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Abstract: In this study, we present a comprehensive review of polymer-based microelectromechanical
systems (MEMS) electromagnetic (EM) actuators and their implementation in the biomedical
engineering field. The purpose of this review is to provide a comprehensive summary on the
latest development of electromagnetically driven microactuators for biomedical application that is
focused on the movable structure development made of polymers. The discussion does not only focus
on the polymeric material part itself, but also covers the basic mechanism of the mechanical actuation,
the state of the art of the membrane development and its application. In this review, a clear description
about the scheme used to drive the micro-actuators, the concept of mechanical deformation of the
movable magnetic membrane and its interaction with actuator system are described in detail. Some
comparisons are made to scrutinize the advantages and disadvantages of electromagnetic MEMS
actuator performance. The previous studies and explanations on the technology used to fabricate the
polymer-based membrane component of the electromagnetically driven microactuators system are
presented. The study on the materials and the synthesis method implemented during the fabrication
process for the development of the actuators are also briefly described in this review. Furthermore,
potential applications of polymer-based MEMS EM actuators in the biomedical field are also described.
It is concluded that much progress has been made in the material development of the actuator. The
technology trend has moved from the use of bulk magnetic material to using magnetic polymer
composites. The future benefits of these compact flexible material employments will offer a wide
range of potential implementation of polymer composites in wearable and portable biomedical
device applications.

Keywords: polymer composites; microelectromechanical system (MEMS); electromagnetic (EM)
actuator; magnetic membrane; microfluidic; biomedical

1. Introduction

Over the past few years, there has been an increasing demand on the employment of flexible
materials for various applications in biomedical field. This has led to the significant growth of the
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movable structure development [1,2]. The flexible material having good mechanical properties with
high surface strength and high elasticity has enabled tremendous innovation in the development of
microelectromechanical systems (MEMS) devices in which the electrical and mechanical property of
the material are the most important characteristics of the technology [3]. One of the most interesting
materials is polymer that currently can be found in various biomedical instrumentation due to its
excellent mechanical properties, compactness, precise control and biocompatibility as well [4].

The flexibility characteristic of polymer is beneficial in obtaining large and controlled structure
deformation of the movable parts. These movable parts include diaphragm (thin membrane), pillars,
cantilevers or the combination of pillars and movable structures [5,6]. This class of functional material
plays very important role in the development of MEMS electromagnetic (EM) actuators, for example
the microfluidic delivery system found in drug delivery, bio-cell preparation system and lab on
chip [7]. The system can also include micropumps, microvalve, micromixer, microgripper and
micromanipulators [8–11].

Studies on electromagnetically driven MEMS actuators in the field of biomedical instrumentation
are currently increasingly popular in which the improvements of the mechanical structures and the
material properties of the movable part became the most interesting topics. The development studies
were done in order to enable efficient and precise structure movement for control, manipulation or
analysis purpose of the biomedical samples [12,13]. These studies also have led to the invention of
flexible structure possessing sensitive interaction with magnetic induction, to be the most important
mechanism in electromagnetic actuation. The moving structures should be made of soft and elastic
material, able to continuously vibrate and capable of reacting to mechanical pressure and magnetic
field exposures [14].

Several reports have been recently published to introduce the interaction between magnetic
flux generated from electromagnetic coil and rotating magnet field [15,16]. This interaction is the
basic principal operation of the electromagnetic actuator that produces magnetic force to enable the
movement of a movable structure. The basic electromagnetic actuator structure consists of a flexible
movable membrane, electromagnetic coil, magnetic chamber or spacer and bulk permanent magnet.
Initially, a thin membrane attached with permanent magnet has been the common structure used as
the moving membrane of the MEMS electromagnetic actuator [17]. Unfortunately, the structure with
attached bulk magnet suffers from high volume and low reliability, especially when the membrane
operates in long vibration mode [18]. Therefore, some innovations in the material structure have been
developed in order to obtain a compact and reliable actuator.

The MEMS structures are usually made of glass, silicon, silicon nitride and metals [19,20]. Those
materials are the common materials in MEMS technology due to the excellent mechanical properties
and matured technology process [21]. However, silicon and glass are easy to break as they have low
fracture strain which is about 0.1% [22–24]. Meanwhile, metals are very sensitive to chemical and
environmental effect [25]. Some other disadvantages of those conventional MEMS materials, especially
for the use as movable structure, are fragile and low flexibility. These drawbacks make them less
favorable compared to polymers.

On the other hand, polymers in MEMS have been used since several years ago as a photosensitive
material [26], sacrificial layer [27], passive structure for microchannel [28], microchamber and passive
micromixer [29] and as the functional layer of micro-structured devices, such as actuators [30] and
sensors [31,32]. Polymer has good mechanical properties with Young’s modulus lower than silicon and
metal, which makes it highly elastic and at the same time possesses high strength [33–38]. In conjunction
with MEMS actuators, the mentioned mechanical properties are useful in obtaining large membrane
deformation under external magnetic stimulus. Furthermore, the most important fact is that the
polymeric structure of MEMS device can be fabricated in inexpensive way, cheaper than silicon-based
micro-processing cost [39–41].

It was also reported that microstructures working under extreme vibration condition like actuators
need enhancement in terms of material quality, design and technological concepts in order to increase
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the lifetime and effectiveness of the structures [38]. Therefore, some magnetic polymers become more
preferable as the structures will have high elasticity, easy to fabricate and photo-patternable.

Some popular polymers have been identified and explored to become the flexible material for
actuation purposes. The common actuator materials that have been reported in the literatures include
PMMA, parylene, polyimide and PDMS elastomer. The properties of those materials are summarized
in Table 1.

Table 1. Material properties of popular polymers used in microelectromechanical systems (MEMS).

Polymer
Name Density

Young’s
Modulus

(GPa)

Poisson’s
Ratio

Thermal
Expansion

Coefficient @25
◦C (10−6 K−1)

Thermal
Conductivity

(W/mK)

Property
Utilized Process

PMMA
[41,42] 1.17–1.2 3.1–3.3 0.35 70–90 0.186

Little elasticity,
optical

property

LIGA, Hot
embossing

Parylene
[43] 1.289 4.5 0.4 35 - Vapor barrier Coating

PDMS
[29,39,44] 0.97 0.36–0.87 0.5 310 0.18 Elasticity Molding

Polyimide
[45–47] 1.42 3 0.34 30–60 0.1–0.35 Little elasticity Coating

2. MEMS Actuators

In general, MEMS actuators can be driven either by mechanical actuation or non-mechanical
actuation. Mechanical actuation mechanism with a diaphragm (membrane) as the moving part is
primarily utilized in MEMS devices [48]. Compared to the non-mechanical actuator, the mechanical
actuator has many advantages in terms of controllability, high vibration rate and large membrane
deformation [49].

A large number of mechanical microactuator devices has been demonstrated including microrelays,
microvalves, optical switches and mirrors, micropumps and many others that can be found in various
applications. These actuators use different mechanical actuation principle such as piezoelectric,
electrostatic, electromagnetic, thermo-mechanic, thermo-pneumatic and shape memory. Table 2 shows
a comprehensive analysis of MEMS mechanical actuators, describing different types of energy exchange
mechanism used to obtain kinetic movement, the devices’ structure, the advantages and the typical
applications of each MEMS mechanical actuator.
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Table 2. Typical MEMS mechanical actuator devices, structure and their working principle.

Working Principle Schematic of Actuator System Advantages Disadvantages Typical Applications

Piezoelectric [9,50,51]
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The major advantages of electromagnetic actuation are the generated high magnetic force that
enables large membrane deflection and high tunable frequency capability. In addition, rapid generation
of electromagnetic field enables membrane deformation in 2 directions with very fast vibration rate [10].
Additionally, an electromagnetic actuator is capable of precisely tuning the input power. The power
consumption in EM actuators between 13 mW to 7 W is the widest range among the other types of
actuators [59]. However, high power dissipation and large area consumption could be the drawbacks
of the system.

Not many designs for magnetic microactuators specifically used in biomedical field are reported
in literature. Table 3 shows the developed magnetic microactuator devices for biomedical application.
The application of these actuators are classified into biosample delivery/transport, biosample
preparation and biocell manipulation. Mainly, the actuator functioned as a microfluidic handling
system for samples delivery in a drug delivery system and lab on chip. There is a high interest from
industry in the implementation of the electromagnetically driven microactuators for a broad range of
biomedical applications.

Table 3. Common magnetic actuator devices used for biomedical applications.

References
Actuating Element

(Structure, Material or
Method)

Magnet Type Input Specifications

Biosample Delivery and Transport

Yamahata et al.
2015 [60]

PDMS membrane &
magnet Iron powder 33–150 mA

Flowrate: 0.4–1.6
mL/min

Frequency: 6–12 Hz
Büttgenbach, 2014

[61]
EM Micromotor rotation

& polymer magnet
90 wt% ceramic ferrites +

polymer 70 mA Forces: 1.2 mN
Torque: 10 µNm

Lee et al. 2011 [62] Silicon catheter Electroplated nickel
70 to 1500 Hz

(resonant
frequency)

Angle > 60◦

Zhou &
Amirouche, 2011

[63]

PDMS membrane &
magnet

NdFeB or CoNiMnP
plate 90–180 mA

Magnetic Force: 16 µN
Flowrate: 319.6 µL
Frequency: 36.9 Hz

Biosample Preparation

Nouri et al. 2017
[64]

Magnetohydrodynamic
interaction with

permanent magnet
Fe3O4 nanoparticles 3000 Gauss Mixing time: 80 s

Mixing index: 0.9 s

Liu et al. 2016 [65] PDMS with permanent
magnet

Magnetic composite
(carbonyl iron) 6 V, 18 Hz Mixing time: 2 min

Flow rate: 20 µL/s

Biocell and Drug Particles Manipulation

Banis et al. 2020
[66]

water-soluble ferrofluid
material (FluidMAG

lipid)
Electromagnetic coils

4 to 8 A
Magnetic particle

size 100 nm

Droplet velocity 135
µm/s

Rinklin et al. 2016
[67]

Magnetophoretic
attraction of microbeads

carboxyl functionalized
particles (Dynabeads)

and laminated magnetic
NiFe parts

5, 10 and 15 mA
Maximum particle
levitation height of

approximately 10 µm

Chen et al. 2015
[68]

PDMS tweezer with
hexapole yoke

10 layers of laminated
magnetic NiFe parts

feedback control at
a speed of up to 1

kHz

Maximum force = 400
pN, force distribution
with actuation from
−30 µm to 30 µm

Choi et al. 2000 [69] silicon cantilever Encapsulated permalloy N/A N/A

Electromagnetic Actuators Principle

The basic mechanism of electromagnetic actuation involves the interaction between magnet and
electromagnetic field that intensively generates the magnetic force. This interaction produces high
frequency vibration of the movable structures, such as membrane and pillars, hence enables various
implementation of biomedical instrumentation.

Thielicke et al., [70] explained that the actuation principle depends on structural dimension,
response time, torque, max power consumption, the technology used and the applied forces. The forces
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are classified into 2 main groups, namely external and internal forces. Electromagnetic actuators fall in
external forces category as the forces are produced from the magnetic fields interaction occurred in the
gap between the stationary and moving parts.

In general, the magnetic membrane actuation is achieved by the deformation of the movable
membrane due to the generated magnetic force acting onto the membrane. The common structure of a
magnetic actuator is schematically displayed in Figure 1a. The system consists of the magnetic field
generator part (electromagnetic coil) and the magnetic membrane part (flexible membrane plus an
attached magnet) [71,72].

Through the interaction between magnet and electromagnetic coil, a vertical magnetic force acting
on the magnetic membrane with vertical magnetization on z-axis is generated. The magnetic force
known as Lorentz force Fmag is given by the following integral over the volume V of the body [73]:

Fmag = Mz

∫
v

∂Hz

∂z
dV (1)

where, Fmag is the magnetic force acting on the magnetic membrane, Mz is the magnetic induction
from the permanent magnet, ∂Hz

∂z is the magnetic field gradient generated by the electromagnetic coils
and dV is the volume of the permanent magnet. The correlation between magnetic force applied on to
the membrane and the resulting membrane deformation hz can be derived from the Equation (1):

hz= C
Fmag lm

D
(2)

where, lm is the membrane size, C is a constant depending on the shape and geometry and D is the
material characteristics of the membrane that is defined by:

D =
E tm

2

12 (1− v2)
(3)

where E is the Young’s Modulus, v is the Poisson’s ratio while, tm is the thickness of the membrane.
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Figure 1. Cross sectional view of an initial electromagnetic (EM) actuator, (a) with magnetic
membrane-based moving parts [50], (b) with embedded planar coil-based moving parts [74].

Another approach to introduce the principal of the actuation mechanism has been described by
Pawinanto et al. [71] and Sugandi et al. [74]. Here, planar electromagnetic coil wires are embedded
inside or attached on the movable membrane surface, as shown in Figure 1b. When an electrical
current is supplied to the planar coil wires, a magnetic flux induction from the permanent magnet onto
the wires is achieved. Through this induction, the magnetic force Fmag is generated and acting onto
the membrane that finally causes the periodical actuation of the membrane structure.

At the location of the coil, magnetic field makes an angle θ with the normal surface (vertical
axis) and the magnetic force (Fmag) between a current carrying wire and a permanent magnet can be
expressed as given by [22]:

⇀
Fmag =

N∑
i=1

2πRiI ×
⇀
Br(Ri) × sinθ (4)
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where I is the coil current, Ri the radius of each turn coil,
⇀
Br the radial component of magnetic field

in the coil plane and θ is angle direction of magnetic field to vertical axis. Therefore, total force for a
single turn coil is given by:

⇀
Fmag = I (l×

⇀
Br × sin θ) (5)

with l represents the total length of a single turn coil with a radius r. Using both equations, we can
see where the force vector direction acted. The induced electromagnetic force is principally based
on the magnetic interaction between the current carrying coils, permanent magnets and flexible
membrane materials [71]. It works vice versa, either the membrane with embedded wire moves or the
magnet moves.

3. MEMS Fabrication of Polymer-Based Actuator

3.1. Fabrication of EM Actuator

There are several mechanical actuation mechanisms related to the function of the membrane
such as vibration, peristaltic and flexural plate wave [75]. Some actuators are constructed with flat
movable membranes [45], some others are equipped with pillars or cilia, as found in micromixers [76].
For these purposes, certain MEMS fabrication methods with high resolution pattern are needed in
order to create three-dimensional structures on the membrane. It should be noted that the fabricated
membrane structure must be flexible enough to generate movement and able to withstand the pressure
acting onto the surface. The patterned structures on the membrane were also predicted to improve the
membrane’s flexibility.

The common method used in fabricating a polymer membrane with three-dimensional (3-D)
structure is soft lithography or micro-molding. Soft lithography technique for polymer-based MEMS
device was introduced in 1990 by Varadan [77]. Among the advantages of soft lithography techniques
compared to conventional optical lithography techniques are the unlimited machining resolution of the
emission and dispersion of optical waves and the turbulence in the resin. In addition, soft lithography
with elastomer sealants has the advantage of precise pattern on the target surface and easy to remove
from the mold. All of these advantages make soft lithography a great attractive and highly potential
technique to be used in the field of microfabrication process [78].

Most of the polymer membranes fabricated through soft lithography technique do not have their
own mechanism in order to function as an actuator. They need an external stimulation either from a
permanent magnet or an electromagnet. Via this concept, an actuator disc, a magnetized permalloy
strip, a bulk magnet or an embedded electromagnetic coil can be integrated into the polymer membrane
structure to generate force for the membrane deformation purpose [79–82]. Soft lithography technique
is not only an inexpensive and simple fabrication process but it can also manipulate the texture
of the polymer membrane during fabrication to control its flexibility which is vital for membrane
actuation [83–85].

Some examples of soft lithography process in the fabrication of polymer-based MEMS structure
were reported by Ghanbari et al. [86] and Yunas et al. [87,88]. The microactuator part can be
fabricated separately. Thus, the fabrication process can start with the electromagnetic part (1),
followed by the fabrication of magneto-mechanic part (2) and finally with the bonding of both parts
using epoxy (3). The detailed fabrication process of a micropump system is shown in Figure 2.
The electromagnetic coil pattern is first created followed by the deposition of planar copper (Cu)
microcoil wire (a) and (b). The coil structure is formed after the lift-off process (c) and (d). Next is
the fabrication of the magneto-mechanical part that involves the patterning of mold master using
SU8-based photolithography process (e). Then, the polymer membrane is fabricated by pouring the
PDMS onto the pre-patterned structure (f) followed by peeling-off of the material (g) before transferring
it onto a spacer surface. The final step of the process is the attachment of the permanent magnet onto
the transferred membrane and all fabricated parts are bonded together using epoxy glue (h).
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Another approach to create membrane with 3-D (three dimensional) structures has been reported
by Xu and Cui [89]. They used hot embossing technique to fabricate an actuator membrane by
constructing the membrane layer-by-layer (LbL). In the process, silicon molds were fabricated using a
conventional UV lithography and wet, etching technique. The hot press technique was then used to
transfer the design structure from silicon molds to PMMA sheets. The hot press molding technique
involves the simultaneous application of heat and pressure in the fabrication of a polymeric membrane.

Furthermore, 3-D structures can be created using 3-D printing technique that can print
biocompatible polymers or devices at required dimensions based on the printer’s resolution. The
technique offers more complex and sophisticated design that can be realized at micro-scale which
could not be done with conventional method like soft lithography [90,91]. There have been also
several studies reporting the usage of 3-D printing to fabricate a part of MEMS device such as the
stereolithographic (SL) 3-D printer that fabricates a thin membrane from poly(ethylene diacrylate)
resin [92]. The membrane was then pneumatically pressed to get the thickness smaller than 25 µm.

Zhou et al. [93] also reported in 2019, that a polymer actuator membrane with a thickness of
100 µm was successfully fabricated using a 3-D multijet printer (MJP). The printed membrane was able
to deform in order to close and open the microchannel and fully functioning as a valve. Another novel
3D-printed electromagnetically driven fluidic valve was fabricated by projection–stereolithography
(PSL) in combination with functional elements such as the permanent magnets [94]. There was also a
study on the fabrication of a whole MEMS device using 3-D printing technique that met minimum the
requirement for biocompatible standard [95].
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3.2. Fabrication of Magnetic Polymer Composites Membrane

Embedded magnetic particles in polymer would be the future functional material for many types
of biomedical devices. It becomes a new composite material that possesses the flexible mechanical
characteristic and exceptional magnetic responsive features [96]. The implementation of magnetic
polymer composite as the material structure for the actuator membrane could overcome the need of
a bulk permanent magnet. The soft and flexible properties of polymeric membrane would tend to
rupture and break when a bulk structure is placed on it, like the bulky permanent magnet attached
onto an actuator membrane of a micropump [88].

One of the methods in fabricating magnetic polymer composite MEMS membrane is through a
synthesis method using mechanical stirring under sonication in which a PDMS-based polymer was
mixed with NdFeB magnetic particles having the size ranging from 50 to 100 um [9]. The deformation
capability of the membrane has been tested, by which the highest deflection of 9.16 µm at 6 vol%
magnetic particles density has been measured with an applied magnetic field density of only 0.98 mT.

Here, the PDMS is considered as the most popular material for flexible biomedical device
applications. Apart from its biocompatible property, the mechanical properties can be manipulated
via controlled ratio of the polymer base and curing agent [97]. The PDMS-based membrane has been
successfully fabricated with the integration of the magnetic particles from 2% up to 30% distribution
across the membrane. The magnetic membrane can be deflected when its magnetic field interacts
with the magnetic flux formed from the current flow in the coils. The fluctuating movement of the
membrane is governed by the applied current of only several milliamperes.

Recently, Tahmasebipour and Paknahad have fabricated nano-magnetic membrane made of
PDMS–Fe3O4 for the application of valveless electromagnetic micropump [98]. Nano sized particles of
Fe3O4 were mixed within the PDMS layer in order to create the magnetic membrane. The composite
magnetic membrane is compatible with living tissues and has great magnetic stability. The embedding
of nanoparticles in polymer however can cause agglomeration problem due to the attractive forces
between the particles. Therefore, different approaches have been proposed to minimize particle
agglomeration, such as particle encapsulation with polymeric material [99] or ceramic coating [100] or
by implementation of surfactant [101].

4. Application of Polymers for Electromagnetic Actuators

4.1. Magnetic Polymer Composite-Based Microactuators

A flexible membrane with embedded magnetic particles having small particle size would have
many advantages, because the magnetization and the magnetic anisotropy of the particles can be much
greater than a bulk magnetic specimen [102]. The magnetic polymer composite is very light, hence
would not significantly affect the mechanical properties of the polymer. Hence, this magnetic polymer
composite membrane enables actuators to have larger deflection with a controllable actuation forces,
compared to silicon or metal-based actuators [103]. On other hand, with the help of photo sensitive
mold master material, the polymer composite would be able to be patterned and transferred onto the
substrate as suspended movable part and other MEMS passive structures as well. Thus, the material
composite can find its potential application as sensitive actuator for fluid injection, valves, magnetic
recording media, mechanical relays, optical mirror and switch and other mechanically moving part
driven by magnetic fields [15,104–106].

The evolution of magnetic material used for the actuator membrane shows a transition from
bulk magnet to matrix magnet and now to magnetic polymer composite. The research of magnetism
in electromagnetic actuator has then been extended by reducing the size of the magnetic particles
embedded in the polymer membrane from micro to nanometer. Here, the evolution of the magnetic
membrane is described in Figure 3.
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Initially, silicon material was used as the membrane, which was bonded with a single bulky
permanent magnet glued on the top of the membrane. Then, smaller permanent magnet with matrix
structure was used to replace the single magnetic bulk in order to reduce the membrane stiffness. In
2002, the use of polymer material as the actuator membrane had been started and the permanent
magnetic layer was created on the polymer membrane via electroplating [107]. The concept was
then extended with the use of arrays of electroplated permanent magnetic layer [108]. Finally, the
electroplated permanent magnet has then been replaced with the embedded magnetic particles,
producing a magnetic polymer composite membrane with significant improved performances [88].

The current status of the magnetic polymer composite membrane for biomedical application
was reported by Said et al. [88]. They developed a matrix patterned magnetic polymer composite for
actuator membrane that is integrated with the micropump for bio-sample injection. The composite
membrane is made of polydimethylsiloxane (PDMS) mixed with NdFeB magnetic particles and
patterned into blocks of matrix.

To this concept, the magnetic composite actuator membrane containing 6% NdFeB was capable of
generating a maximum membrane deflection up to 12.87 µm [9]. As shown in Figure 4, the magnetic
property of NdFeB polymer composite is strongly related to the amount of magnetic particles embedded
in the polymer. Thicker polymer layer with more NdFeB particles produces larger magnetization.
However it doesn’t affect the change in coercivity. A 139 µm membrane thickness shows a saturated
remanence magnet of 37.637 mT.

Some other potential applications of magnetic polymer composite in sensors and actuators were
reported by Samaniego et al. [109]. They studied the resultant of magnetic polymer composite to
fabricate soft robots by squeegee–coating method. The soft robots have flexible and compliant bodies
resulting in higher degrees of freedom and improved adaptability to their surroundings. Therefore,
the robot can be used for minimal invasive surgery (MIS) in order to reduce patients’ trauma, pain and
recovery time [110]. The soft polymer-based magnetic actuator was fabricated by mixing ferromagnetic
microparticles (PrFeB) with polymers precursor before its curing. The soft robots were magnetized
under 1 T of uniform magnetic field.

The magnetic polymer composite can also be integrated to the artificial cilia in a microfluidic
system. Zhang et al. demonstrated the versatile microfluidic flow generated by molded Magnetic
Artificial Cilia (MAC) [111]. The MAC can cause versatile flows by changing the magnetic actuation
mode. This on chip microfluidic transport does not require tubing or electrical connections, reducing
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the consumption of reagents by minimizing the “dead volumes”, avoiding undesirable electrical effects
and accommodating a wide range of different fluids.
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4.2. Polymer-Based Electromagnetic Actuators for Micropumps and Microvalves

Most important properties of polymer in micropump system as the movable membrane of the
actuator are its flexibility and high surface strength. In general, microfluidic systems are made up
of input and output tubes, channels and pump chambers. Beside the membrane, the valves are also
important in ensuring fluid flow direction and to regulate the flow rate. Some other micropumps are
designed valveless that improve the reliability of the system and reduces the clogging effect [112].

Wang et al. [113] reported a micropump comprising a magnetic PDMS diaphragm, a planar
microcoil and microfluidic channel. When an electric current is applied to the microcoil, an
electromagnetic force is generated at the magnetic diaphragm. The deflection of PDMS diaphragm
generate a push–pull action of the membrane hence creating pressure difference within the chamber
and microchannel and subsequently causing the fluid flow. Their EM micropump achieved a maximum
pumping rate of 52.8 µL/min with diaphragm displacement of 31.5 µm induced by a microcoil input
current of 0.5 A.

EM micropump using PDMS encapsulation layer mounted with small permanent magnets was
reported by Pan et al. [114]. The membrane of the pump actuator which is driven by magnetic
motor shaft or microcoil used two one-way check valve using a micropipette and heat sink tubing.
The magnetic motor shaft was a small DC motor (6 mm in diameter and 15 mm in length) with a
neodymium–iron–boron permanent magnet embedded in its shaft. The EM micropump achieved a
maximum pumping rate of 774 µL/min with magnetic motor shaft and 1 mL/min with microcoil driven
pump. Microcoil driven pump has shown higher flowrate and much higher power consumption.

Furthermore, an EM micropump with embedded planar coil in the thin PDMS membrane reported
by Yin et al. (Figure 5) [115]. The size of the membrane is 7 mm in diameter and achieved 50 µm
deflection with an applied current of 500 mA. The resonant frequency is about 1.43 kHz. Fluids in the
microfluidic chip were driven forward by a local pneumatic pressure provided by the membrane. This
EM pump was claimed to have a pumping volume flow rate of 2 µL/min.
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Figure 5. Polydimethylsiloxane (PDMS)-based EM micropump and valves with embedded
planar microcoil.

A valveless EM micropump reported by Yamahata et al. [60] used composite magnets replacing
the bulk permanent magnets (Figure 6). The composites magnet was developed using PDMS polymer
mixed with 40% of NdFeB powder with a mean size of 200 µm. The actuator was driven by a 1500 turns
coil supplied with sinusoidal current of 150 mA with soft magnetic core in the center to strengthen
the magnetic field. The actuator membrane could deform up to 0.25 mm and pumping water at the
flowrate of 400 µL/min with resonant frequency of 12 Hz by applying nozzle/diffuser microfluidic
system. The passive structure of the pump system is made of four PMMA layers consisting of capping
layer, channel and chamber layer and also spacing layer.
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Figure 6. Schematic of a valveless EM micropump involving PDMS and PMMA materials and utilizing
magnetic composite membrane to replace the bulk permanent magnet.

Another valveless EM micropump having a composite magnetic membrane of Fe + PDMS was
reported by Nagel et al. [116]. Weight concentration varying from 25%–75% of iron particles with the
size of below 10 µm were mixed in PDMS. Nickel coated NdFeB magnet was used to interact with the
actuator membrane and moved up/down by a crankshaft. This micropump used valveless microfluidic
system with a 6-mm diffuser/nozzle that has produced a maximum pumping flowrate of 35 µL/min at
a frequency of 1.67 Hz.

Shen and Liu fabricated a PDMS-based magnetic composite membrane with IPDP thin film
stacked design (Figure 7a) and embedded system (Figure 7b) [117]). An iron-particle-dispersed PDMS
(IPDP) was a mixture of iron particles with the average size of 55 µm, PDMS and its curing agent.
The mixing ratio of IPDP was 10:10:1. The micropump used a valveless type microfluidic system
and electromagnet block which connected to power supply and combiflex. Micropump with IPDP
embedded design had a pumping flowrate of 1.623 mL/min at a frequency of 6–7 Hz and 30 V of
supply voltage which was higher compared to the flowrate of stack design.
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film design, (b) embedded thin film design.

A complete PDMS-based micropump including the structure, the membrane and the valveless
microfluidic system was reported by Zhou and Amirouche [63]. The actuator membrane used a thin
NdFeB magnet encapsulated at the center of the PDMS. Maximum deflection of the actuator membrane
was 36.36 µm. DI water is pumped with maximum flow rate of 319.6 µL/min at a frequency of 36.9 Hz
with supply current of 0.18 A.

Said et al. [118] combined the bulky permanent magnet with magnetic composite membrane to
improve the reliability of the membrane and at the same time to increase the magnetic induction. The
hybrid structure could produce a magnetic flux density of 37.637 mT enabling a controllable peristaltic
pumping of microfluidic sample with a flowrate of 6.6 µL/min. When the bulk permanent magnet
was removed from the micropump system and only left with the flat membrane composite alone, the
micropump produced a very slow flowrate of 6.52 nL/min. Hence, the micropump could deliver a
very precise dose for drug delivery system.

Electromagnetically actuation of flexible membrane incorporating microvalve for micropump
application has been also reported by Sadler et al., as shown in Figure 8 (left) in a closed mode and
(right) in an open mode [119]. The normally closed magnetic microvalve has both fluidic and electrical
connections bonded to a glass motherboard. The microvalve comprised a magnetoactive membrane, a
stationary valve seat and inlet/outlet channel. The magnetoactive membrane as a diaphragm plated
with permalloy films on the top will interact with electromagnet flux generated by inductor to produce
the magnetic force. A polymer film was attached to the system to ensure there is no leak. The force
would lift up the membrane from the valve seat thus opened the valve and allowed the fluids to flow
from inlet to outlet due to pressure difference.
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Figure 8. Electromagnetic actuator incorporating magnetic valves, (left) closed mode, (right)
open mode.

Polymer-based microvalves used to manipulate the fluid flow have been reported by
Gaspar et al. [120]. The actuation of the valve is based on the principle that flexible polymer walls of a
liquid channel can be pressed together by the aid of a permanent magnet and a small metal bar. In
the presence of a small NdFeB magnet lying below the channel of interest, the metal bar is pulled
downward simultaneously pushing the thin layer of PDMS down thereby closing the channel and
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stopping any flow of fluid. Furthermore, Bute et al. [121] reported that the flow manipulation and
proper operation of the valve depends on thickness and percentage load of magnetic material in the
membrane as well as dimensions of channel, chamber and membrane with respect to the location of
outlet channels, while Nakahara et al. [122] reported the use of photosensitive polymer composites for
the fabrication of magnetically driven microvalve arrays in a µTAS (µ- total analysis system)

To summarize, since 1995 there have been many developments in microactuator device design
and materials for micropumps and microvalves incorporating elastic membrane, as listed in Table 4.
The magnetic polymer-based micropumps are working with various applied frequency and various
reading fluid flow rates ranging from 6.5 nL/min to 6.8 mL/min have been obtained. Obviously it is
found that after the use of silicon, polymers have become the subject of researcher’s choice to build
the actuator membrane for micropump. Since 2005, magnetic polymers composites have become the
promising material to replace the conventional bulky permanent magnet.

Table 4. Development of polymer-based MEMS electromagnetic actuators for microfluidic
pump applications.

Year Membrane Structure Flowrate Frequency References

1995 Thermoplastic molding bulk permanent magnet 780 µL/min 5 Hz Dario et al. [123]
1999 Silicon rubber 2.1 mL/min 50 Hz Bohm et al. [124]
2000 PDMS + plate alloy 1.2 µL/min 2.9 Hz Khoo dan Liu [125]
2005 PDMS + bulk permanent magnet 774 µL/min n.a T.Pan et al. [114]
2005 PMMA and composite PDMS + powder NdFeB 400 µL/min 12 Hz Yamahata et al. [60]
2006 Composite PDMS + powder Fe 35 µL/min 1.73 Hz Nagel [116]
2007 PDMS + bulk permanent magnet 2 µL/min n.a Yin et al. [115]
2008 PDMS + bulk magnet NdFeB and PMMA 6.8 mL/min 20 Hz M.Shen et al. [126]
2010 Composite PDMS + powder Fe 1.623 mL/min 6–7 Hz Shen and Liu [117]
2011 Composite PDMS + plated NdFeB 319.6 µL/min 36.9 Hz Zhou and Amirouche [63]
2015 PDMS + magnet pad n.a 28–30 Hz Dich et al. [127]
2017 Composite PDMS + NdFeB particles 6.52 nL/min 1 Hz Said et al. [88,118]

It can be concluded that the polymer-based micropump and valves were able to precisely control
the delivery of the fluidic sample and obtained fluid flow range from 10 mL/min down to several
nL/min. Innovations in the membrane material and structure and the use of the latest technology in
several ways are still necessary to meet the needs and requirements of the biomedical instrumentations.

4.3. Polymer-Based Active Micromixer

Magnetic polymers found its important role in microfluidic mixer system which is mostly used as
the basic material for the passive part of the system such as the channel and chamber formation in
lab on chip system. On the other hand, the polymer has been playing the potential role as an active
part in order to improve the mixing performance of the microfluidic system, especially for the bio-cell
analysis. This is called active microfluidic mixer, which means that the mixing mechanism is due to the
turbulences of the fluidic sample inside the mixer chamber, usually based on magneto-hydrodynamic
and magnetic structure actuation, which is driven by an external magnetic field [128].

In 2018, Tang et al. presented a research on embedded flexible magnets in PDMS membrane [129].
Three designs were introduced and compared, namely (a) concentric type with the magnetic material
in the center of the membrane; (b) eccentric type with the magnetic material offset from the center
of the membrane and (c) split type with two regions of magnetic materials with opposing polarities.
Oscillating fluid flow was induced at a frequency of 100 Hz to enhance mixing performance. Split type
design proved to have better mixing performance than the others.

Turbulence inside the fluidic chamber to improve mixing performance can also be produced by
using pillars rotation as reported by Rahbar et al. [76]. Here, an individual or arrays of micromixer
element in form of high aspect ratio of small pillar was fabricated using a micromolding process of
nanomagnetic-composite polymers. The cilia, which are realized in PDMS (polydimethylsiloxane)
doped with (Nd0.7Ce0.3)10.5Fe83.9B5.6 powder are then magnetized to produce permanent magnetic
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structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled
by electromagnetic fields. Similar to this concept, Zhou et al. [130] reported the development of
magnetic pillars made of polymers composite with embedded Fe3O4 magnetic particles. Through an
external magnetic field exposure, the magnetic pillar will react in rotation mode.

Furthermore, Pawinanto et al., [131] has developed polymer pillars on a movable flexible magnetic
membrane with an attached permanent magnet (Figure 9, left). The movement of the pillars followed
the deformation profile of the membrane (Figure 9, right). The concept of pillar rotations or membrane
with pillar deformation in a mixer chamber has significantly increased the index of turbulence enabling
higher mixing efficiency. These improvements thank to the advancement in the fabrication method of
active micromixer that simplifies the mixer structure and its fabrication.Polymers 2020, 12, x FOR PEER REVIEW 15 of 21 
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5. Conclusions and Future Aspects of Polymers for EM Actuator

In this study, a comprehensive review on electromagnetically driven MEMS actuators with
polymer-based movable structure is presented. The flexible characteristic of polymer is beneficial in
attaining large and controlled structure deformation of the movable parts, such as thin membrane
diaphragms, pillars or cantilevers. Significant discovery of polymer-based functional material has led
to a wide range application of electromagnetic MEMS actuator. The flexible actuator structure with
high magnetic property plays an important role in various biomedical instrumentations, such as lab on
chip and drug delivery system.

These actuators can function as micropumps, microvalves and micromixers which execute the
imperative roles of delivering biomedical samples. The wonderful combination between flexibility and
magnetic properties of the magnetic polymer actuators can accurately control the microfluidic flow in a
microchannel and determine its direction. In addition, the fluidic samples can be delivered precisely at
a wide range of fluid flow rate, from 30 mL/min down to several nL/min. It will be a challenging effort
to widen the flow rate range of an electromagnetic injection system which may require significant
arrangement in pump and valve system design. This will eventually improve the reliability and quality
of the electromagnetically driven microactuator system, specifically designed for drug delivery and
artificial kidney.

The actuator structure also plays an important role as an active microfluidic mixer in the
preparation process of the biomedical samples for drug delivery and lab on chip system. The polymer
actuator can potentially reduce the mixing time and increase the mixing index. The increase of fluid
sample turbulence inside the mixer chamber driven by external magnetic fields improves the mixing
performance. Here, the innovation in design and fabrication technology for magnetic polymers
introduces more compact mixer structure.

The presence of bulk permanent magnet attached onto the actuator has been identified as one
of the main drawbacks for making an electromagnetically driven MEMS actuator to be large in size.
Hence, it is crucial to make the actuator structure compact, as this will ultimately reduce the overall size
of the system. A polymer membrane diaphragm with embedded magnetic nanoparticles can become a



Polymers 2020, 12, 1184 16 of 21

compact actuator with better mechanical properties. The developmental concept for magnetic actuator
has evolved from the utilization of hard and fragile materials to more flexible polymeric materials with
matrix magnet and now progresses towards embedded magnetic nanoparticles polymer composites.
In the future, the polymer composites will eliminate the need of a conventional bulky permanent
magnet in electromagnetic actuators.

To conclude, much progress has been made on magnetic actuator development and the future
trend shows magnetic polymer composites as the new functional materials for flexible biomedical
device technology. The magnetic polymer composite will be a fascinating material to be implemented
in wearable and portable biomedical device applications that are currently and rapidly growing.
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