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Recurrent neural network 
based high‑precision position 
compensation control of magnetic 
levitation system
Zhiwen Huang1, Jianmin Zhu1*, Jiajie Shao2, Zhouxiang Wei1 & Jiawei Tang1

For improving the dynamic quality and steady‑state performance, the hybrid controller based on 
recurrent neural network (RNN) is designed to implement the position control of the magnetic 
levitation ball system in this study. This hybrid controller consists of a baseline controller, an RNN 
identifier, and an RNN controller. In the hybrid controller, the baseline controller based on the control 
law of proportional‑integral‑derivative is firstly employed to provide the online learning sample and 
maintain the system stability at the early control phase. Then, the RNN identifier is trained online to 
learn the accurate inverse model of the controlled object. Next, the RNN controller shared the same 
structures and parameters with the RNN identifier is applied to add the precise compensation control 
quantity in real‑time. Finally, the effectiveness and advancement of the proposed hybrid control 
strategy are comprehensively validated by the simulation and experimental tests of tracking step, 
square, sinusoidal, and trapezoidal signals. The results indicate that the RNN‑based hybrid controller 
can obtain higher precision and faster adjustment than the comparison controllers and has strong 
anti‑interference ability and robustness.

Benefiting from its superiority of the contactless, frictionless, and noiseless, magnetic levitation system has been 
successfully applied to many  fields1,2, such as high-speed maglev  trains3, maglev wind  turbines4, and frictionless 
magnetic  bearings5. With the open-loop unstable and inherent nonlinear characteristics, it is a constant chal-
lenge to design the high-performance control scheme for position control of the magnetic levitation  system6,7.

Over the years, various control strategies have been successively developed to implement real-time position 
control of the magnetic levitation system. The control strategies mainly include feedback linearization  control8,9, 
proportional-integral-derivative (PID)  control10,11, model predictive  control12,13, robust H-infinity  control14,15, 
sliding mode  control16,17, and adaptive fuzzy  control18,19. Although these different control strategies can achieve 
good control results from different  perspectives7, there is still room for improvement in the control performance 
of the magnetic levitation system to a certain extent.

Recently, the intelligent control based on artificial neural networks (ANNs) can obtain a better tracking per-
formance and disturbance rejection, benefiting from ANNs’ excellent ability to learn the dynamic model of the 
nonlinear control  system20. Correspondingly, ANNs can improve the position control performance of the mag-
netic levitation system due to its powerful self-learning and adaptive abilities. For example, Rubio et al. presented 
a neural network controller consisting of a nonlinear method and a neural network and reduced the root mean 
square error of the trajectory tracking in the magnetic levitation  system21. Silva et al. constructed a neural control-
ler to magnetic levitation system and obtained a better control performance than the classical  controllers22. Wei 
et al. proposed a feedback compensation controller based on backpropagation neural network (BPNN), which 
lowered the steady-state error in position control of the magnetic levitation ball  system23. Yang et al. designed an 
adaptive sliding mode controller (SMC) based on radial basis function neural network (RBFNN) to the magnetic 
levitation system and acquired faster convergence and stronger robustness than the traditional SMC  method24. 
Sahoo et al. applied the functional link artificial neural network to the Fuzzy PID controller and validated its 
superiority in the real-time Maglev control  system25. Tang et al. presented a hybrid controller based on BPNN 
and fuzzy inference for the magnetic levitation ball system, which improved the dynamical response of track-
ing step and square  signals26. Qin et al. designed a model predictive controller based on RBFNN to control the 
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position of the maglev ball, which obtained a better track performance of the step signal than conventional PID 
 controller27. Sun et al. presented a supervisor control method based on the RBF neural network and achieved an 
excellent tracking performance in the flexible and time-delay control of the maglev train  system28.

Through the above literature review, it can be found that these neural networks used in the control systems 
belong to the feedforward neural networks, which can improve the control performance of the magnetic levita-
tion system by approximating a nonlinear function without prior knowledge of the closed-loop control  system26. 
However, the parameter updating of these feedforward neural networks reckon without the historical information 
of the control system, which limits the nonlinear approximation of the controlled object to some extent, thereby 
hindering the further improvement in the control performance of the magnetic levitation system.

The recurrent neural network (RNN) can acquire the dynamic response of the control system by using delays 
of an internal feedback loop, which has the ability to deal with the time-varying control system, especially in 
nonlinear and uncertain  scenarios29,30. Lin et al. designed a hybrid computed force control method with an 
RNN uncertainty observer, which improved the tracking accuracy in position control of the magnetic levitation 
 system30. Fatemimoghadam et al. proposed an adaptive backstepping control scheme based on a projection RNN 
for the magnetic levitation system, which achieved a better control performance than the sliding mode control 
 method31. Jafari and Hagan applied RNN to the model reference control of the magnetic levitation system and 
obtained better performance than linear PID  controllers32. Hou et al. embedded a recurrent feature selection 
neural network to an intelligent global sliding mode controller (GSMC) and acquired superior performance 
than traditional  GSMC33.

Therefore, motived by the mentioned superiorities of the RNN in the controller design of the nonlinear 
time-varying system, a hybrid controller based on RNN is proposed to improve the control performance in the 
position control of the magnetic levitation ball system in this article. The main contributions are summarized 
in the following.

1. An intelligent controller based on the accurate compensation control is developed to ensure both dynamical 
performance and steady-state performance of the control system, which consists of a PID-based baseline 
controller, an RNN identifier, and an RNN controller.

2. The RNN identifier is designed to online learn the inverse model of the control system, and the learning 
parameters are passed to the RNN controller sharing the same structure as the RNN identifier in real-time, 
which achieves the accurate compensation control.

3. The simulation analysis and experimental verification are shown comprehensively to prove the effectiveness 
and advancement of the proposed RNN-based intelligent controller and the improvement of the transient 
performance and the steady-state accuracy with a certain robustness.

The remainder of this article is organized as follows. Section “Problem formulation” formalizes the problem 
to be solved. Then, the hybrid controller is specifically designed in Section “Controller design”. Next, simula-
tion analysis and experimental verification are presented in Sections “Simulation analysis” and “Experimental 
verification” respectively. Finally, Sections “Discussion” and “Conclusion” give the conclusion of this study and 
discuss the potential future work.

Problem formulation
This study focuses on the position control of a magnetic levitation ball system, and the schematic diagram of 
its physical entity is shown in Fig. 1. The system is mainly composed of an electromagnetic coil, a steel ball, a 
power amplifier, a photoelectric position sensor, a data acquisition and control card, and a computer. In this 
system, the input voltage of the power amplifier is controlled to make the coil current generate the appropriate 
electromagnetic force, thereby the position of the steel ball can be controlled.

To describe the position control problem of the magnetic levitation ball system, as shown in Fig. 1, let F(i, x) 
be the electromagnetic force at the current i of the electromagnetic coil and the position x of the steel ball, Uin 
represents the input voltage of the power amplifier, m and g denote the mass of the steel ball and the gravitational 
acceleration respectively. In addition, this study supposes that there is no magnetic flux leakage and iron coil 

Figure 1.  Schematic diagram of the control system physical entity.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11435  | https://doi.org/10.1038/s41598-022-15638-0

www.nature.com/scientificreports/

magnetoresistance, the electromagnetic force of the steel ball is concentrated at the center of its gravity, and the 
output current of the power amplifier has a linear relationship with its input voltage. Concretely, the mathematical 
model of the control object can be established in the following.

First, the steel ball is only subject to the electromagnetic force F(i, x) and its gravity mg in the controlled 
system, ignoring other interference forces on the ball. Thus the dynamic equation of the steel ball in the vertical 
direction can be described as follows

where ẍ � d2x(t)/dt2 denotes the acceleration of the ball at position x.
Then, based on Kirchoff ’s law and Biot-Savart’s law, the electromagnetic force F(i, x) can be calculated as 

 follows22

where K = µ0AN
2/4 , and parameters µ0 , A , and N represent the vacuum permeability, permeability area, and 

coil turn respectively.
When the ball is in the equilibrium position, its acceleration is zero and can be expressed as

where F(i0, x0) denotes the electromagnetic force at the equilibrium point (i0, x0).
Next, according to Faraday’s law and Kirchoff ’s law, the relationship between control voltage and current in 

the electromagnet winding can be expressed as follows

where R and L are the resistance and self-inductance of the electromagnetic coil respectively.
Finally, the magnetic levitation ball system can be described jointly by the above equations, and the expres-

sion is as follows

Expanding the Taylor series at the equilibrium point (i0, x0) , the electromagnetic force F(i, x) is equivalent to

where Ki � Fi(i0, x0) = ∂F
∂i |(i0,x0) = 2K · i0

/

x20 , Kx � Fx(i0, x0) = ∂F
∂x |(i0,x0) = −2K · i20

/

x30 , and Fh(i, x) is the 
remaining high-order term of F(i, x).

When omitting the high-order term, the kinetic equation of the steel ball can be rewritten as

For the magnetic levitation ball system, the input voltage Uin of the power amplifier is the input of the control 
system, while the output voltage Uout of the sensor module is the output of the control system. Taking the Laplace 
transformation of Eq. (7), the open-loop control system can be calculated by

Substitute the boundary equation mg = −F(i0, x0) = −K · (i0
/

x0)
2 to Eq. (8), then the open-loop control 

system can be written as

According to the characteristic equation of the open-loop system, the open-loop poles of the system can be 
obtained as s = ±

√

2g
/

x0 . It can be seen that the control system has an open loop pole located in the right half 
plane of the complex plane. Therefore, the magnetic levitation ball system is an open-loop unstable system.

Furthermore, let x1 = Uout , x2 = ẋ1 , then the state equation of the magnetic levitation ball system is as follows

where a = 2g
/

x0 , b = −2gKs

/

i0Ka , while Ks and Ka are the gains of the photoelectric position sensor and the 
power amplifier respectively.

Define the coefficient matrix in Eq. (10) as follows

(1)mẍ = F(i, x)+mg

(2)F(i, x) = K · (i/x)2

(3)f (i0, x0)+mg = 0

(4)Uin = Ri + L · di/dt

(5)











mẍ = F(i, x)+mg
F(i, x) = K · (i/x)2
F(i0, x0)+mg = 0

Uin = Ri + L · di/dt
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x30)x

(8)G(s) = Uout(s)

Uin(s)
= Ksx(s)

Kai(s)
= Ks(2Ki0/mx20)

Ka(s2 + (2Ki20/mx30))

(9)G(s) =
−(Ks

/

Ka)
(

i0
/

2g
)

s2 − (i0
/

x0)

(10)







�

ẋ1
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So the controllability matrix P and the observability matrix Q of the magnetic levitation ball system can be 
calculated by

From Eq. (12), the rank of matrices P and Q can be obtained as follows

As known from Eq. (13), the rank of the controllability matrix P is equal to the dimension of the state vari-
ables, while the rank of the observability matrix Q is equal to the dimension of the output vector. In other words, 
the magnetic levitation ball system is both controllable and observable. Consequently, the controller can be 
designed to make the system stable.

Controller design
In this section, a hybrid controller is designed for position control of the magnetic levitation ball system. As 
shown in Fig. 2, the designed controller mainly consists of a PID controller, an RNN controller, and an RNN 
identifier.

For the hybrid controller, the PID controller is the baseline controller, and the RNN controller is the compen-
sation controller. Where the PID controller is mainly applied to provide online samples for the RNN identifier to 
learn the inverse model of the controlled object in real-time and also used to maintain the stability of the control 
system when the RNN is untrained at the early control phase. And the RNN controller sharing the same network 
structure as the RNN identifier is utilized to carry out accurate compensation control.

In addition, the RNN identifier is employed to learn the inverse model of the controlled object online, consid-
ering the historical data of the control system. And the learning parameters from the RNN identifier are passed 
to the RNN controller in real-time. Therefore, the proposed controller can achieve the high-precision position 
control of the magnetic levitation ball, benefiting from that the RNN identifier accurately learns the inverse 
model of the control object, and the RNN controller implements exact compensation control in the real-time.

Concretely, the control law u(k) of the hybrid controller is designed as follows

where ub(k) and uc(k) denote the control law of PID and RNN controllers respectively.

Baseline controller. With the characteristics of clear functionality, structure simplicity, ease of use, and 
applicability, the PID controller has been regarded as the simplest and yet most efficient scheme for lots of 
industrial control  problems34. Consequently, this article takes the PID controller as a baseline controller in the 
proposed hybrid control strategy.

In practice, as a baseline controller of the hybrid control strategy, the PID controller is employed to provide 
the online learning samples and maintain the system stability at the early control phase, especially when the 
neural network is untrained. Concretely, the control law ub at the moment k is defined as follows

(11)A =
[

0 1

a 0

]

, B =
[

0

b

]

, C =
[

1

0

]T

(12)
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Figure 2.  Structure diagram of the hybrid control strategy based on RNN.
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where kp is proportion gain, ki is integration gain, and kd is differentiation gain.

RNN controller. As one main part of the hybrid control strategy, the RNN controller is utilized for the posi-
tion compensation in the magnetic levitation ball system. Concretely, as shown in Fig. 3a, the RNN controller 
consists of an input layer, a hidden layer, and an output layer.

For the RNN controller, the tracking error e(k) is taken as input, then the input layer at moment k can be 
defined as follows

The hidden layer of the RNN controller at moment k is calculated as follows

where wi denotes the ith weight between the input and hidden layers, ϕi represents the ith weight between the 
moments k − 1 and k in the hidden layer, bi is the ith bias in the hidden layer, σ(·) is the tanh activation function.

The output layer of the RNN controller at moment k is obtained as follows

where vi denotes the ith weight between the hidden and output layers.
Substitute Eqs. (16) and (17) into Eq. (18), then the control law uc of the RNN controller at the moment k 

can be obtained as follows

It is worthy to note that the RNN controller only carries out the forward propagation calculation but does not 
carry out the back propagation calculation, and the solving parameters ( wi ,ϕi , bi , and vi ) are real-time passed 
from the RNN identifier. Finally, the compensation control law can be obtained according to Eq. (19).

RNN identifier. The RNN identifier shares the same network structure as the RNN controller. To learn the 
inverse model of the controlled object more accurately, the RNN identifier performs both the forward and back 
propagation calculations.

Similarly to the RNN controller, as shown in Fig. 3b, the forward propagation of the RNN identifier at the 
moment k can be calculated by

(16)O1(k) = e(k) = r(k)− y(k)

(17)O2
i (k) = σ(wiO

1(k)+ ϕiσ(k − 1)+ bi)

(18)O3(k) =
n

∑

i=1

viO
2
i (k)

(19)

uc(k) = O3(k) =
n

∑

i=1

viO
2
i (k)

=
n

∑

i=1

viσ(wie(k)+ ϕiσ(k − 1)+ bi)

Figure 3.  Network structures of (a) the RNN controller and (b) the RNN identifier.
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where zi(k) = wiO
1(k)+ ϕiσ(k − 1)+ bi denotes the neuron input of the hidden layer.

In the back propagation process, define L(k) the loss function at moment k as follows

where u(k) denotes the actual control law of the hybrid controller at moment k, û(k) represents the estimated 
control law of the RNN identifier at moment k.

The gradient of the weight vi is calculated by

Let δi(k) denote the partial derivative of L(k) with respect to zi(k) , then the formula for δi(k) is as follows

The gradient of the weight φi is calculated by

The gradient of the weight bi is calculated by

The gradient of the weight wi is calculated by

To simplify the parameter updating process, uniformly mark vi , ϕi , bi , and wi as θ , then the parameters of the 
RNN identifier can be updated as follow

where hyperparameters η and γ are the learning rate and the penalty coefficient respectively, and the smoothing 
term ε = 1e − 8 is used to avoid division by zero.

Simulation analysis
Simulation setup. To demonstrate the effectiveness of the designed controller, the simulation tests are car-
ried out on the Matlab/Simulink. For the magnetic levitation ball system investigated in this article, the physical 
parameters are described in Table 1.

Substitute the parameters described in Table 1 into Eq. (5), the numerical transfer function of the controlled 
object can be described as follows

(20)

û(k) = O3(k) =
n

∑

i=1

viO
2
i (k) =

n
∑

i=1

viσ(zi(k))

=
n

∑

i=1

viσ(wiy(k)+ ϕiσ(k − 1)+ bi)

(21)L(k) = 1

2
(u(k)− û(k))2

(22)gvi (k) =
∂L(k)

∂vi
= ∂L(k)

∂ û(k)

∂ û(k)

∂vi
= (û(k)− u(k))O2

i (k)

(23)
δi(k) =

∂L(k)

zi(k)
=

(

∂L(k)

∂ û(k)

∂ û(k)

∂O2
i (k)

+ ∂L(k)

∂zi(k + 1)

∂zi(k + 1)

∂O2
i (k)

)

∂O2
i (k)

∂zi(k)

= ((û(k)− u(k))vi + δi(k + 1)ϕi)(1− (zi(k))
2)

(24)gϕi (k) =
∂L(k)

∂ϕi
= ∂L(k)

∂zi(k)

∂zi(k)

∂ϕi
= δi(k)O

2
i (k − 1)

(25)gbi (k) =
∂L(k)

∂bi
= ∂L(k)

∂zi(k)

∂zi(k)

∂bi
= δi(k)

(26)gwi (k) =
∂L(k)

∂wi
= ∂L(k)

∂zi(k)

∂zi(k)

∂wi
= δi(k)O

1(k)

(27)







s(k) = 0.95s(k − 1)+ (gθ (k))
2

θ(k) = θ(k − 1)− η√
s(k)+ ε

θ(k)+ γ (gθ (k)− gθ (k − 1))

Table 1.  The physical parameters of the magnetic levitation ball system.

Physical descriptions Parameters (unit) Nominal values

Mass of the steel ball m (kg) 0.022

Equilibrium point x0/mm 20

Current at equilibrium point i0/mm 0.6105

Gain of the position sensor Ks − 458.7156

Gain of the power amplifier Ka 5.8929
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Based on the numerical transfer function (28), the baseline controller based on PID (PID), the hybrid con-
troller based on PID and BPNN (PID + BPNN), and the hybrid controller based on PID and RNN (PID + RNN) 
are quantitatively compared on the following measurements, namely, the mean absolute error (MAE), the root-
mean-square error (RMSE), the integral time absolute error (ITAE), and the integral time square error (ITSE). 
The formulations of these four measurements are expressed as follows

The tracking controls of the step, square, sinusoidal, and trapezoidal signals are implemented in the simula-
tion tests. In particular, for the tracking controls of step and square signals, the overshoot and settling time are 
considered besides MAE and RMSE. For the tracking controls sinusoidal and trapezoidal signals, the steady state 
error is considered besides MAE and RMSE. Moreover, for the fair comparison of the different control strate-
gies, we try our best to make control performance to be the best by adjusting the appropriate parameters of each 
controller. Take the tracking controls of sinusoidal and trapezoidal signals as examples, the simulation results of 
the RNN-based hybrid controller under different hyper-parameters are shown in Fig. 4.

Ultimately, for the simulation tests, the optimal parameters of the different controllers are described in Table 2.

Tracking performance. For the simulation tests, the control responses of tracking step and square signals 
under the different comparison controllers are presented in Figs. 5 and 6, where the subgraph on the left is the 
enlarged version in the red circle of the corresponding subgraph on the right. The performance evaluations of 
these tracking controls are described in Table 3.

As shown in Figs. 5 and 6, three controllers all can realize the tracking control of the magnetic levitation 
ball, but the separate PID controller has a larger overshoot and a longer settling time. On the contrary, the 
hybrid controllers can lower the overshoot and shorten the settling time of the control responses to some extent. 
Moreover, the hybrid controller based on PID and RNN can obtain the best dynamic quality by further lowing 
the overshoot and shortening the settling time of the control responses, compared with the hybrid controller 
based on PID and BPNN.

(28)G(s) = 77.8421

0.0311s2−30.5250

(29)



























MAE = 1

T

T
�

t=0

�

�r(t)− y(t)
�

�, RMSE =

�

�

�

�

1

T

T
�

t=0

(r(t)− y(t))2

ITAE =
� T

0

t
�

�r(t)− y(t)
�

�dt, ITSE =
� T

0

t(r(t)− y(t))2dt

Figure 4.  Simulation results of the RNN-based hybrid controller under different hyper-parameters.

Table 2.  The optimal parameters of the different controllers in the simulation tests.

Controller

All signals Step Square Sinusoidal Trapezoidal

Kp Ki Kd m η γ η γ η γ η γ

PID 8 2 0.6 – – – – – – – – –

PID+BPNN 8 2 0.6 5 0.010 0.95 0.045 0.90 0.007 0.90 0.007 0.90

PID+RNN 8 2 0.6 5 0.008 0.95 0.015 0.95 0.005 0.95 0.005 0.95
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Concretely, as shown in Table 5, for step signal tracking control, the RNN-based hybrid controller reduces 
overshoot by 34.53% and the settling time by 29.18%, compared with the BPNN-based hybrid controller. For 
square signal tracking control, the RNN-based hybrid controller reduces the overshoot and settling time by 
35.85% and 41.96% respectively, compared with the BPNN-based hybrid controller. Therefore, the RNN-based 
hybrid controller can obtain excellent dynamic performances in the simulation of tracking step and square 
signals.

Figure 5.  Simulation results of tracking step signal under the different controllers.

Figure 6.  Simulation results of tracking square signal under the different controllers.

Table 3.  Comparisons of simulation results of tracking step and square signal.

Signal Controller Overshoot Settling time MAE RMSE ITAE ITSE

Step (Fig. 5)

PID 0.0652 0.8325 0.0037 0.0243 0.1178 0.0024

PID + BPNN 0.0556 0.2704 0.0016 0.0225 0.0296 2.7443 ×  10–4

PID + RNN 0.0364 0.1915 0.0015 0.0223 0.0244 2.6702 ×  10–4

Improvement 34.53% 29.18% 6.25% 0.89% 17.57% 2.70%

Square (Fig. 6)

PID 0.1327 0.7050 0.0132 0.0627 0.5892 0.1824

PID + BPNN 0.1022 0.1299 0.0056 0.0573 0.2467 0.1518

PID + RNN 0.0625 0.0754 0.0055 0.0570 0.2440 0.1504

Improvement 35.85% 41.96% 1.79% 0.52% 1.09% 0.92%
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To further validate the control performances, the tracking controls of sinusoidal and trapezoidal signals are 
simulated, the control responses are drawn in Figs. 7 and 8, and the performance evaluations of the tracking 
controls are described in Table 4.

It can be known from Figs. 7 and 8 that, the hybrid controllers can improve the control response and lower 
the tracking error, compared with the separate baseline controller based on PID. In addition, the hybrid con-
troller based on PID and RNN obtains the best control quality and the lowest tracking error in all comparison 
controllers, benefiting from the RNN identifier builds a more accurate inverse model of the controlled object.

Figure 7.  Simulation results of tracking sinusoidal signal under the different controllers.

Figure 8.  Simulation results of tracking trapezoidal signal under the different controllers.

Table 4.  Simulation comparisons of tracking sinusoidal and trapezoidal signals.

Signal Controller Steady state error MAE RMSE ITAE ITSE

Sinusoidal (Fig. 7)

PID [− 2.3433, 2.3418] ×  10–2 1.3961 ×  10–2 1.5677 ×  10–2 3.1567 0.0565

PID + BPNN [− 8.6829, 8.6830] ×  10–4 5.9044 ×  10–4 6.5988 ×  10–4 0.1321 9.3511 ×  10–5

PID + RNN [− 1.1400, 1.1158] ×  10–4 8.0844 ×  10–5 1.0025 ×  10–4 0.0179 1.6445 ×  10–6

Improvement 86.87%, 87.15% 86.31% 84.81% 86.45% 98.24%

Trapezoidal (Fig. 8)

PID [− 2.3411, 2.3356] ×  10–1 8.5593 ×  10–3 1.1346 ×  10–2 3.5357 0.0518

PID + BPNN [− 1.6541, 1.5965] ×  10–3 5.6145 ×  10–4 7.1995 ×  10–4 0.2293 2.0268 ×  10–4

PID + RNN [− 8.7459, 8.5966] ×  10–4 6.6979 ×  10–5 1.1852 ×  10–4 0.0271 4.9290 ×  10–6

Improvement 47.13%, 46.15% 88.07% 83.54% 88.18% 97.57%
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From Table 4, it can be found that when tracking sinusoidal signal, the hybrid controller based on PID and 
RNN lowers the control error above 80%, compared with the hybrid controller based on PID and BPNN. When 
tracking trapezoidal signal, the hybrid controller based on PID and RNN lowers the steady-state error, MAE, and 
RMSE above 40%, 80%, and 80% respectively, compared with the hybrid controller based on PID and BPNN. 
Consequently, whether tracking sinusoidal signal or trapezoidal signal, the RNN-based hybrid controller can 
significantly improve the control performances compared with the BPNN-based hybrid controller.

Experimental verification
Experimental setup. To further verify the effectiveness and the advancement of the RNN-based hybrid 
controller, the hardware-in-loop platform shown in Fig. 9 is used to conduct experimental research on the posi-
tion control of the magnetic levitation ball system. The tracking controls of the step, square, sinusoidal, and 
trapezoidal signals are carried out in the Matlab/Simulink real-time workshop.

In the comparison controllers, hyper-parameters play a critical role in controller performance. Take the 
tracking controls of sinusoidal and trapezoidal signals as examples, the experiment results of the RNN-based 
hybrid controller under different hyper-parameters are displayed in Fig. 10. Therefore, for the fair comparison 
of the different control schemes in the experimental tests, we also try our best to make control performance to 
be the best by adjusting the appropriate parameters of each controller. Specifically, for the experiment tests, the 
optimal parameters of the different controllers are described in Table 5.

Figure 9.  Experimental verification platform of the magnetic levitation ball system.

Figure 10.  Experiment results of the RNN-based hybrid controller under different hyper-parameters.

Table 5.  The optimal parameters of the different controllers in the experiment tests.

Controller

All signals Step Square Trapezoidal Sinusoidal

Kp Ki Kd m η γ η γ η γ η γ

PID 1.005 0.003 12 – – – – – – – – –

PID + BPNN 1.005 0.003 12 5 0.035 0.038 0.035 0.032 0.020 0.030 0.020 0.030

PID + RNN 1.005 0.003 12 5 0.030 0.040 0.030 0.040 0.019 0.030 0.016 0.030
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Tracking performance. Firstly, in the experiment tests, the control response comparisons of tracking con-
tinuous step and square signals under the different controllers are shown in Figs. 11 and 12.

It can be learned from Figs. 9 and 10 that the hybrid controller can achieve lower overshoot and shorten 
settling time compared with the baseline controller when tracking continuous step and square signals. And the 
hybrid controller based on PID and RNN can acquire the best control quality among all the comparative control-
lers. Concretely, the performance evaluations of these tracking controls are quantitatively described in Table 6.

Figure 11.  Experimental results of tracking continuous step signal under the different controllers.

Figure 12.  Experimental results of tracking square signal under the different controllers.

Table 6.  Comparisons of experiment results of tracking step and square signal.

Signal Controller Overshoot Settling time Steady state error MAE RMSE ITAE ITSE

Step (Fig. 11)

PID 0.5576 1.6295 [− 0.0410, 0.0371] 0.0514 0.1306 5.7839 1.7809

PID + BPNN 0.4355 0.5912 [− 0.0264, 0.0273] 0.0198 0.0768 2.9815 0.6223

PID + RNN 0.3526 0.5645 [− 0.0166, 0.0176] 0.0185 0.0731 2.5911 0.5892

Improvement 19.03% 4.52% 37.12%, 35.53% 6.57% 5.06% 13.09% 5.32%

Square (Fig. 12)

PID 1.0755 4.3692 [− 0.1455, 0.1230] 0.1360 0.2892 17.0246 9.6947

PID + BPNN 0.9725 2.9880 [− 0.0381, 0.0352] 0.0571 0.2025 11.8288 4.8578

PID + RNN 0.7821 2.8792 [− 0.0332, 0.0156] 0.0540 0.1918 9.0329 3.8641

Improvement 19.58% 3.64% 12.86%, 55.68% 5.43% 5.28% 23.64% 20.46%
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As shown in Table 6, for both continuous step and square signals, the RNN-based hybrid controller has an 
obvious reduction in terms of overshoot and settling time compared with the BPNN-based hybrid controller. 
Especially, in terms of the steady-state error, the RNN-based hybrid controller has an improvement of 37.12% 
and 35.53% for continuous step signal, and 12.86% and 55.68% for square signal, compared with the BPNN-based 
hybrid controller. As a result, through the comparative analysis of the experimental results, it can be easily found 
that the RNN-based hybrid controller can improve both dynamic and steady state performances.

In addition, to preferably demonstrate the control performances, the tracking controls of sinusoidal and 
trapezoidal signals are tested in the experiment platform, and the control responses are drawn in Figs. 13 and 14.

It can be seen that the hybrid controllers can track the reference signals better and have lower steady-state 
error compared with the baseline controller. Particularly, the position tracking accuracy of the magnetic levita-
tion ball is higher than the BPNN-based hybrid controller when applying the RNN-based hybrid controller. 
Concretely, the performance evaluations of the tracking controls are quantitatively described in Table 7.

From Table 7, it can be found that for tracking sinusoidal and trapezoidal signals, the RNN-based hybrid 
controller lowers the steady state error by about 60% and 20% respectively, compared with the BPNN-based 
hybrid controller. Meanwhile, the RNN-based hybrid controller reduces the MAE and RMSE by above 70% 
and 30% respectively, compared with the BPNN-based hybrid controller. Consequently, the RNN-based hybrid 
controller has not only the best dynamic tracking performance but also the lowest steady state error among all 
the comparison controllers.

Robust performance. In this section, the tracking control experiments of both sawtooth and stochastic 
signals with constant disturbance are first utilized to indicate the disturbance rejection ability of the RNN-based 
intelligent controller. The experiment results are drawn in Fig. 15, where the four subgraphs above show the 

Figure 13.  Experimental results of tracking sinusoidal signal under the different controllers.

Figure 14.  Experimental results of tracking trapezoidal signal under the different controllers.
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anti-interference performance under tracking sawtooth signal, and the four subgraphs below display the anti-
interference performance under tracking stochastic signal.

It can be found from Fig. 15 that whether tracking a sawtooth or stochastic signal, the magnetic levitation 
ball can respond to the disturbing reference quickly. Thus the RNN-based intelligent controller can suppress 
disturbance effectively because of the quick response and accurate compensation from the RNN-based inverse 
model controller in real-time.

In addition, the tracking control experiments of both sinusoidal and trapezoidal signals with stochastic 
disturbance are further employed to demonstrate the disturbance rejection ability of the RNN-based hybrid con-
troller. The experiment results are drawn in Fig. 16, where the four subgraphs above denote the anti-interference 
performance under tracking sinusoidal signal, and the four subgraphs below represent the anti-interference 
performance under tracking sinusoidal signal.

It can be seen from Fig. 16 that whether tracking sinusoidal or trapezoidal signal, the disturbed magnetic 
levitation ball can track the desired reference quickly, benefiting from the RNN-based hybrid controller that can 
suppress disturbance effectively. Consequently, the closed-loop control system has strong robustness to some 
extent when using the RNN-based hybrid controller.

Discussion
The magnetic levitation ball system is a typical nonlinear and unstable system. For improving its control accuracy 
and tracking performance, this study presents an intelligent controller based on a PID-based baseline controller, 
an RNN identifier, and an RNN controller. The RNN identifier is designed to learn the inverse dynamics model 
of the controlled object online then the learning parameters are passed to the RNN controller in real-time, carry-
ing out an accurate compensation control. And the comprehensive simulation and experiment results show that 
the proposed controller can improve the transient performance and lower the steady-state error with excellent 
robustness compared with the traditional PID controller and BPNN-based internal model controller.

To further illustrate the effectiveness and the advancement of the designed controller, some advanced control 
approaches of the magnetic levitation ball system are experimentally compared in this section. It is worth notic-
ing that all comparisons are performed on the same or similar experimental platform. In addition, the different 
methods are not compared under the time integral evaluation metric, considering the different duration of the 
tracking experiment.

Table 7.  Experiment comparisons of tracking sinusoidal and trapezoidal signals.

Signal Controller Steady state error MAE RMSE ITAE ITSE

Sinusoidal (Fig. 13)

PID [− 0.2385, 0.2611] 0.1324 0.1462 19.5899 3.1416

PID + BPNN [− 0.1003, 0.1030] 0.0484 0.0545 7.1118 0.4307

PID + RNN [− 0.0412, 0.0376] 0.0121 0.0145 1.8041 0.0314

Improvement 58.92%, 63.50% 75.00% 73.40% 74.63% 92.71%

Trapezoidal (Fig. 14)

PID [− 0.3533, 0.3991] 0.1182 0.1706 15.823 3.7861

PID + BPNN [− 0.0723, 0.0742] 0.0273 0.0316 4.1962 0.1560

PID + RNN [− 0.0576, 0.0480] 0.0167 0.0217 2.3349 0.0629

Improvement 20.33%, 35.31% 38.83% 31.33% 44.36% 59.68%

Figure 15.  Experiment results of disturbance suppression under sawtooth and stochastic signals.
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First, as one of the effectively intelligent control  approaches35, fuzzy control is considered to compare with 
the proposed controller. The experiment results of the tracking step signal show that the fluctuation range of 
tracking error is [− 0.05, 0.05] using the Takagi–Sugeno fuzzy controller (TSFC)36. The error range of the TSFC 
is obviously larger than that of the proposed controller, which can obtain the error range of [− 0.0166, 0.0176] 
when tracking the step signal.

Then, an advanced sliding mode control method named adaptive nonsingular terminal sliding mode control 
(ANTSMC) based on reduced order generalized proportional integral observer (RGPIO)7 is employed to com-
pare with the proposed controller. As shown in Table 8, the RMSEs of the ANTSMC + RGPIO are 0.2974 and 
0.1367 respectively when tracking square and sinusoidal signals, which are larger than those of the proposed 
PID + RNN controller.

Finally, a nonlinear autoregressive exogenous-type neural network controller (NARX-NNC)22 is utilized to 
compare with the proposed controller. For the sinusoidal signal tracking, the RMSE using NNC is 0.0472, which 
is obviously larger than the 0.0145 obtained by the proposed controller. Besides, the fuzzy inference-based neural 
network compensation controller (FI-NNCC)26 is applied to compare with the proposed controller. As shown in 
Table 8, the steady state error of the FI-NNCC is a little bit larger compared with the proposed controller overall.

As a result, it can be seen from the above comparative analysis that the proposed intelligent controller based 
on RNN has better control performance and tracking accuracy than other advanced control approaches to the 
magnetic levitation ball system.

Conclusion
In this study, the hybrid control based on RNN is proposed to achieve the high-precision position control of the 
magnetic levitation ball system. The main contribution of this study is that the control quantity can be adaptively 
compensated with high precision by the hybrid controller without establishing an accurate mathematical model 
of the control system. Moreover, the innovation is that the RNN controller implements high-precision control 
while the RNN identifier accurately learns the inverse model of the controlled object online, considering the 
historical data of the control system. Ultimately, the simulation and experiment results demonstrate that the 
RNN-based hybrid controller can improve the transient performance and lower the steady-state error with 
certain robustness compared with the BPNN-based hybrid controller.

Figure 16.  Experiment results of disturbance suppression under sinusoidal and trapezoidal signals.

Table 8.  Experiment comparisons of tracking signals under the different controllers.

Signals Controller Steady state error MAE RMSE

Step

TSFC36 [− 0.05, 0.05] – –

FI-NNCC26 [− 0.02, 0.02] – –

PID + RNN [− 0.0166, 0.0176] 0.0185 0.0731

Square

ANTSMC +  RGPIO7 - – 0.2974

FI-NNCC26 [− 0.03, 0.03] – –

PID + RNN [− 0.0332, 0.0156] 0.0540 0.1918

Sinusoidal

ANTSMC +  RGPIO7 – – 0.1367

NARX-NNC22 – – 0.0472

PID + RNN [− 0.0412, 0.0376] 0.0121 0.0145
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The proposed RNN-based hybrid scheme has been successfully applied to the magnetic levitation ball system 
with a single-degree-of-freedom. And the research in this article may provide some helpful references for the 
application of the proposed approach in the real-time control process. In addition, the proposed hybrid control-
ler can facilitate deployment to the second-order control system with nonlinear, time-varying, and uncertain 
characteristics. In future work, on the one hand, we will try to design the hybrid controller based on RNN to 
the multi-degree of the freedom control system; on the other hand, we will try to study the high order control 
problem by using an RNN-based hybrid control strategy.

Data availability
All data generated or analyzed during this study are included in this published article.
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