
Thbs1 -/- and CD36 -/- podocytes, and they were induced when
they were treated with a CD36 peptide (119).

Recent evidence indicates that CD36 signaling is dependent
on the activation of STAT3 in tumor cells and adipose tissue
(120). High fat diet increases phosphorylation of the signal
transducer and activator of transcription 3 (STAT3) via
activation of CD36. STAT3 is an important transcription
factor in inflammation and immunity. It is also well known
that inflammation is a landmark of adipose tissues in obesity. A
relationship between inflammation and STAT3 was reported in
Thbs1 -/- mice in a model of colitis. These colonic tissues show
more inflammation and enhanced phosphorylation of STAT3 as
well. A mimetic peptide containing the TSP1 binding domain for
CD36 reverted the STAT3 activation (121).

CD47 -/- mice, as well as Thbs1 -/- mice, are resistant to obesity
(52, 104). The subcutaneous fat tissue of CD47 -/- mice displays
lower expression of TSP1, but higher expression of cGMP (122)
which is integral in cardiovascular and adipose metabolism. This
signaling regulates the proliferation, differentiation and secretory
activity of brown adipocyte depots (123, 124). Moreover,
mitochondria from CD47 -/- brown adipocytes display
anomalies in shape and high metabolic activity. These results
suggest that CD47 may be a potential target for reducing obesity,
as increased body distribution and activity of brown fat in adults
are regarded as a potential strategy for reducing obesity.

Adipose tissue is an endocrine organ that produces several
hormones, including the adipokine leptin, a peptide secreted by
adipocytes (125). Leptin receptors are involved in appetite, food
intake and insulin secretion. Though, its involvement in obesity
is still uncertain (Figure 4), several animal and clinical studies
have demonstrated that increased plasma levels of leptin are
associated with high body mass and atherosclerosis (126).
However, recent studies have shown that ApoE-/-/Thbs1 -/-

mice treated with exogenous leptin display significant
decreases in body weight and attenuation of atherosclerosis.
Levels of VLDL and triglycerides were substantially lower in
these double null mice even after being fed with a western high-
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Gutierrez and Gutierrez Thrombospondin 1 and Metabolic Diseases
fat diet. These effects, mediated by TSP1 via leptin, seem to be
induced by the upregulation of JAK2 and MAPKs signaling
pathways (127). Activation of these pathways has been also
implicated in the upregulation of TSP1 by leptin in vascular
muscle cells during atherogenesis (128).

TSP1 could be a marker for weight loss and higher basal
metabolism. In a clinical study, high TSP1 expression was detected
in the visceral fat of patients undergoing a weight loss program
consisting of low caloric intake and increased physical activity
(101). TSP1 serum levels of these patients were higher, and
correlated with abdominal obesity, hypertension, hyperglycemia
and high levels of leptin. These associations were observed
particularly in premenopausal females. However, these results
should be interpreted cautiously as TSP1 levels in serum may
result from platelet activation, and may not reflect the high
physiological concentration of TSP1 observed in plasma
samples. Platelet function can be inhibited in obese patients as
well (129). Therefore, low levels of TSP1 could be caused by
impairment of platelet activation, which may be enhanced by
weight loss. However, the same results were observed in another
clinical study when proteomic analyses were performed in
peripheral blood mononuclear cells and visceral adipose tissues.
TSP1 was again one of the proteins upregulated in obese patients,
and TSP1 levels were decreased after the same patients followed an
exercise regimen (130). As obesity and its complications are a
Frontiers in Endocrinology | www.frontiersin.org 8
significant health concern in our society, the premise that TSP1
could be a diagnostic marker for obesity compellingly merits
further investigation.
CONCLUSIONS AND FUTURE
PERSPECTIVES

TSP1 is a frequently studied and well-characterized matricellular
protein. Its antiangiogenic effect in cancer was previously
explored in animal studies and clinical trials. As TSP1 contains
multiple binding sites to several receptors and growth factors, a
more sophisticated understanding of its dynamic functions is
necessary. As we have learned more about the intrinsic
mechanisms involving TSP1 and its interactions, it has become
clear that these mechanisms may be tissue-specific and depend
on the affinity and temporal/spatial expression of these cofactors
within the tissue environment.

In the past, pioneers in the field developed a foundation for
understanding the pathophysiological roles of TSP1 in metabolic
diseases. As new scientific tools and more in-depth metabolomics
approaches are now possible, new mechanistic insights have
emerged about TSP1. Among these exciting breakthroughs is the
development of novel antibodies blocking TSP1/CD47 interactions,
some of which have progressed to clinical trials for treating several
types of cancers. One such antibody, TAX, has shown promising
results as an antithrombotic, leading to its potential therapeutic use
in cardiovascular diseases and other metabolic conditions.

The potential use of TSP1 as a diagnostic and prognostic
indicator of diabetes and obesity is an exciting possibility, as well
as the use of microRNAs to mitigate the effects of TSP1 in these
diseases. More insights regarding the role of this protein in
mitochondrial metabolism and immunity are emerging. These
scientific advances position TSP1 and its receptors as important
therapeutic targets in heart disease, diabetes, obesity, aging
and cancer.
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FIGURE 4 | TSP1 in adipose metabolism and obesity. TSP1 activates the
latent form of transforming growth factor beta1 (TGFb1), consequently
promoting the recruitment of leukocytes, the influx of macrophages to the
adipose tissue, and the release of inflammatory cytokines and adipokines.
TGFb1 will also contribute to fibrosis of adipose tissues by inducing the
transcription of pro-fibrotic genes. By interacting with TSP1, CD47
suppresses the mitochondrial metabolism in brown adipose cells, therefore
exhibiting a pro-obesity effect. TSP1 interacts with the hormone leptin by
activating the JAK/STATs pathway. Increased plasma levels of leptin are
correlated with high body fatness. The dashed arrow indicates a probable but
yet unexplained association with obesity. CD36 facilitates the uptake of free
fatty acids (FFA) into adipose cells, but it can also promote the apoptosis of
endothelial cells, decreasing angiogenesis. Perhaps, this could contribute to
the lower vascularization observed in white adipose tissues during the
progression of this condition (dashed arrow). Finally, CD36 can regulate
adipogenesis and expansion of adipose cells by activating the signal
transducer and activator of transcription 3 (STAT3) signaling.
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