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Abstract: The plasma modification of polydimethylsiloxane (PDMS) substrates is one way to change
their surface geometry, which enables the formation of wrinkles. However, these changes are very
often accompanied by the process of restoring the hydrophobic properties of the modified material.
In this work, the RF PACVD device (radio frequency plasma-assisted chemical vapor deposition)
was used, with which the plasma treatment of PDMS substrates was carried out in argon, nitrogen,
oxygen, and methane atmospheres at variable negative biases ranging from 100 V to 500 V. The
obtained results show the stability of contact angles for deionized water only in the case of surfaces
modified by diamond-like carbon (DLC) coatings. The influence of the applied production conditions
on the thickness (between 10 and 30 nm) and chemical structure (ID/IG between 0.41 and 0.8) of
DLC coatings is discussed. In the case of plasma treatments with other gases introduced into the
working chamber, the phenomenon of changing from hydrophilic to hydrophobic properties after the
modification processes was observed. The presented results confirm the barrier nature of the DLC
coatings produced on the PDMS substrate.

Keywords: DLC; surface modification; PDMS; plasma; CVD; Raman spectroscopy

1. Introduction

Due to its properties, PDMS is a polymer material used in many applications, ranging
from biomedicine to power engineering [1–5]. In addition, the properties of its surface can
be changed via plasma modification, including corona plasma, DBD, and RF PACVD [1,4].
Laser treatment and UV radiation are also used for this purpose [1,6–9]. Obviously, the most
promising are those treatments that allow for the uniform modification of the entire surface,
among which RF PACVD methods are the most frequently found in the literature [1,4].
Nevertheless, the very application of plasma also influences the aging processes taking place
in the outer layer and on the surface itself. In most cases, PDMS plasma treatment involves
the problem of a short-term change in the contact angle, sometimes forcing their use as a
hydrophilic surface within a few dozen minutes from the end of the modification process.
Interestingly, the use of plasma techniques in the modification of polydimethylsiloxane
results in the formation of thin, silicon-like coatings (SiOx) on its surface [10,11], which may
also play an important role in the aging process [1]. It also turns out that these coatings
are an indispensable effect of the use of plasma, and the type of working atmosphere
(gases introduced into the processes) is, in most cases, irrelevant [1]. The only exceptions
are the processes conducted with use of methane [12,13]. The use of corrugated polymer
surfaces with DLC coatings seems to be of particular interest in biological studies on cell
proliferation [4,14,15]. The change in contact angle over time, with modified polymeric
substrates stored in the air, can be explained in at least three ways. The first of them involves
the migration from the inside to the outside of non-cross-linked so-called low molecular
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weighted (LMW) siloxanes, which slip through the porosities in the aforementioned silicon-
like coatings, or through cracks resulting from the mismatch between the mechanical
properties of the resulting coatings and the polymer substrate [16,17]. It has even been
reported that the occurrence of cracks on the surfaces of SiOx coatings on PDMS may
intensify the process of returning to hydrophobic recovery [17]. It is also possible to link the
fracture process of silicon-like coatings with the duration of the processes [17]. Generally,
it can be summarized that this method of changing the surface contact angle is related
to the migration of LMW particles from the center of the material toward the thermally
unstable hydrophilic PDMS surface [16–18]. An additional, possible effect of the described
phenomena is the potential oxidation of the abovementioned molecules in the plasma and
their diffusion from the outside into the material [16,18]. The second mechanism is related
to the interaction of free radicals and other plasma macromolecules, which may diffuse into
the substrate and affect the oxidation processes [16,19]. Interestingly, some free radicals may
remain in the polymer network for weeks or months, depending on the processes taking
place on the surface [19]. The third mechanism is based on the reorientation of chemical
bonds on the surface of polymers [2]. This process is characteristic of larger polymer chains
in which the modified part diffuses into the material and the unmodified section diffuses to
the surface [16,18]. According to Mortazavi [16], the processes of hydrophobic recovery can
be controlled by the parameters of plasma modification, which consist of the gas treatment,
modification time, temperature, and humidity of the sample storage environment [16,18,20].
It is also important that it is possible to influence the rate of change of the surface properties
of polymers treated with the plasma. Such methods include the processes of cross-linking
their surfaces or producing coatings on them [19]. However, as already mentioned, any
cracks in the surface of the coatings formed on PDMS represent a potential site for LOW
migration, leading to hydrophobic surface recovery [1]. Another way to protect the surface
of polymers is to create a DLC coating, which, apart from stabilizing the contact angle, can
also improve a number of other surface properties, such as tribological or biological [21–23].
It is worth emphasizing that this type of coating is known as an excellent barrier against the
transfer of metal ions in biomedical applications [24,25]. DLC coatings are simply a mixture
of sp3, sp2 hybridized carbon atoms, and hydrogen. Their properties, which can be varied in
a very wide range, depend on the presented composition and chemical structure. Of course,
in the case of carbon coatings produced on polymer substrates, the range of their properties
is limited by the thermal resistance of the substrates themselves. Nevertheless, works on
the use of carbon coatings are carried out both in the case of hard, wear-resistant polymers,
such as PEEK [22], and those that are “soft”, such as PDMS [26]. The use of DLC coatings
on substrates such as PDMS is inevitably combined with the appearance of wrinkles on the
surface of polymers. It is an issue that has been widely described in the literature [10,27–32].
Most often, wrinkles on modified PDMS surfaces are described as the result of mismatching
the elasticity modulus of the coating and the polymer substrate [26,27,31]. However, when
analyzing this issue in more detail, it is worth noting that the formation of wrinkles is
the effect of mismatching the deformation of the formed coating when the compressive
stress exceeds the threshold value [29,30,32]. There are a number of mathematical models
describing the wavelength and amplitude of the wrinkles, depending on the material
properties of the substrate, the coating, and even the intermediate layer that may be formed
during the modification processes [27]. Changes in the mentioned parameters, which, in
fact, perfectly describe the surface geometry, are often reflected in changes in the value of
surface free energy [27]. Wrinkles on the surface of DLC coatings produced on the PDMS
substrate may also be the result of the applied additional tensile stresses [10,33]; however,
in this case, cracks in the coating very often occur. On the other hand, the application of
tests with a variable tensile force of DLC coatings on PDMS substrates allows us to know
other important properties of such a composite, e.g., coating adhesion to the substrate or
the presence of a cross-linked substrate interlayer [34]. Similar relationships also apply to
other coatings on PDMS substrates, such as SiOx, gold [27,33], silver, molybdenum [29], or
polymer coatings [28]. As already described in our previous work regarding DLC coatings
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on PDMS, substrates deposited by the RF PACVD method are uniform and crack-free. They
increase the stiffness modulus of elasticity and improve the tribological properties (reduce
the friction coefficient and wear rate) of the PDMS surface. The adhesion of DLC coatings to
PDMS substrates increases with the increasing negative autopolarization potential [34]. In this
paper, the authors focused on the analysis of the influence of various atmospheres and energy
parameters of radio frequency plasma on changes in the contact angle for deionized water
and parameters describing the modified surface. Additionally, in the case of PDMS substrates
modified in methane plasma, the analysis of the chemical structure of the coatings was carried
out using Raman spectroscopy. The presented studies are of particular importance for further
research on the development of the optimal surfaces for cell cultures for biomedicine.

2. Materials and Methods
2.1. Manufacturing of PDMS Substrates

Sylgard 184 polydimethylsiloxane (PDMS) samples from Dow Corning company
(Midland, MI, USA) were prepared by hand mixing the polymer base and hardener in a
mass ratio of 10: 1, adequate for the presented materials. After degassing in a vacuum
chamber, the liquid polymer was poured into Petri dishes in such an amount that the
thickness of the obtained samples was 2 mm. Curing of PDMS was carried out at 80 ◦C for
12 h. From the material prepared in this way, samples with a size of 20 × 20 mm were cut
for further research.

2.2. Apparatus and Modification Parameters

Modifications of PDMS substrates were carried out in the RF PACVD system described
in our previous publications. All processes were carried out with variable negative autopo-
larization potential (Vb) from 100 V to 500 V with the use of gases such as oxygen, argon,
nitrogen, and methane. The duration of the processes was identical for each modification and
amounted to 60 s. The most important parameters of the processes are presented in Table 1.

Table 1. Parameters of modification processes.

Gas Gas Flow
(sccm)

Pressure
(Pa)

Bias
Vb (V)

Power
P (W)

Time
(s)

Ar

60

29

100 92

60

200 140

300 280

400 460

500 690

N2 27

100 84

200 136

300 250

400 420

500 570

O2 30

100 82

200 125

300 220

400 350

500 550

CH4 33

100 80

200 120

300 210

400 340

500 540



Materials 2022, 15, 3883 4 of 15

2.3. Contact Angle Measurement

The contact angle measurements were carried out with use of Kruss Easy Drop DSA15B
device (KRÜSS GmbH, Hamburg, Germany) using deionized water at 25 ◦C. Each drop
placed on the modified surface had a volume of 0.8 µL. The presented test results are
the average of 3 measurements of both the left and right contact angle of the deionized
water drop.

2.4. Atomic Force Microscopy AFM

The surface geometrical structure was measured using Bruker MultiMode V atomic
force microscope (Bruker Corporation, Billerica, MA, USA), operating in the tapping mode
and equipped with OTESPA scanning probe with a nominal resonance frequency of 300 kHz
and an elasticity constant of 26 N/m. Scans of 10 × 10 µm (512 lines) were performed at
two randomly selected locations for each of the samples. The obtained scans of the surface
were pre-processed in the NanoScope Analysis software, whereas further processing and
analysis were carried out with the use of the MountainsMap Premium 5.0 (Version 5, Digital
Surf, Besancon, France). For each surface scan, 512 surface profiles were distinguished,
which were used to determine the selected roughness parameters Ra and Rz. The amplitude
(A) and wavelength (λ) of the ripples were measured manually. For each modification and
scan, four profiles were distinguished, and three measurements of the measured value were
made. As the extracted wrinkle wave profiles do not reflect the ideal sin (x) function, the
amplitude was calculated from three measurements above and three below the mean line.
In summation, the mean amplitude was calculated on the basis of 48 measurements, and the
average wavelength was calculated on the basis of 24 measurements for each modification.

2.5. Raman Spectroscopy

Raman spectroscopy studies were performed on a Renishaw inVia instrument (Glouces-
tershire, UK). A laser with a wavelength of 532 nm and a 50× lens was used for the tests. In
order to analyze changes in the chemical structure of modified or not modified PDMS sub-
strates, spectral ranges from 100 to 3200 cm−1 were used, while the analysis of the chemical
structure of DLC coatings was carried out based on the range from 900 to 2000 cm−1. The
obtained Raman spectra for DLC coatings were deconvolved into 4 characteristic peaks in
accordance with the literature data [35,36], using the PEAKFIT 4.12 software (Version 4.12,
Seasolve, San Jose, CA, USA).

2.6. Thickness Analysis

The thicknesses of the DLC coatings were determined only on the reference substrates,
which were 513 µm thick <100> silicon wafers. Before the modification processes, each
time, in addition to the PDMS substrate, a fragment of a silicon wafer with one half covered
was inserted into the reactor chamber. In this way, after the DLC coatings production
processes, it was possible to determine the thickness of the coatings using a profilometer
and XRR measurements. In the case of testing the thickness profiles, the Hommel Tester
T-1000 profilometer (JENOPTIK Industrial metrology, Villingen-Schwenningen, Germany)
was used. Additionally, the coatings obtained on the silicon samples were tested by the
X-ray reflectivity method, in which the thickness of the coatings was determined based
on periodicity of the registered XRR fringes. The Empyrean diffractometer (Malvern
Panalytical, Malvern, Worcestershire, UK) working with Cu Kα radiation (λ = 0.15418 nm)
was used to obtain the reflectometric curves. The obtained data were processed using
X’Pert Reflectivity software (version 4.7, Malvern Panalytical, Malvern, UK).

3. Results and Discussion
3.1. Changes in Contact Angles over Time of the Modified PDMS Substrates

The study of changes in the contact angles of the radio frequency plasma modified
PDMS surfaces was carried out with the use of deionized water. The analysis covered
the influence of the type of plasma working atmosphere (argon, nitrogen, oxygen, and



Materials 2022, 15, 3883 5 of 15

methane) and the values of the negative autopolarization potential, which varied from
100 V to 500 V (Figure 1).
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As shown in Figure 1, most of the gases used for the modification processes have a
similar effect on the wettability of the modified surface. The exception is methane, for which
the contact angle values are almost constant over time. This is related to the production of
carbon coatings on the PDMS substrate during plasma processes involving CH4, which
will be proved in the next subsection. The obtained results confirm that, in this case, we are
dealing with the production of barrier coatings that do not allow the LMW to migrate from
the inside of the material to the surface, which allows us to observe stable values of contact
angles during the entire test cycle. Such properties of DLC coatings are also described in
the literature in the case of metal substrates [24,25].

Comparing the course of changes in the contact angles depending on the applied
negative autopolarization potential, it can be seen that for argon plasma, the higher the
Vb value, the slower the rate of changes on the surface causing the return to hydrophobic
properties (especially up to the first 75 h of tests). In the case of nitrogen plasma, these
trends are similar, but the scatter of results between modifications at different negative
potentials is much smaller than in the case of argon plasma. However, for the oxygen
plasma, the relations presented above are not visible. In that case, we observe a different
growth rate of the contact angles, depending on the applied Vb. The lowest of them is
characteristic of negative potential equal to 300 V, which may prove that, in the case of this
sample, under the applied plasma treatment conditions, a thin oxide layer was probably
formed on the surface. Our previous studies involving the use of XPS have already shown
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that there is such a possibility [13]. In the case of using methane plasma for the modification
of PDMS substrates, the obtained values of the contact angles are related to the applied
negative autopolarization potential. The lowest values were obtained for the substrates
modified at Vb = 500 V and then for Vb = 100 V, 400 V, 200 V, and 300 V. This order is
not accidental, and, as further tests will show, it is related to the thickness of the DLC
coatings produced on the PDMS surface. The thinner the coating, the lower the resulting
contact angles are. However, it is worth emphasizing that even in the case of the thinnest
coatings, the registered contact angles oscillate around one similar value during the entire
measurement. The effect of changes in the contact angle under the influence of thickness
may be related to the phenomena occurring during the modification process of PDMS
substrates. The literature’s data indicate that in the case of this treatment, the indispensable
effect is the incorporation of silicon into DLC coatings [13,37]. Therefore, there is a high
probability that the amount of embedded silicon in the DLC structure also depends on the
duration of the DLC coatings’ manufacturing process, which decreases with an increasing
coating thickness. Additionally, the literature reports that higher silicon content in DLC
coatings (usually above a dozen or so percent) results in a contact angle reduction that is
even below the value for unmodified DLC coatings [38–40]. Obviously, this is one of the
possible hypotheses that may be proven in future research. According to the literature,
the value of the contact angle of DLC coatings is influenced not only by their chemical
structure (C=C sp2/C-C sp3 ratio) [41] but also by their surface termination (whether they
are hydrogen or oxygen terminated) [42,43]. For example, hydrophobic properties can be
achieved via hydrogen termination due to the formation of hydrophobic C-H bonds (or,
assuming silicon-incorporated DLC, also Si-H bonds) [44]. Thus, the surface termination
during or after the deposition process plays an important role in controlling the wettability
of the manufactured coatings.

3.2. Geometrical Structure Analysis of the Modified PDMS Surfaces

The test results presented in this section are based on the analysis of AFM images
obtained from the modified surfaces. The comparisons include both the geometric parame-
ters of the wrinkles formed on the PDMS surfaces and the surface roughness parameters.
Figures 2–5 show the comparisons of the working atmosphere and the parameters Vb.
The presented results prove that the change in the negative self-bias potential influences
changes in the surface geometry of the modified PDMS substrates. This effect is also
known from the literature [11,45,46]. As other papers indicate [14,46,47], wrinkles formed
on polymers may have a hierarchical character (i.e., two separate profile runs related to
the modification in the micro and nanoscale can be distinguished). In our case, such an
effect is observed only for the modification of the oxygen plasma using Vb = 500 V. For
this modification, the AFM image (Figure 4) shows an additional effect of the changes in
the observed wrinkles on a micro scale, and it is possible to determine the geometrical
structure parameters for this wave. The value of λ is about 4 µm, and A is about 230 nm.
Among all modifications, the lowest values of the obtained wavelength were observed for
processes conducted with the use of oxygen plasma. Interestingly, similar results were
reported by Gu et al. [45], although they conducted the modifications at low power ranges
of up to 60 W. The highest wavelength values were characteristic of the argon atmosphere,
which, as indicated in the literature [45], is related to the greater penetration depth of argon
molecules due to their smaller size and greater weight than molecules formed, e.g., in
nitrogen or oxygen plasma, as well as positive charge (opposite to the negative charge of
oxygen or nitrogen ions). By analyzing the obtained values of parameters, namely λ, A, Ra,
and Rz, it can be seen that the latter are closely related to the obtained amplitude values. If
the value of A increases, the roughness parameters also increase, which is confirmed by the
tabular data in Figures 2–5.
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Figure 5. The analysis of changes of surface geometrical structure parameters of PDMS substrates
modified in methane plasma.

When analyzing changes in the geometric structure of PDMS substrates modified
in methane plasma, it can be observed that with the increase of the negative self-bias
potential up to 400 V, all parameters (λ, A, Ra, Rz) increase. On the other hand, for the
sample modified at Vb = 500 V, a drastic decrease in the amplitude value and related
roughness parameters can be observed. This effect is closely related to the thickness of the
DLC coating deposited on the surface with these parameters, which can be clearly seen in
Figure 6. In the range from 0 to 14 nm, with the increasing thickness of the coatings, the
value of the obtained amplitude of wrinkles, as well as the surface roughness parameters,
increase. For the thickness of 14 nm, we observe the maximum values for all parameters
describing the surface geometry of the modified samples. Looking at the dispersion of
the standard deviation of the measurements, it can be assumed that, from that moment,
some stabilization of surface geometry changes occurs, which seems to be consistent with
the results presented in the literature [48]. Generally, the presented data indicate a lack of
correlation between the results of the surface roughness and contact angle.
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3.3. Chemical Structure Analysis of the Modified PDMS Substrates

The chemical structure of the modified PDMS substrates was analyzed based on the
results of Raman spectroscopy. Figure S1 shows the Raman spectrum for the unmodified
PDMS substrate. According to the literature [49,50], we can distinguish the following
characteristic peaks: Si-O-Si symmetric stretching (488 cm−1), C-Si stretching vibrations
(617 cm−1) Si-CH3 symmetric rocking (687 cm−1), Si-C symmetric stretching (708 cm−1),
CH3 asymmetric rocking + Si-C asymmetric stretching (787 cm−1), CH3 symmetric rocking
(862 cm−1), CH3 symmetric bending (1262 cm−1), CH3 asymmetric bending (1412 cm−1),
CH3 symmetric stretching (2907 cm−1), and CH3 asymmetric stretching (2965 cm−1). All
PDMS plasma-modified substrates were also subjected to Raman spectroscopy. On the
basis of the obtained results, it can be concluded that after the application of the plasma
treatment, in most cases (excluding the methane atmosphere), no significant changes in the
location and intensity of the characteristic peaks were found. In the additional materials
are presented the spectra ranging from 400 to 1500 cm−1 for PDMS modification in oxygen,
argon, and nitrogen plasma using the negative autopolarization potential of 300 V, i.e.,
for the potential at which the obtained contact angles in most cases had the lowest values
(Figures S2–S4).

As already indicated, changes in the chemical structure of the modified PDMS sub-
strates were observed for modifications made with the use of methane plasma. Figures 7–11
show the Raman spectra ranging from 900 cm−1 to 2000 cm−1 of both the PDMS modified
in methane plasma with different negative autopolarization potentials and the reference
material, silicon. These results are evidence of the formation of carbon coatings on PDMS
substrates; therefore, further analysis was undertaken based on a model assuming curve
fitting with four characteristic peaks: D1, D2, G1, and G2, in accordance with the liter-
ature [35,36]. Based on the analysis of the areas of the determined characteristic peaks,
the ID/IG ratio for the obtained spectra was determined, in our case, to be equal to the
expression (ID1 + ID2)/(IG1 + IG2). The results are included in Table 2. Both the obtained
Raman spectra trend and the ID/IG ratios are consistent with the literature data regarding
the production of DLC coatings on polymer substrates [51,52]. On the basis of the presented
results and the literature review [53–55], it can be stated that when using Vb equal to 300 V,
DLC coatings with the highest content of C-C sp3 hybridized bonds were obtained, since
the lowest values of ID/IG ratio were obtained for these coatings. On the other hand, the
use of a negative polarization potential at the level of 100 V resulted in the formation of a
DLC coating with the highest content of C = C sp2 hybridized bonds. Comparing the data
for PDMS and silicon substrates included in Table 2 similar trends regarding the changes
in the chemical structure can be observed. However, the data cannot be compared with
each other because the chemical structure of DLC coatings and their other properties are
determined by the substrate material [56,57]. Other researchers obtained similar results
regarding silicon and PDMS substrates [36,51]. Interestingly, the obtained Raman spectra
also provide information on the thickness of the produced DLC coatings. The smaller
the thickness of the deposited coating, the greater the intensity of the peaks originating
from the substrate. Therefore, for PDMS substrates, it is possible to correlate the Raman
spectra for DLC with the intensity of CH3 bonds at 1262 cm−1 and 1412 cm−1, while silicon
substrates with bands originating from bonds at approx. 935–990 cm−1 can be derived from
multi-phonon scattering from the silicon substrates [58]. On this basis, it can be concluded
that the thickest coatings were produced at Vb equal to 300 V, and the thinnest ones at Vb
equal to 500 V.
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Table 2. ID/IG intensity ratio of DLC coatings synthesized on silicon and PDMS substrates.

Bias (V) ID/IG

Silicon PDMS
100 0.59 0.8
200 0.54 0.5
300 0.53 0.41
400 0.52 0.45
500 0.56 0.50

3.4. Determination of Thickness of DLC Coatings in the PDMS Substrates

The thicknesses of the produced carbon coatings on the PDMS substrates were deter-
mined indirectly using silicon substrates placed in the reactor chamber together with the
polymer material. Based on the profilometer and XRR measurements, it was determined
that the thickness of synthesized DLC coatings ranged from 10 to about 30 nm (Table 3),
with the thickest coating produced during a 1 min process at Vb = 300 V. The obtained
results are consistent with the observations described in the paragraph related to the Ra-
man spectroscopy results. Certain relationships can be found between the thickness of the
coatings and the obtained contact angles. The lowest values of the contact angles were
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observed for the thinnest coatings. On the other hand, the highest values of the contact
angles were characteristic of the thickest DLC coatings. As described in Section 3.1, this
may be related to the amount of silicon built into the structures of the carbon coatings
during the deposition processes.

Table 3. The average thickness of DLC coatings deposited on silicon substrates, determined via
profilometry and XRR methods.

Negative Self-Bias [V]

100 200 300 400 500

Average thickness of DLC coating on
silicon substrates [nm] 15 ± 5 23 ± 4 30 ± 6 20 ± 3 10 ± 3

4. Conclusions

The presented paper shows the properties of PDMS surfaces modified with the use
of four different gases. As shown by the results of the changes in the contact angles
for deionized water over time, it is only possible for the surfaces to be stabilized via
methane plasma. This type of plasma determines the formation of a DLC coating on the
surface of the modified polymer, which is an excellent barrier that prevents the migration
of LWMs (low molecular weighted (LMW) siloxanes) from inside the modified PDMS
substrates. Interestingly, the obtained values of the contact angles for the PDMS surfaces
after modification with CH4 seem to correlate with the thickness and chemical structure
of the produced DLC coatings. The lower the thickness of the coating produced on the
PDMS surfaces, the lower the values of the contact angles registered for deionized water
in the wettability tests. These results could be related to the chemical composition of
the DLC coatings on PDMS substrates, especially in regard to the level of Si coming
from the modified polymer substrate and being incorporated into the amorphous carbon
structure. Coatings of the lowest thickness may contain the highest content of silicon, which
determines the presence of a greater number of Si-Ox bonds on the surface and explains
their higher hydrophilicity. The higher the content of C-C sp3 hybridized bonds in the
coatings (low ID/IG intensity ratio determined from the Raman spectra), the higher the
contact angle values registered for the DLC coatings. Both the thickness and the chemical
structure of the produced carbon coatings can be controlled by the negative autopolarization
potential. All the performed plasma modifications changed the geometrical structures
of the PDMS surfaces. The processes of wrinkle formation on the PDMS surfaces can be
controlled by selecting the plasma’s working atmosphere and its energy parameters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15113883/s1, Figure S1: Raman spectra of PDMS substrates
modified in argon plasma under the negative self-bias Vb = 300 V. Figure S2: Raman spectra of PDMS
substrates modified in nitrogen plasma under the negative self-bias Vb = 300 V. Figure S3: Raman
spectra of PDMS substrates modified in oxygen plasma under the negative self-bias Vb = 300 V.
Figure S4: Raman spectra of PDMS substrates modified in oxygen plasma under the negative self-bias
Vb = 300 V.
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