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Risk Analysis Implications of Dose-Response
Thresholds for NLRP3 Inflammasome-
Mediated Diseases: Respirable Crystalline
Silica and Lung Cancer as an Example

Louis Anthony (Tony) Cox Jr1

Abstract
Chronic inflammation mediates an extraordinarily wide range of diseases. Recent progress in understanding intracellular
inflammasome assembly, priming, activation, cytokine signaling, and interactions with mitochondrial reactive oxygen species,
lysosome disruption, cell death, and prion-like polymerization and spread of inflammasomes among cells, has potentially profound
implications for dose–response modeling. This article discusses mechanisms of exposure concentration and duration thresholds
for NOD-like receptor protein 3 (NLRP3)-mediated inflammatory responses and develops a simple biomathematical model of the
onset of exposure-related tissue-level chronic inflammation and resulting disease risks, focusing on respirable crystalline silica
(RCS) and lung cancer risk as an example. An inflammation-mediated 2-stage clonal expansion model of RCS-induced lung cancer
is proposed that explains why relatively low estimated concentrations of RCS (eg, <1 mg/m3) do not increase lung cancer risk and
why even high occupational concentrations increase risk only modestly (typically relative risk <2). The model of chronic
inflammation implies a dose–response threshold for excess cancer risk, in contrast to traditional linear-no-threshold assumptions.
If this implication is correct, then concentrations of crystalline silica (or amphibole asbestos fibers, or other environmental
challenges that act via the NLRP3 inflammasome) below the threshold do not cause chronic inflammation and resulting elevated
risks of inflammation-mediated diseases.
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Introduction: Linear-No-Threshold Versus
Threshold Dose–Response Models

As the field of quantitative risk assessment (QRA) for carcino-

gens has matured over the past 40 years, several fundamental

questions have remained unresolved. One concerns the realism

of the linear-no-threshold (LNT) assumption or hypothesis that

exposure-related excess risk of cancer is proportional to expo-

sure concentrations and durations, at least at relatively low

levels of exposure. Despite its convenience and widespread use

in regulatory risk assessments, enthusiasts of biologically

based risk assessment and mode-of-action considerations have

long criticized the LNT assumption as being unrealistic for

important nongenotoxic and genotoxic carcinogens.1-3 Quanti-

tative risk assessments using 2-stage clonal expansion (TSCE)

and multistage clonal expansion (MSCE) models of carcino-

genesis indicate that many carcinogens increase cancer risks by

increasing the net birth rates of altered (eg, “initiated” or

“premalignant”) cells, rather than (or in addition to) hastening

mutations by acting directly on DNA. Exposure-related

increases in proliferation (“clonal expansion” or “promotion”)

of the pool of cells at risk of being transformed into malignant

cells by a mutation can increase cancer risk even if exposure

does not increase the mutation rate itself. Dose–response

thresholds arise if compensating proliferation of cells in

response to unrepaired cytotoxic damage (eg, regenerative
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hyperplasia subsequent to oxidative damage) occurs only at

doses high enough to cause such damage, perhaps after deplet-

ing pools of protective resources such as antioxidants or satur-

ating capacity for repair of oxidative damage.2,4,5 This might be

called the cytotoxicity/cell proliferation model of thresholds in

carcinogen dose–response relations. It can also lead to

U-shaped or J-shaped dose–response relations (hormesis) if

low exposure levels upregulate production of antioxidants or

other protective resources that become depleted or saturated at

higher doses.5-8 Thresholds and hormesis have been discussed

for important carcinogens including arsenic,9 chloroform,10

1,4-dichlorobenzene,11 diesel exhaust, ionizing radiation,

dioxin (TCDD),5 saccharin,12,13 and many others.6,7

For lung carcinogenesis caused by inhaled particles or

fibers, compensating proliferation of relevant cell populations

(possibly including alveolar type II epithelial cells, bronchial

basal cells, Clara cells, pulmonary neuroendocrine cells, and

bronchioalveolar stem cells at bronchioalveolar duct junctions)

depends not only on direct damage from particles but also on

resulting releases of reactive oxygen species (ROS) from dam-

aged cells and inflammation of the alveolar epithelium and the

lung environment.14-16 The ROS is known to act as a second

messenger affecting stem cell proliferation for self-renewal and

differentiation in many systems.17,18 In the lung, ROS signaling

is involved in inflammation and cytotoxicity caused by quartz

dusts and other particles, with response thresholds for measures

of cytotoxicity and inflammation (eg, tumor necrosis factor a
[TNF-a]) that depend on the physicochemical properties of the

dust.19 Experiments in rats show an exposure threshold above

which lungs become overburdened and clearance of even low-

solubility and relatively low toxicity particles by alveolar

macrophages (AMs) becomes impaired.20 However, the rat

lung appears to be unique in this regard, so it is widely consid-

ered that there are no clear implications for human carcinogeni-

city of rat lung carcinogenicity that depends on such

overburdening of the lung.21

More recently, a different type of threshold has been eluci-

dated for inflammatory responses in lungs exposed to mineral

particles and mineral fibers. Cell-level inflammatory responses

to a wide variety of environmental dangers, including inhaled

respirable crystalline silica (RCS) and asbestos fibers, are

mediated by the NOD-like receptor protein 3 (NLRP3) inflam-

masome, a supramolecular signaling complex that assembles in

the cytosol of AMs, alveolar epithelial cells, and other lung

cells and coordinates releases of inflammatory cytokines in

response to a wide range of stimuli.22 The complex contains

a pattern recognition receptor that recognizes a variety of

pathogen- and danger-associated molecular patterns—specifi-

cally, a nucleotide-binding oligomerization domain (NOD)-

like receptor (NLR), from which the name “NOD-like receptor

protein 3” is taken, although it is also often used to abbreviate

longer and more descriptive names for the same complex (eg,

“nucleotide-binding domain, leucine-rich repeat region-

containing family, pyrin domain-containing-3”23). The NLRP3

inflammasome has been implicated in the pathogenesis of

exposure-related fibrosis, silicosis, asbestosis, lung cancer,

mesothelioma, and many other diseases, from viral and bacter-

ial infections to type 2 diabetes, heart disease, Alzheimer and

Parkinson diseases, atherosclerosis, and arthritis, gout,

and other autoimmune diseases.24 It senses damage signals and

disruption of cellular homeostasis and responds by producing

the potent proinflammatory cytokines interleukin-1b (IL-1b)

and IL-18 and inducing pyroptosis, a highly inflammatory form

of programmed cell death that leads to swelling and lysis (rup-

ture) of the cell membrane and release to the extracellular

environment of its inflammatory contents—including IL-1b,

IL-18, and activated NLRP3 inflammasomes.22,25-28 The

NLRP3 inflammasome provides important portions of a previ-

ously missing link between exposure-related ROS-associated

oxidative damage within the cell and the spread of inflamma-

tion between cells that creates chronic inflammation of tissue,

a high ROS tissue environment, and increased risks of

inflammation-mediated diseases.29,30

This article focuses on RCS lung cancer dose–response

relations as a specific example, but similar biological points

hold more generally for other inflammatory agents and

inflammation-mediated diseases. The main points in the fol-

lowing sections are as follows.

� Contrary to the LNT model, priming, assembly, and

activation of the NLRP3 inflammasome in response to

inhaled RCS, asbestos, and other agents involve clear

dose–response thresholds. Both concentration and dura-

tion of exposure have thresholds: Neither high concen-

trations for too short a period nor prolonged exposures to

too low a concentration can activate the NLR3 inflam-

masome. Exposures that do not generate sufficiently

high concentrations of RCS particles in AMs for

sufficiently prolonged durations do not activate their

NLRP3-mediated responses. We review several

different biological mechanisms that prevent NLRP

inflammasome activation in response to brief or low-

concentration exposures.

� Dose–response thresholds at the level of intracellular

NLRP3 inflammasome activation imply tissue-level

dose–response thresholds for inflammation, and specif-

ically for the onset of chronic, irreversible inflammation

mediated by activation of NLRP3 inflammasomes. We

present a simple mathematical model linking individual

cell-level thresholds for inflammation to resulting

tissue-level thresholds for self-sustaining chronic

inflammation in a population of cells.

� These dose–response thresholds hold also for induction

of chronic inflammation-mediated diseases such as sili-

cosis, fibrosis, or lung cancers in workers exposed to

high and prolonged concentrations of RCS. We illustrate

this point by embedding the tissue-level inflammation

model between a previously developed physiologically

based pharmacokinetic (PBPK) front-end model for

RCS and a TSCE model of lung carcinogenesis.

� Realistic estimates of interindividual variability in dose–

response thresholds suggest that populations of people
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(eg, occupationally exposed populations) also have

exposure concentration and duration thresholds below

which exposures do not increase risks of NLRP3

inflammasome-mediated diseases.

If dose–response thresholds exist, they dramatically change

both the information requirements for QRA and the nature of

risk management calculations that compare marginal benefits

to marginal costs of incremental reductions in allowed expo-

sure concentrations. This article concludes by briefly examin-

ing some of the risk assessment and risk management

implications of exposure thresholds for inflammation-

mediated diseases.

Biological Thresholds for NLRP3
Inflammasome Priming, Assembly, and
Activation

This section reviews and synthesizes aspects of NLRP3 inflam-

masome biology related to dose–response thresholds for trig-

gering NLRP3 activation and induction of inflammatory

responses to stressors such as RCS. The goal here is qualitative:

to review biological grounds for concluding that dose–response

thresholds exist at the level of individual cells. The next section

explains how cell-level thresholds create tissue-level thresh-

olds for exposure-induced chronic inflammation. Quantitative

assessment of how large this chronic inflammation dose–

response threshold is for RCS, and how variable it is among

individuals, are addressed subsequently.

The NLRP3 inflammasome is a multiprotein complex that

forms in AMs and other cells in response to detection of suffi-

ciently strong damage-associated signals or bacterial proteins

by toll-like receptors (TLR; especially TLR4) on the cell sur-

face or by other pattern recognition receptors. In response,

signaling cascades transmitted via nuclear factor-kB (NF-kB)

pathways to the cell nucleus induce it to upregulate production

ofpro-IL-1b and of NLRP3 protein filaments, secreting them

into the cytosol, thus “priming” the cell for assembly and acti-

vation of the NLRP3 inflammasome.31 Two distinct thresholds,

one for NF-kB signaling and one for MAPK activation, provide

an ultrasensitive, switch-like response to TLR4-induced

inflammation, preventing production of inflammatory cyto-

kines by macrophages in response to weak TLR4 stimulation

so that low levels of damage do not trigger inflammatory

responses.32 Priming also increases deubiquitination of

NLRP3, allowing post-translational as well as transcriptional

regulation of active NLRP3 protein balance (Song and Li

2018).31,33,34 If the concentration of protein becomes high

enough and damage signals continue to be received, Pyrin

domain-containing sensors on the filaments lose their autoin-

hibition (eg, via deubiquitination) and begin a process of

orderly nucleated polymerization (assembly of successive

units) of apoptosis-associated speck like protein containing a

CARD (ASC) and oligomerization (assembly of different types

of protein units into a complex) to create a fully functional,

wheel-shaped NLRP3 inflammasome in the cytosol (Song and

Li 2018).33,34 The completed inflammasome has a Pyrin

domain-containing sensor in its NLRP3 component, a

caspase-recruitment domain (CARD) effector component, and

an adaptor molecule linking them: the ASC. The assembly

process is cooperative: Once begun, addition of further units

becomes more favorable, leading to a characteristic all-or-

nothing response for inflammasome assembly.33,35 Conversely,

if damage signals are too rare or too brief, the critical concen-

tration of uninhibited NLRP3 sensors and protein filaments

required to initiate cooperative oligomerization is not reached,

and assembly and activation of NLRP3 inflammasomes then do

not occur. Thus, cooperative assembly in response to sustained

damage signaling creates dose–response thresholds for NLRP3

inflammasome assembly and NLRP3-mediated inflammatory

responses. In general, nucleated cooperative polymerization

exhibits a sharp concentration threshold for the constituent

subunits (eg, ASC): Below a critical concentration, they cannot

self-assemble into polymers, but above it, they do. This has

long been understood on biophysics grounds (eg,36). Assembly

of the NLRP3 inflammasome illustrates this general principle.

Activation of the assembled inflammasome requires a sec-

ond signal, referred to as “signal 2,” that again appears to

operate in part by deubiquitinating NLRP3. (In contrast to the

mitochondrial ROS [mROS]-dependent deubiquitination

involved in priming, deubiquitination induced by the second

signal is mROS independent, indicating that distinct regulatory

mechanisms are involved.)31,37 Although the precise molecular

identity of signal 2 is uncertain, the closely correlated events of

potassium ion (Kþ) efflux, calcium ion (Ca2þ) signaling, high

mROS and cytoplasmic ROS production, inhibition of antiox-

idant thioredoxins,30 mitochondrial damage, and lysosomal

rupture following lysosome membrane permeabilization

(LMP), leading to release of cathepsins from the lysosome,38

have all been proposed to play critical and interrelated roles;

these are reviewed in more detail elsewhere.39,40 The LMP and

rupture of the lysosome appears to be a central pathway for

NLRP3 inflammasome activation, specifically for silica and

other respirable particles.41 Lysosome rupture is of course an

intrinsically threshold phenomenon: It occurs only when intra-

lysosomal concentrations of cell damage products become too

high. Moreover, the fact that signal 2 must be received after the

inflammasome has assembled and before it is deactivated and

removed via ubiquitination and autophagy42 implies a temporal

threshold for activation: Substantial damage to the cell must be

sustained long enough for priming, assembly, and activation to

take place in a cell (ie, on a time scale of hours).

The activated NLRP3 inflammasome recruits caspases,

including caspase-1, which cleaves the protective protein ends

from pro-IL-1b and pro-IL-18, forming mature active IL-1b
and IL-18 that are secreted by the AM and exert a number of

potent proinflammatory effects via the cytokine and chemokine

networks, including recruiting phagocytes (neutrophils and

macrophages) to engulf and devour the sources of inflamma-

tion. Caspase-1 also causes mitochondrial damage and disas-

sembly, production of mROS, and pyroptosis, leading to the

swelling and bursting (lysis) of the inflamed cell and release of
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its inflammatory contents, fueling further inflammatory signal-

ing to nearby cells. The release of ASC specks and NLRP3

inflammasomes into extracellular spaces facilitates ROS acti-

vation and spread of inflammation to nearby cells, as the

released components continue to promote IL-1b maturation

and broadcast inflammatory danger signals to neighboring

cells, which can respond by becoming inflamed themselves.25

The release and subsequent uptake of ASC specks also spreads

inflammation among macrophages via a prion-like transmis-

sion mechanism: When phagocytized by macrophages, the pre-

viously released ASC specks induce lysosomal damage,

nucleation of ASC oligomerization and fiber growth, and IL-

1b activation in their new hosts, initiating a new round of

inflammatory responses, pyroptosis and lysis, and release of

the specks to continue the process.43 Inflammation is like a

contagious disease in the population of cells: Inflamed neigh-

bors increase the probability that a currently uninflamed cell

will become inflamed.

At the tissue level, if inflammation remains unresolved due

to prolonged damage signaling and continued activation of

NLRP inflammasomes, then it is plausible that the inflamma-

tory response ceases to serve the health-preserving role of

restoring homeostasis for local cells and tissue and instead

crosses over to a pathological process of harmful unresolved

inflammation: In response to chronic exposure to NLRP3-

activating conditions,

the homeostatic threshold of NLRP3 may be surpassed, result-

ing in excessive and detrimental inflammation, and ultimately

disease. . . . NLRP3 becomes pathologic either because of too

strong a response or because of the overactivation of macro-

phages due to the chronic presence of excessive amounts of

[noxious] substances.24

A simple mathematical model is proposed next to help illu-

minate how chronic high exposures can cause such a transition

from homeostatic to pathological inflammation.

Modeling the Transition From Transient to
Chronic Inflammation

The main point of this section is that inflammation dose–

response thresholds for individual cell simply inflammation

dose–response thresholds for cell populations and tissues. This

conclusion holds in various models of inflammation. It is

robust to many variations and uncertainties about the details

of the inflammatory process, but follows mainly from the key

assumption that the rate (probability per unit time) at which a

cell or area of tissue becomes inflamed increases when its

neighbors are inflamed. The spread of inflammation in a pop-

ulation of cells is then somewhat analogous to the spread of an

infectious epidemic in a spatially distributed population of

people. Dose–response thresholds for self-sustaining inflam-

mation, analogous to epidemic thresholds, arise for a wide

range of alternative assumptions about transmission among

neighbors. The modeling in this section also seeks to clarify

how sustained exposure can drive a transition from homeo-

static, transient, self-resolving inflammation to pathological,

self-sustaining, chronic inflammation.

Several mathematical and computational models have pre-

viously been proposed for lung tissue inflammation in response

to inhaled microbial, viral, and particulate challenges.44,45 Both

ordinary differential equation (ODE) models45 and agent-based

models (ABMs)46 have been used to simulate the dynamics of

lung cell populations and their behaviors (eg, activation, func-

tioning, and removal of AMs) over time and within different

lung compartments or locations. However, no model of which

we are aware has attempted to provide a realistically detailed

account of the many variations in individual cell states or the

complex interactions among cells within and between different

cell populations, and nor shall we. Rather, models of lung

inflammation typically aggregate many cell populations into

a few representative types or compartments and study simpli-

fied version of their interactions to illuminate their qualitative

and quantitative dynamics. The ABMs (and partial differential

equations models) can consider locations as well as time, but

typically model changes in the states of cells at specified loca-

tions as depending on the states of neighboring cells via very

simple rules or functions. Current biological knowledge is

probably too limited to permit much more detailed and realistic

modeling; for example, the precise identity of the “signal 2”

activating primed NLRP3 inflammasomes is not yet known,

and many other details of inflammasome regulation both within

and among cells (eg, which specific ubiquitins and deubiquitins

are involved and how they vary over time and location within

the cytosol) are still being elucidated. Despite these knowledge

gaps, we propose that a simple model that borrows ideas from

both ODE (compartmental) and ABM modeling can shed use-

ful light on how exposure to RCS or other NLRP3-activating

substances can shift responses from homeostatic inflammation

(self-limiting inflammation that resolves itself after exposure

ceases) to pathological chronic inflammation that sustains itself

even in the absence of further exposure.

Consider a population of units, each of which is either

“inflamed” or “not inflamed” at any moment. For example,

we might focus on AMs as the units and declare a macrophage

to be inflamed if it contains at least 1 activated NLRP3 inflam-

masome. Or, since there are many other cell types (eg, mono-

cytes, neutrophils, dendritic cells) involved in lung

inflammation, and knowledge and data to support detailed

modeling of their behaviors, movements, and interactions are

not readily available, the units might instead be interpreted as

referring to locations or “patches” within the lung, with each

patch being either inflamed or not at any moment. (Patches can

be envisioned as small contiguous spatial areas that collectively

tessellate the tissue, analogous to elements in a finite-element

analysis grid. A patch might be defined as being inflamed if it

harbors activated AMs, or has ASC specks or activated inflam-

masomes in its extracellular spaces, or has concentrations of

IL-1b significantly above normal background levels, or meets

other operational criteria for inflammation.) We can afford

such useful ambiguity about the precise interpretation of the

4 Dose-Response: An International Journal



model because the same equations describe a wide range of

phenomena and can be interpreted in different ways without

affecting the validity of resulting conclusions about the spread

of inflammation.

For notation, Let P(t) denote the fraction of the population

(of cells or patches) that is inflamed at time t; thus, 1 � P(t) is

the fraction that is not inflamed then. When time is not being

emphasized, these quantities can be denoted more briefly as P

and 1 P. Assume that inflamed cells are replaced by unin-

flamed ones at a rate of d replacements per inflamed cell per

unit time. The parameter d represents the combined effects of

inflammation-resolving mechanisms such as ubiquitination of

active NLRP3 inflammasomes, autophagy by autophagosomes

formed in response to, and partly colocalized with, inflamma-

somes,42 removal of macrophages (perhaps with burdens of

RCS particles that have not been successfully phagocytosized)

via the mucociliary escalator, and pyroptosis and replacement

of inflamed cells that have died (eg, via pyroptosis) or been

removed by uninflamed ones. (Of course, modeling these

clearance processes by a single rate constant is an oversimpli-

fication, as they have their own detailed dynamics. For exam-

ple, particle overload in the rat lung compromises the

efficiency of phagocytosis, corresponding to a decrease in

d.14,47 However, we shall focus on lower exposures and long

averaging times, for which the simplified approximate

description of clearance of inflamed cells by a single rate

constant yields useful insights into inflammation dynamics

on a time scale of months to years or decades, despite its

undoubted inaccuracies on short time scales.) Conversely,

uninflamed cells become inflamed at a rate that depends on

the states (inflamed or not) of other cells. The flow of cell from

uninflamed to inflamed at any moment is proportional to 1� P

and to the strength of proinflammatory signals that these cur-

rently uninflamed cells are receiving. Mean-field theory48 sug-

gests approximating this signal strength by some increasing

function of P, which we will denote by f. Internal doses of RCS

particles or other poorly soluble particles can also cause AMs

to become inflamed as phagocytosis fails to dissolve the par-

ticles and they prime and activate NLRP3 inflammasomes.

Letting c denote the fractional rate at which uninflamed cells

become directly inflamed by internal dose, the mass-balance

ODE describing the evolution of P over time has the following

form:

dP

dt
¼ f ðPÞ � ð1� PÞ þ c� ð1� PÞ � d � P ð1Þ

All of the parameters and P itself may vary over time and in

response to dose. To focus at first on the dynamic response of

the lung to previous inflammatory exposures, we will consider

scenarios in which a history of exposure has led to some start-

ing level of inflammation, denoted P(0) (with time 0 defined as

the time at which we start tracking the inflammation process)

and with no further exposure, ie, c ¼ 0, over the time interval

for which response is modeled. For such exposure scenarios,

equation (1) simplifies to equation (1a).

dP

dt
¼ f ðPÞ � ð1� PÞ � d � P ð1aÞ

To obtain an explicit model that supports simulation of time

courses, it is necessary to specify the function f. The ABM

simulations have each cell or patch (ie, each “agent” or unit)

make state transitions (eg, from uninflamed to inflamed) at

each moment based on the current states of its neighbors.

Although mean-field approximations and lumped-parameter

ODEs, such as equation (1a), do not explicitly identify the

neighbors of individuals units, a stochastic ABM with discrete

time steps would typically assume that each unit has N neigh-

bors and that each uninflamed unit becomes inflamed if and

only if at least k of its N neighbors is inflamed. The crucial

assumption that each individual cell (or other unit) has a dose–

response threshold for becoming inflamed is reflected in the

threshold parameter k. (In reality, cells are heterogeneous and k

may be different for different cells; this and other complexities

are discussed subsequently.) When the fraction of units that are

inflamed is P, the probability that a randomly sampled unin-

flamed unit will have at least k inflamed neighbors, and hence

become inflamed itself, is determined from the binomial cumu-

lative distribution function (CDF) with parameters k, N, and P:

Using the notation of the R statistical programming language, it

is simply 1 � pbinom(k, N, P), where pbinom(k, N, P) denotes

the CDF for the binomial distribution with these parameters.

An explicit formula for f(P) in discrete time, given the para-

meters K and N, is thus:

f ðPÞ ¼ 1� pbinomðk;N ;PÞ ð2Þ

For example, if each patch has N ¼ 4 neighbors and if it

becomes inflamed if and only if at least 3 of them are inflamed,

then the fractional inflammation rate per unit time will be:

f ðPÞ ¼ PN þ N � PN�1ð1� PÞ ¼ P4 þ 4P3ð1� PÞ

This is just the probability that the number of inflamed

neighbors is 4 or 3. In continuous time, assuming a mean field

approximation with averaging over relevant time scales, f(P)

refers to a fractional rate per unit time (which may exceed 1)

rather than to a discrete probability, and equation (2) is

replaced by equation (3):

f ðPÞ ¼ a
�
1� pbinomðk;N ;PÞ

�
ð3Þ

Here, the parameter a converts from probability per discrete

time step to fractional rate per unit of continuous time. It can be

interpreted as a potency or intensity parameter reflecting how

quickly a cell becomes inflamed once its inflammation dose–

response threshold has been exceeded. The mean-field approx-

imation ignores detailed stochastic fluctuations and considers

only average values; thus, it is entirely possible that some cells

with high probabilities of becoming inflamed during some

interval won’t, while others with lower probabilities will; also,

the local percolation of inflamed cells through parts of a pop-

ulation may take more or less time than average-case calcula-

tions reveal, with local patches of inflammation spreading or
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extinguishing randomly. Nonetheless, mean-field approxima-

tion gives useful analytic insight into drivers of the long-run

dynamic behavior of the system, as discussed next, even though

it is not the right tool for analyzing short-term stochastic fluc-

tuations or variability around average-case behaviors.48 Sub-

stituting equation (3) into the ODE model (1a) yields equation

(4) as the final ODE model governing the evolution of inflam-

mation P over time in the absence of further contributions from

internal doses.

dP

dt
¼ a
�
1� pbinomðk;N ;PÞ

�
� ð1� PÞ � d � P ð4Þ

The qualitative nature of possible solutions (ie, time courses

of P) for this model is of greatest interest, rather than specific

numerical values. One qualitative question is whether there are

any equilibrium values of P, corresponding to the levels of

inflammation that will sustain themselves if they are reached.

P¼ 0 is a trivial example of such an equilibrium—if the system

starts with no inflamed cells and no inflammatory exposures, it

remains with no inflamed cells—but the more interesting qua-

litative questions remain of how many nonzero equilibria there

are (if any), their relative sizes, their local stability, and how

they are approached (if at all) from any starting degree of

inflammation, P(0). Answers can be gained by recognizing

that, at equilibrium, dP/dt ¼ 0 and hence the ODE in equation

(4) reduces to the algebraic equation a(1 � pbinom(k, N, P)) �
(1� P) – d� P¼ 0, which can be rearranged as equation (5) if

P is an equilibrium value strictly between 0 and 1 for the

fraction of inflamed units.

P

1� P
¼ a

d

�
1� pbinomðk;N ;PÞ

�
ð5Þ

As P is increased from 0 toward 1, the left side of equation

(5) considered as a function of P increases from 0 toward

infinity and the right side increases from 0 to a/d. Equilibrium

levels of P occur wherever these 2 curves cross, so that equa-

tion (5) is satisfied. Since the right side of equation (5)

approaches a horizontal line at height a/d and the left side

approaches a vertical asymptote at P ¼ 1, if the left side is ever

less than the right side, then there must exist at least one non-

zero equilibrium value of P at which the left curve crosses the

right curve from below. Such an equilibrium is locally stable,

since P/(1 � P) as a function of P crosses (a/d)(1 � pbinom(k,

N, P)) from below only if P/(1 � P) < (a/d)(1 � pbinom(k, N,

P)), which can be rearranged as a(1 � pbinom(k, N, P))� (1 �
P) � d � P > 0, or (by equation (4)) as dP/dt > 0. In other

words, P is increasing at P values to the left (and, conversely, is

decreasing at P values to the right) of the intersection point,

making it a stable equilibrium. At the origin, where P¼ P/(1�
P)¼ (a/d)(1� pbinom(k, N, P))¼ 0, the function P/(1� P) on

the left side of (5) has slope 1 and the function (a/d)(1 �
pbinom(k, N, P)) on the right side of (5) has slope 0, so dP/dt

< 0 at the origin, implying that P ¼ 0 is a locally stable equili-

brium. Figure 1 diagrams both of these functions of P (P is on

the horizontal axis) and shows their intersections for the

specific combination of values of the model parameters a/d

¼ 2, k ¼2, N ¼ 6.

Although different choices of these parameter values change

the exact form of the S-shaped curve for (a/d)(1� pbinom(k, N,

P)) in Figure 1, the following qualitative properties do not

depend on details of the curve or the precise numerical values

of its parameters.

1. The origin is a stable equilibrium (since P/(1 � P) > (a/

d)(1 � pbinom(k, N, P)), so dP/dt < 0). In other words,

small levels of inflammation tend to resolve themselves.

2. There is a threshold level of inflammation, correspond-

ing to the unstable equilibrium intersection point T in

Figure 1, below which the inflammation level P will

decrease to 0 over time (self-resolving transient inflam-

mation). In the jargon of dynamical systems theory, the

“basin of attraction” for the healthy equilibrium point

P ¼ 0 extends from 0 to T. From any initial inflamma-

tion level 0 < P(0) < T, the values of P(t) decrease

toward zero as time t increases. If the vertical scaling

factor a/d is small enough so that the 2 curves only

intersect at P ¼ 0, then T becomes effectively infinite

and P¼ 0 is the only equilibrium and is globally stable.

Otherwise, if the threshold T is finite (between 0 and 1),

a second stable equilibrium exists, as described next.

3. There is a unique nonzero stable equilibrium level of

inflammation, corresponding to intersection point E in

Figure 1. From any initial inflammation level to the

right of T, the inflammation level P will move toward

E over time (self-sustaining chronic inflammation). The

basin of attraction for E extends from P ¼ T to P ¼ 1.

Figure 1. Left and right sides of equation (5) as functions of the
inflammation level P on the horizontal axis. T is an unstable equili-
brium. The origin and E are stable equilibria.
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Figure 2 shows explicit trajectories (time courses) for P(t)

starting from different initial levels of inflammation, P(0), on

the vertical axis. (For variety, this is illustrated for an inflam-

mation process described by parameters k ¼ 2, N ¼ 3, d ¼ 0.2,

and a ¼ 0.4, although the qualitative properties of interest do

not depend on these specific numerical values.) The vertical

axis is scaled in percentages, running from 0% to 100% of units

inflamed. Time is on the horizontal axis, with units reciprocal

to those of the fractional rate parameters a and d; if they are in

fraction per day, then time units would be days; if they are in

fraction per month, then the time units would be months, and so

on. Since the qualitative nature of the trajectories is of central

interest, we leave the time units unspecified for now. For suffi-

ciently small initial inflammation levels (below T on the ver-

tical axis), all trajectories lead down to 0, although the times for

them to reach any given level become longer and longer as the

initial inflammation fraction increases toward T. At a starting

value of P(0)¼ T, the time to decline becomes infinite (since T

is an equilibrium level, albeit an unstable one). For initial

inflammation levels greater than T, the trajectories instead

approach a self-sustaining higher equilibrium value, E ¼
50% on the vertical axis, with the approach taking less time

from initial inflammation levels closer to E.

If internal dose is constant and contributes an additional

fractional rate of inflammation c per unit time by inhaled par-

ticles interacting directly with as-yet uninflamed cells, then

equations(4) and (5) generalize to equations (6) and (7),

respectively.

dP

dt
¼
�
að1� pbinomðk;N ;PÞ þ c

�
� ð1� PÞ � d � P ð6Þ

P

1� P
¼ a

d

�
1� pbinomðk;N ;PÞ

�
þ c

d
ð7Þ

The qualitative analysis is almost identical to that already

given for the case c ¼ 0, but now continued exposure shifts the

S-shaped curve in Figure 1 upward by c/d (which shifts T down

and E up and moves the stable homeostatic equilibrium from 0

to a positive value).

Figures 1 and 2 show how sufficiently large exposures in

this model can eventually shift inflammation from self-limiting

to chronic by pushing the system from the basin of attraction

for P ¼ 0 (below threshold T) to the basin of attraction for P ¼
E (above threshold T). The system dynamics described by

equation (4) exhibits bistability: Exposure histories that do not

inflame more than the threshold fraction T of units lead to

transient inflammations that eventually resolve themselves in

the absence of continued exposure, returning to 0 units

inflamed, but inflammation above this threshold level leads

to irreversible chronic inflammation that settles at the new,

higher level E. Thus, spread of inflammation among cells pro-

vides a different route to bistability than positive feedback

loops, a well-known source of bistability in biological control

systems that are also important in RCS-induced lung inflam-

mation.49 Rather than a feedback loop, a tipping point (similar

to an epidemic threshold) better describes the bistability here:

Once the proportion of inflamed cells exceeds threshold T, it

becomes easier (more likely) for other cells to become

inflamed than to remain uninflamed. The inflamed fraction

expands until a new dynamic equilibrium is reached in which

the numbers of inflamed cells being created and cleared per

unit time are again equal.

It may be useful to compare the implications of the ODE

model in equation (6) to those from ABM models. Although the

analysis in Figures 1 and 2 show that equation (6) describes a

bistable system, observations over a relatively short time
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Figure 2. A family of P(t) inflammation trajectories starting from different initial inflammation levels on the vertical axis (numbers show percent
of units inflamed). Time is on the horizontal axis. Time units are left unspecified here; they are the inverse of the units for the rate parameters a
and d. For these trajectories, k ¼ 2, N ¼ 3, d ¼ 0.2, and a ¼ 0.4. Time (nominal units, eg, months or years, depending on rate constants).
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horizon would not reveal that trajectories that start near-

threshold T eventually reach either of 2 levels, homeostatic

equilibrium or the pathological equilibrium level, E. This is

consistent with observations of 3 types of observed trajectories

reported for a simple ABM simulation model, as reported by

Brown et al46:

An agent-based model (ABM) was created to examine the

response of an abstracted population of inflammatory cells

(nominally macrophages, but possibly including other inflam-

matory cells such as lymphocytes) and cells involved in remo-

deling (nominally fibroblasts) to particulate exposure. . . . The

model yielded three distinct states that were equated with (1)

self-resolving inflammation and a return to baseline, (2) a pro-

inflammatory process of localized tissue damage and fibrosis,

and (3) elevated pro- and anti-inflammatory cytokines, persis-

tent tissue damage, and fibrosis outcomes. Experimental results

consistent with these predicted states were observed in histol-

ogy sections of lung tissue from mice exposed to particulate

matter.

If the ABM is consistent with our ODE model in equation (6),

then extending the lengths of these ABM would show that their

state 2 (“a pro-inflammatory process of localized tissue damage

and fibrosis”) eventually progresses to either state 1 or state 3.

Although the particular combination of ODE, ABM, and

mean-field theory simplifications in equation (6) for modeling

the transition from acute to chronic inflammation is new to the

best of our knowledge, the finding that there is a threshold

below which self-sustaining inflammation does not occur and

above which it does has many analogies and generalizations in

the biomathematical theory of epidemics and in percolation

theory for spatial stochastic processes. The existence of such

a threshold is robust to many modeling details. It occurs in a

wide variety of stochastic models that allow for realistic com-

plexities such as heterogeneity in the thresholds for different

units, or heterogeneous and time-varying numbers of neighbors

for different units.50-52 The key feature driving the occurrence

of bistability and a threshold between 2 basins of attraction for

extinction versus self-sustaining activation of units in such

models is that a unit is more likely to become activated when

more of its neighbors are activated. This interdependence is

realistic for phenomena ranging from spread of forest fires to

epidemics, and we believe that it is also realistic for NLRP3-

mediated spread of pyroptosis and lung inflammation.

To summarize this section, the inflammation model in equa-

tion (6) takes as input an initial level of inflammation, P(0), and

produces as output a time course of subsequent inflammation

levels, P(t), as illustrated in Figure 2. In the long run, initial

levels of inflammation above a threshold T lead to a high

chronic level of inflammation, E, as a stable equilibrium. By

contrast, initial levels of inflammation below the threshold lead

to resolution and 0 inflammation in the absence of further

exposure. Although the time required to approach the long-

run level (0 or E) can be arbitrarily long if the initial level is

arbitrarily close to the threshold T, it is shorter for starting

values far from T.

X1 alveolar silica mg X2 AM silica mgphagocytosis by AM

release from AMs

AM mediated clearance

dose rate

X3 interstitial silica mg

interstitialization

Ki interstitialization 
rate per day

X4 lymph node silica mg

translocation to lymph nodes KL translocation rate to 
lymph nodes per day

r phagocytosis rate per day

Kd decay rate of AMs per day Kt AM mediated 
clearance rate per day

total RCS burden

dose

Figure 3. Systems dynamics model diagram for a basic RCS PBPK model, adapted from Tran et al.54 The diagram was created using the iThink
software, www.iseesystems.com/. RCS indicates respirable crystalline silica; PBPK, physiologically based pharmacokinetic.
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A PBPK Model for Internal Doses of RCS

To extend a model of lung inflammation to provide a dose–

response model for RCS and lung cancer (or for other agents

and diseases), it is necessary to embed the inflammation model

between a front-end model describing how dose affects inflam-

mation and a back-end model describing how inflammation

affects lung cancer or other disease risks. This section describes

a front-end PBPK model that takes RCS exposure histories as

inputs and produces resulting time courses of inflammation

levels as outputs. A later section develops a lung cancer

response model that takes time courses of inflammation levels

as inputs and produces resulting time courses of lung cancer

risk as outputs.

Physiologically based pharmacokinetic (PBPK) models

have previously been developed for RCS exposures and mea-

sures of resulting AM and neutrophil inflammation in the lungs

of exposed rats and humans.53-55 Although these models pre-

ceded the elucidation of the role of the NLRP3 inflammasome,

they provide useful descriptions of how RCS exposures affect

resulting time courses of inflammation markers in the lung,

consistent with considerable data from rat experiments and

limited data in humans.54

Figure 3 shows the structure of the main part of the PBPK

model for RCS described and partly validated by Tran et al.54

This figure uses standard visual conventions for systems

dynamics modeling environments: Rectangular boxes repre-

sent compartments (“stocks”), thick arrows represent flows

among compartments, thin arrows represent information about

dependencies, circles represent constants or calculated quanti-

ties, and dashed circles represent quantities input or calculated

from outside the part of the model shown in the diagram. All

quantities are allowed to be time varying. Thus, Figure 3

describes a dynamic system in which dose (specified exogen-

ously as a time series of concentrations of RCS in inhaled air)

causes a flow of crystalline silica particles to the alveolar sur-

face of lung; X1 denotes the mass in mg of alveolar silica.

(Surface area of deposited silica particles is a crucial aspect

of internal dose, as discussed later.) From the alveolar surface,

RCS is redistributed to AMs (X2 ¼ mg of silica burden in

AMs), the interstitium (X3 ¼ mg of silica in the interstitium),

and lymph nodes (X4 ¼ mg of silica in the lymph nodes). The

RCS in AMs can be cleared by the mucociliary escalator or

returned to the alveolar surface (eg, as is now understood,

following pyroptosis of an AM). The RCS in the interstitium

is eventually translocated to the lymph nodes, although the

process is relatively slow.

Table 1 summarizes the ODEs and rate constants describ-

ing these time-varying flows of RCS among the PBPK model

compartments for low levels of exposure. The model

described in Figure 3 and Table 1 can be downloaded as an

iThink file (“RCS_PBPK_small.itm”) from http://cox-associa

tes.com/CausalAnalytics/. The full PBPK model developed

by Tran et al is considerably more complicated, in part

because, at higher exposure levels, phagocytosis becomes

impaired and several of the fractional rate constants in Table

1 (and in additional modules describing dose–dependent

recruitment of macrophages and neutrophils, eventual fibro-

sis, and changes in oxidants and markers such as NF-kB)

become dependent on the silica burden in AMs, denoted by

X2. As explained by Tran et al,54

Days
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Figure 4. Predicted time courses of silica load (mg) in AMs for 11 different exposure concentrations, 0.08 mg/m3 (curve 1) through 0.18 mg/m3

(curve 11), increments of 0.01 mg/m3. Predictions are made using the PBPK model in Table 1. The threshold level mcrit ¼ 146.8 mg for acute
inflammation is reached only for exposure concentrations >0.13 mg/m3 (curve 7). Most exposures that achieve this threshold do so within about
3 to 6 months. AMs indicates alveolar macrophages; PBPK, physiologically based pharmacokinetic.
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The AM-mediated defense of the alveolar region is effective

(i.e. phagocytosis and clearance of silica particles by AMs are

unimpaired) as long as the silica burden inside AMs (X2) remain

below a critical burden level (mcrit). Once mcrit is reached clear-

ance quickly becomes impaired and an inflammatory reaction is

switched on.

The “inflammatory reaction” that is switched on in this

model is onset of acute (neutrophil-dominated) inflammation,

rather than the possible subsequent onset of chronic (macro-

phage- and lymphocyte-dominated) inflammation,56 which is

our main focus. Thus, the model and parameter values in Table

1 describe the distribution of RCS at exposures low enough that

they do not trigger acute inflammation, as defined by a signif-

icant increase in alveolar neutrophils. Tran et al54 found it

necessary to include the threshold parameter mcrit to fit data

from experiments in rats with doses high enough to trigger

acute inflammation of the lung, even in the absence of lung

overload. They estimated its value for humans as mcrit ¼ 146.8

by scaling from the values estimated from rate data based on

mg/g of lung weight.

To understand how the time until acute inflammation is

initiated depends on exposure concentrations, Figure 4 shows

the trajectories for accumulation of silica loads in AMs (mea-

sured in mg, X2 on the vertical axis) over time (measured in

days on the horizontal axis) for different exposure concentra-

tions, as predicted by the PBPK model in Table 1. As just

discussed, this model ignores the accelerated rate of accumula-

tion of RCS that occurs once the load exceeds mcrit, and there-

fore the trajectories in Figure 4 are only meant to be

descriptively accurate for X2 values on the vertical axis that

are no greater than mcrit ¼ 146.8. (Although, as discussed next,

we do not believe that the part of the Tran et al PBPK model

that describes what happens after inflammation is triggered is

correctly specified, it is still useful for quantitatively estimating

RCS accumulation until that point and hence for quantifying

the time for X2 to reach mcrit, ie, the time until acute inflamma-

tion is triggered.) The concentrations are varied from 0.08

(curve 1, the lowest curve in Figure 4) to 0.18 mg/m3 (curve

11, the highest curve) in increments of 0.01 mg/m3.

The main results from the PBPK modeling, as shown in

Figure 4, are as follows:

1. Exposures to sufficiently low concentrations of RCS in

inhaled air (below about 0.13 mg/m3) do not trigger

inflammation: The AM load accumulation curves flat-

ten out below mcrit.

2. Most exposure concentrations that are high enough to

trigger acute inflammation (ie, that cause load curves

that eventually exceed mcrit ¼ 146.8) do so relatively

quickly, within about 3 to 6 months, as shown by the

times where the curves for X2(t) cross the horizontal line

X2 ¼ mcrit.

3. For prolonged exposures to constant concentrations, the

entire PBPK model acts as a multiplier, yielding a

steady-state AM RCS load in mg equal to 1115.1 times

the inhaled concentration of RCS in mg/m3. Thus, a

threshold for the minimum concentration of RCS that

can initiate acute inflammation when mcrit ¼ 146.8 can

be estimated as follows: mcrit/1115.1 ¼ 146.8/1115.1 ¼
0.13 mg/m3.

4. Even concentrations that are high enough to trigger

acute inflammation (above about 0.13 mg/m3) do so

only if exposure lasts for long enough (typically 3-6

months) for the curves to rise to exceed mcrit. Thus,

there is a minimum duration of exposure necessary for

Table 1. Human Lung RCS PBPK Model and Parameter Values, From Tran et al.54

Compartments
� X1 ¼ mg of alveolar silica
� X2 ¼ mg of silica burden in AMs
� X3 ¼ mg of silica in the interstitium
� X4 ¼ mg of silica in the lymph nodes

Flow equations and parameter values for X2 < mcrit

� dX1/dt ¼ dose � rX1 � kiX1 þ kdX2; r ¼ 0.9660, ki ¼ 0.5289, kd ¼ 0.03
� dX2/dt ¼ rX1 � ktX2 � kdX2; r ¼ 0.9660, kt ¼ 0.0036, kd ¼ 0.03
� dX3/dt ¼ kiX1 � klX3; ki ¼ 0.5289, kl ¼ 9.40
� dX4/dt ¼ klX3; kl ¼ 0.001

These fractional rate parameters (all in units of fraction per day) are interpreted as follows
� r ¼ phagocytosis rate ¼ 0.9660 per day
� ki ¼ interstitialization rate ¼ 0.5289 per day
� kd ¼ AM decay rate ¼ 0.03 per day
� kt ¼ AM clearance rate ¼ 0.0036 per day
� kl ¼ translocation rate to lymph nodes ¼ 0.001 per day

Internal dose model
� dose ¼ (concentration of RCS in inhaled air, mg/m3) � (deposited fraction) � (liters of air inhaled per minute) � (days per week

exposed/7) � (hours per day exposed)
� ¼ 0.10 � 0.32 � 13.5 � 0.714 � 8 � 1 ¼ 2.47 in base case scenario of Tran et al.54 (Although Tran et al refer to “days per week,” they

clearly mean “fraction of days per week exposed,” ie, (days per week exposed)/7. The value 0.714 ¼ 5/7.)

Abbreviations: AMs, alveolar macrophages; PBPK, physiologically based pharmacokinetic; RCS, respirable crystalline silica.
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an exposure concentration greater than 0.13 mg/m3 to

trigger acute inflammation. This agrees with experi-

mental data in rodents.47

The threshold value mcrit is clearly similar to threshold T in

Figures 1 and 2, insofar as both represent a critical threshold for

inflammation. However, there are the following crucial differ-

ences between them. First, mcrit is for the onset of acute (neu-

trophil) inflammation as a response to internal dose (AM load)

of RCS, while T is for the onset of chronic inflammation as a

response to any stimulus that increases the level of inflamma-

tion. Second, although mcrit is a threshold for dose–dependent

parameter values, it does not separate the basins of attraction

for 2 different stable equilibria. No matter how detailed, com-

plex, and well-validated for goodness-of-fit in describing

experimental time course data it may be, any PBPK model in

which parameter values depend only on RCS loads and inhaled

RCS is eventually cleared implies that, after cessation of expo-

sure, all parameters will eventually return to their initial levels.

This contrasts with the bistability in Figures 1 and 2, where

crossing threshold T implies that the system will move toward

the new pathological equilibrium E and will never return to its

initial (homeostatic) equilibrium, even if exposure ceases.

Empirically,

Human epidemiologic studies have found that silicosis may

develop or progress even after occupational exposure has

ended, suggesting that there is a threshold lung burden above

which silica-induced pulmonary disease progresses without fur-

ther exposure, and similar thresholds have been found for

chronic inflammation and fibrosis in RCS-exposed rats at expo-

sure concentrations and durations that do not cause lung

overload.14,47

Thus, bistability appears to be an important feature of real-

world exposure-response data for RCS. The PBPK model in

Table 1 does not allow for bistability, so its modeling of inflam-

mation after the critical threshold mcrit that has been reached

must be extended, for example, in the direction of equation (6),

to better describe results of stop-exposure experiments and the

continued progression of inflammation-mediated diseases after

exposure ends.

The PBPK model in Table 1 was developed before the roles

of the NLRP3 inflammasome and the importance of self-

sustaining inflammation and bistability were well understood.

Its focus on the load of RCS crystals in AMs (X2) as the key

driver for an inflammation threshold was an important and

useful contribution, although in hindsight, it is probably not

phagocytosis (or attempted phagocytosis) of RCS crystals by

AMs per se but rather activation of NLRP3 inflammasomes in

AMs in response to RCS crystals that is the rate-limiting step

for the onset of RCS-induced NLRP3 inflammasome-mediated

inflammation.57 Despite their limitations for describing the

time course of acute and chronic inflammation (below T and

above T, respectively) after inflammation has been initiated,

PBPK models such as the one in Table 1 are highly useful for

relating concentrations of RCS in inhaled air to time courses of

RCS loads in various compartments before inflammation

begins and for predicting when and whether these loads reach

specified levels such as mcrit.

Once acute inflammation has been initiated, what happens

next? The most usual outcome is that the acute, neutrophil-

dominated inflammation runs its course and then resolves itself

via a number of well-characterized mechanisms involving

apoptosis and efferocytosis.58 Porter et al47 expressed concern

that “relatively low silica exposures may pose a serious health

risk because silica-induced disease, once initiated even at low

threshold lung burdens, can progress even in the absence of

further exposure” but noted that “However, the mechanism(s)

responsible for the progression of silica-induced pulmonary

disease, despite decreasing silica lung burden [after exposure

ceases], remains to be established.” Figure 1 suggests a more

reassuring answer, assuming that the mechanism of self-

sustaining disease progression involves activation and propa-

gation of ASCs and NLRP3 inflammasomes among cells

(especially, AMs), as well as silica particle-induced LMP and

pyroptosis (or necrosis) of macrophages. A sustained constant

internal dose at a level high enough to induce inflammation

(represented by c > 0 in equation (6)) shifts the S-shaped curve

in Figure 1 upward (by an amount c/d). This, in turn, shifts

rightward the left-most intersection between the 2 curves in

Figure 1, which is at the origin when c ¼ 0, creating a locally

stable positive equilibrium level of inflammation. Because this

is a stable equilibrium, nothing else happens as long as internal

dose is not further increased: The new, low-level inflammation

persists as long as internal dose continues to create local

inflammation (eg, by RCS particles interacting with AMs and

causing them to undergo inflammation and pyroptosis). Dis-

continuing exposure (so that c returns to 0) will cause the

inflammation to return to 0. Only if exposure is increased and

sustained so that inflammation exceeds threshold T will the

system move into the basin of attraction for chronic inflamma-

tion. In short, because the left-most (homeostatic) equilibrium

in Figure 1 is locally stable, inflammation will not sponta-

neously progress when exposure ceases, but will subside back

down to 0. Self-sustaining inflammation and progression of

inflammation-mediated diseases is only triggered by exposures

that lead to inflammation greater than the threshold T. Low

exposure concentrations of RCS (eg, below about 0.13 mg/

m3 in Figure 4) do not even trigger acute inflammation, much

less chronic inflammation, and thus, according to the model in

Figure 1, they cannot initiate inflammation-mediated diseases

that will then progress even after exposure ceases.

Sensitivity to Interindividual Variability and
Physical and Chemical Properties of RCS

The following qualitative modeling conclusions are robust to

scientific and modeling uncertainties and interindividual varia-

bility, in the sense that they do not depend on the specific

parameter values or details of the models used:
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1. Prolonged exposure to a relatively low constant concen-

tration of RCS leads to a steady-state level in each

PBPK compartment that is approximately proportional

to the inhaled concentration of RCS (eg, the steady-

state burden of RCS in AMs, in mg, is about 1115.1

times the concentration of RCS in inhaled air in mg/

m3). This direct proportionality is a consequence of the

fact that internal pools of RCS increase until the amount

cleared per unit time just balances the amount added per

unit time from further inhalation of RCS. Hence, it

holds independent of the details of the PBPK model

used (eg, the number of compartments, how they are

connected, and the fractional flow rate parameters gov-

erning rates of flow among them), although of course

the specific numerical value of the constant of propor-

tionality is sensitive to these details. This part of the

model satisfies LNT assumptions.

2. As a corollary, only exposure concentrations in excess

of a certain threshold, maintained for at least a certain

minimum duration, can cause the size of a given pool to

reach or exceed a specified threshold size (eg, in Figure

4, only exposure concentrations greater than about 0.13

mg/m3 cause X2 to eventually exceed mcrit, triggering

neutrophil inflammation).

Because these properties do not depend on details of the

models used, interindividual variability and uncertainty in

parameter values and variations in physicochemical details of

the RCS particles to which individuals are exposed do not

change the conclusion that thresholds exist. However, such

variations can alter the numerical values of the thresholds for

different individuals and compositions of RCS. It is worthwhile

to consider the plausible extent of resulting variability in

threshold values.

Many studies have established that toxicity of specific

quartz dusts is most strongly correlated with properties that

affect the surface area (rather than the mass or volume) of the

particles interacting with AMs and other lung cells. The spe-

cific quartz dust assumed in Table 2 is DQ12. Other quartz

dusts vary widely in their potencies for eliciting various inflam-

matory responses and triggering LMP and activation of the

NLRP3 inflammasome in AMs based on factors such as poly-

morphic type; freshly fractured versus aged surfaces; particle

size, shape, and surface area; and the presence of iron or other

substances (Clouter et al., 2001).19,61-66 For example, Clouter

et al compared inflammatory responses in rats exposed to

workplace samples of RCS to rats exposed to DQ12 and

reported that

The workplace samples did not cause inflammation at any

dose or time point [but] DQ12 quartz caused marked inflam-

matory responses, as measured by an increased number of

neutrophils in the lungs of instilled animals for both time

points and doses.

Similarly, experiments that identified the cytokine TNF-a as an

inflammation marker that is especially sensitive to differences

in RCS physicochemical properties concluded that

Table 2. TSCE Model Equations, Functions, and Parameter Values for RCS-induced Lung Cancer.

Flows among compartments:
� d(Normal)/dt ¼ 0 ¼ �a1 � Normal þ replacement a1 ¼ 1.4 � 10�7

� replacement ¼ a1 � Normal
� d(Initiated)/dt ¼ a1 � Normal þ(g � a2) � Initiated g ¼ 0.075 þ (1 þ (1 � exp(�0.373E)))
� d(Malignant)/dt ¼ a2 � Initiated a2 ¼ 1.4 � 10�7

� h(t) ¼ age-specific hazard function for lung cancer � expected number of new malignant cells formed per year ¼ a2 � Initiated.
(McCarthy et al assume a 5-year lag between formation of a malignant cell and mortality; we ignore this latency period, following Zeka
et al59 for RCS-specific lung cancers.)

Interpretations of model parameters and variables
� a1 ¼ fractional rate for first mutation (“initiation”), in units of expected fraction of normal cells initiated per year. The number of normal

stem cells at risk of mutation is assumed to be Normal¼ 1E7 for purposes of estimating a1. (Only the product a1�Normal affects model
predictions.) The value a1 ¼ 1.4 � 10�7 is taken from McCarthy et al60 Table 1.

� G ¼ net proliferation rate of initiated (ie, premalignant) cells ¼ clonal expansion rate for initiated cells, in units of expected new initiated
cells per year per initiated cell. The 0-exposure baseline value g ¼ 0.075 is taken from McCarthy et al60 Table 1. For RCS-exposed
workers in the diatomaceous earth mining and processing industry, Zeka et al59 estimate that RCS exposure increase g by a factor of 1þ
(1 � exp(�0.373E)), where E ¼ RCS concentration, if RCS acts as a promoter. This exposure-dependent multiplier ranges from 1 when
E ¼ 0 to 2 as E becomes large.

� a2 ¼ fractional rate for second mutation (“progression”), in units of expected fraction of initiated cells that become malignant per year.
The value a1 ¼ 1.4 � 10-7 is taken from McCarthy et al60 Table 1.

� h(t) is approximately the probability per year of a malignant cell being formed (assuming negligible latency period, as in Zeka et al59), given
that none has been formed so far. When this number is small, it is well approximated by the expected number of new malignant cells
formed per year.

� P(t) ¼ 1 � exp(�
Z t

0

hðsÞds) ¼ 1 � exp(�Malignant(t)) ¼ probability of lung cancer by time t

Abbreviations: RCS, respirable crystalline silica; TSCE, 2-stage clonal expansion.
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Apart from quartz samples with an activity close to that of

DQ12, one also finds examples with a very low activi-

ty. . . . Threshold effects in the range of 15 to � 120 microg can

be demonstrated” for the relatively sensitive TNF-a responses

to different quartz dusts in in vitro tests.19

Thus, among RCS dusts with sufficient potency to activate

an acute inflammatory response, an approximate 8-fold range

(120/15 ¼ 8) for the acute inflammation threshold mcrit based

on variability in RCS properties may be plausible, with the

threshold for DQ12 being in the upper part of this range. Reci-

procally, the minimum RCS concentration needed to elicit an

acute inflammatory response might also have an approximately

an 8-fold range among samples capable of causing inflamma-

tion. A dust with one-eighth of the inflammatory potency of

DQ12 would imply an RCS concentration threshold for trigger-

ing acute inflammation of just over 1 mg/m3 (¼ 8 � 0.13 mg/

m3) for the PBPK model in Table 1.

Even for identical exposures to the same quartz dust, differ-

ent individuals can form different burdens of RCS in AMs,

reflecting differences in their individual PBPK or biochemical

parameter values. This widens the range of RCS concentration

thresholds that might trigger acute inflammation. Based on a

Bayesian uncertainty and variability analysis that compared

respirable dust loads found in lungs of autopsied coal miners

in the United States and the United Kingdom to amounts pre-

dicted using a 3-compartment PBPK model similar to the one

in Table 1, Sweeney et al67 concluded that

On average, the model predictions were within a factor of just

less than 2 of the experimentally measured amounts of dust in

lungs and lymph nodes. Almost all of the predictions for [indi-

vidual] miners were within 10-fold of the measured values.

This analysis ignored exposure estimation errors and uncer-

tainties by treating individual exposure concentration estimates

as if they were known to be accurate measurements of true

exposure concentrations. The authors also note that actual

exposure concentrations might be higher than the estimated

concentrations. Thus, unmodeled errors in exposure concentra-

tion estimates contribute an unquantified amount to the differ-

ences between predicted and measured values for individual

miners. Even with these uncertainties and omissions, it appears

that interindividual variability usually contributes no more than

1 order of magnitude difference between PBPK model-

predicted and actual values for lung burdens. The same may

be plausible for RCS in AMs in the RCS PBPK model in Table

1.

Mamuya et al68 quantified exposure estimation errors for

respirable dust and quartz dust (RCS) for individual workers

in a coal mine by comparing the exposure estimates based on

job teams to actual measurements based on personal dust sam-

pling. They found that

[R]atios of the 97.5th and 2.5th percentiles of the between-

worker distribution of respirable dust exposure were

relatively low, varying between 1.0 and 22.5 in the 8 job

teams, while the analogous within-worker distribution varied

between 2.2 and 3902.

For both respirable dust and quartz dust (RCS) specifically,

10% of the workers had actual cumulative exposures more than

15 times higher than the estimated median cumulative expo-

sures. Thus, it appears that most or all of the apparent inter-

individual variability in RCS levels reported by Sweeney et al

might be explained by unmodeled variability in individual

cumulative exposures around their estimated values. Compar-

ing averaged individual values to model predictions can reduce

the effects of this unmodeled estimation error in individual

exposures. The finding that “On average, the model predictions

were within a factor of just less than 2 of the experimentally

measured amounts of dust in lungs”67 then suggests that a

factor of about 2 may account for most interindividual varia-

bility in the PBPK model converting concentrations in air to

accumulation of silica in lungs (or, perhaps, in AMs). If so, then

since the base model in Table 1 predicts a nominal steady-state

AM RCS load in mg equal to about 1115 times the inhaled

concentration of RCS in mg/m3, different individuals might

have loads from about 1115/2 ¼ 557 to 1115.1 � 2 ¼ 2230

times the air concentration of RCS.

Inflammation-Mediated Promotion of Lung
Cancer in a TSCE Model

It has recently become well understood that chronic inflam-

mation plays an essential role in promoting RCS-induced lung

cancer14,69 and other inflammation-mediated exposure-

related lung cancers, in part by promoting cell proliferation

and tumor formation.70,71 However, to our knowledge, this

qualitative understanding of the role of chronic inflammation

has not yet been incorporated into quantitative mathematical

models of carcinogenesis such as the TSCE model (Vineis

et al71, Zeka et al59 for silica- and asbestos-associated lung

cancer72 and for joint carcinogenicity of radon and silica).

The purpose of this section is to develop a TSCE model for

RCS-induced lung cancers that incorporates the promoting

role of chronic inflammation.

Figure 5 shows the structure of a TSCE model for carcino-

genesis using the same systems dynamics graphical notation as

for the PBPK model in Figure 3. Table 2 lists the corresponding

system of ODEs, which are determined directly from the dia-

gram. Parameter values are drawn from the literature, as fol-

lows: a1 ¼ a2 ¼ 1.4E�7 is taken from McCarthy et al.60 Table

1 for lung cancer initiation and promotion rates, respectively, in

nonsmokers. g ¼ g0(1 þ (1 � exp(�0.373E))) is the estimated

functional dependency between exposure E and net prolifera-

tion rate g for initiated cells specified for RCS and lung cancer

by Zeka et al59 under the assumption that RCS exposure acts

only as a promoter, increasing g but not the other parameters.

Here, g0 is the baseline (0-exposure) net proliferation rate

for initiated cells, estimated as g0 ¼ 0.075 by McCarthy et al

Table 1.
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The TSCE models, also called MVK (Moolgavkar-Venzon-

Knudson) models after the researchers who pioneered them,

have been extensively developed and well described in many

existing sources (eg,59,60), along with careful discussions of

how well their deterministic equations approximate the under-

lying stochastic processes. For our purposes, their most impor-

tant features are that they provide excellent fits to many data

sets, as illustrated in Figure 6 for the American Cancer Society

CPS II data set for lung cancer hazard functions for nonsmok-

ing men and women; and they can be used to predict the effects

on lung cancer of exposures with different modes of action,

such as increasing the first mutation rate (often called

“initiator” carcinogens in the older literature, especially for

skin cancer), increasing the net proliferation rate of initiated

cells, for example, by increasing their division rates or slowing

their apoptosis rates (“promoter” carcinogens), or increasing

the second mutation rate (“progressor” carcinogens).

Of course, some carcinogens can act via multiple modes of

action, represented by making 2 or more of the TSCE rate

parameters a1, a2, and g functions of exposure. However, a

recent review of mechanistic information for RCS-induced

genotoxicity suggests that a much higher dose of RCS is

required to reach a threshold for genotoxic effects than to

reach a threshold for persistent inflammation in the rat lung,

by a factor of 10- to 20-fold (2-4 mg vs 0.2 mg), and that

carcinogenic effects of inhaled RCS are driven by inflamma-

tion,14 consistent with earlier findings.69 We therefore use the

TSCE model in Table 2, in which exposure increases the

proliferation of initiated cells by increasing the net prolifera-

tion rate, g, but has no significant direct effect on the mutation

rates a1 or a2.

Lung cancer typically develops on a timescale of decades.

On this timescale, exposure affects lung cancer risk primarily

by inducing chronic inflammation of the lung, which then

increases 1 or more parameters in the TSCE model. From this

perspective, exposure-related increases depend mainly on (a)

when chronic inflammation begins and (b) how much it

increases age-specific hazard functions. We propose that the

relation between exposure and risk on the timescale of decades

can be usefully approximated as a jump in TSCE model para-

meters from their baseline levels to new, higher levels follow-

ing chronic inflammation. This contrasts with the usual

Normal cells Initiated cells Malignant cellsinitiation progression

promotiona1: initiation rate

a2: progression rate

g: net proliferation 
rate for initiated cellsE: exposure concentration

P: Probability of tumor x 1000

replacement

h: hazard rate x 100000

Figure 5. Structure of a 2-stage clonal expansion (TSCE) model of carcinogenesis.59,60

Figure 6. Comparison of observed data (points) and TSCE model
predictions of age-specific hazard functions (top curve for men, bot-
tom curve for women) in the ACS CPS I data set for nonsmokers.
(“Knoke” is an additional, non-TSCE, model.) TSCE indicates 2-stage
clonal expansion; ACS, American Cancer Society. Source: Repro-
duced from Figure 2 of McCarthy et al60).
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modeling assumption that risk increases smoothly with expo-

sure as in the TSCE model in Table 2.59 However, the follow-

ing considerations suggest that a discontinuous jump may be

more realistic than continuous dependence of risk on exposure.

The underlying epidemiological data,73 shown in Figure 7, do

not indicate that lung cancer risk is increased by exposure

levels below the highest category (�5 mg/m3-years); to the

contrary, they appear more consistent with a U-shaped (hor-

metic) relationship. As stated by Zeka et al,59 “excess mortality

based on 77 lung cancer deaths was found in association with

cumulative crystalline silica equal or greater than 5 mg/m3-

years (RR¼ 2.11, 95% CI 1.07 to 4.11 . . . )”. (Median duration

of employment was 5.54 years in this cohort, and mean cumu-

lative exposure to RCS was 2.16 mg/m3-years, suggesting

RCS exposure concentrations on the order of 2.16/5.54 �
0.4 mg/m3). Even for the highest cumulative exposure cate-

gory, the increase in lung cancer risk is barely significant

(lower 95% confidence limit just above the no-effect line

relative risk [RR] ¼ 1), without adjustment for multiple test-

ing. On the other hand, the TSCE model with continuous

dependence of model parameter g on cumulative exposure

to RCS substantially overpredicts observed RRs at high expo-

sure concentrations. Using the model in Table 2, for example,

the RR of lung cancer compared to background increases

smoothly from 1 (no effect) to more than 7 as exposure con-

centration E increases from 0 to 2 mg/m3. But real-world RRs

seldom exceed 2 to 3 and are commonly less than 2 even for

the highest exposure categories. A recent meta-analysis of

ECS-lung cancer associations found that

workers in the mining industry had the highest risk of lung

cancer with a pooled SMR [standardized mortality ratio] of

1.48 (95% CI 1.18–1.86) . . . . The positive association between

silica and lung cancer became weaker with increasing quality of

the included studies, from 2.56 (95% CI 1.57–4.19) among

SMR studies with an NOS [Newcastle-Ottawa scale for study

quality] score of 1–3 to 1.24 (95% CI 1.01–1.52) in those with

an NOS score of 7–9.74

Even emphysema, corresponding to severe and prolonged

inflammation of the lung, has been estimated to increase risk of

lung cancer by less than 2-fold.75 Thus, the assumption that g is

a smoothly increasing function of RCS concentration appears

to overstate RRs, both at low exposures where there is no clear

evidence of increased risk in the underlying data (Figure 7) and

at high exposures where the assumption implies RRs much

greater than those observed in numerous epidemiological stud-

ies of RCS and lung cancer.

If it is assumed instead that g increases from its base value of

0.075 to a somewhat higher value such as 0.09 when and if

occupational exposure triggers chronic inflammation, and then

remains at this increased level (corresponding to the stable

right-most equilibrium, E, in Figure 1), then these disagree-

ments with data disappear. No excess risk occurs at exposure

concentrations too low to trigger inflammation, but RRs remain

in the observed range even for high-exposure concentrations.

Figure 8 illustrates the increase in age-specific risk (hazard

rate) of lung cancer mortality for workers with and without

occupational exposure that induces chronic inflammation of

their lungs at age 50, assuming that the effect of the inflamma-

tion is to increase g by 20%, from 0.075 to 0.09. (In Figure 8,

ages are shifted leftward by 5 years compared to those in Figure

6 because, following Zeka et al,59 we model the lag [latency]

period between creation of a malignant cell and observed lung

cancer as negligible. Assuming a positive lag before lung can-

cer mortality would shift the age axis rightward by the amount

of the lag, which is 5 years in Figure 6.) Figure 9 repeats this

exercise for ages at the onset of chronic inflammation ranging

from 30 to 80 years in 5-year increments. The corresponding

RRs of lung cancer mortality for exposed workers range from

1.00 (no excess risk) if inflammation is avoided to 1.6 if it

begins at age 30. This range is consistent with observed RRs

in populations occupationally exposed to RCS.74 Thus, the

proposed inflammation-mediated TSCE (I-TSCE) model with

the background promotion proliferation rate g being increased

by about 20% following the onset of chronic inflammation, and

no other effects of RCS exposure on lung cancer, appears to

provide a satisfactory fit to epidemiological data, showing no

clear increase in risk for less-exposed workers and very limited

increases in RRs even in the highest exposure categories. Of

course, transient inflammation might also increase risk while it

lasts, if it increases the proliferation rate g for initiated cells;

data permitting, a refined analysis could model such transient

increases in g. However, on a timescale of decades, simply

approximating the effect of exposure on risk as a one-time

increase in the value of g when chronic inflammation begins,
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Figure 7. Relative risk (RR) of lung cancer (middle curve) for different
levels of cumulative RCS exposure, with estimated upper and lower
95% confidence limits (top and bottom curves). The data points shown
use the midpoint for each of the first 4 cumulative exposure interval
(<0.5, 0.5-1.1, 1.1-2.1, 2.1-5 mg/m3) considered by Checkoway et al.73

By repeating the pattern of doubling the previous midpoint, 7 mg/m3 is
used to represent the highest cumulative exposure interval (>5 mg/
m3). RCS indicates respirable crystalline silica. Source: Data from
Table 6 of Checkoway et al.73
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ignoring the smaller contributions from transient inflamma-

tions, appears adequate for explaining the main qualitative and

quantitative features of the data examined.

Discussion and Conclusions: Implications for
RCS Dose–Response Modeling

The inflammation model (Figures 1 and 2), PBPK model (Fig-

ures 3 and 4), and inflammation-based lung cancer model (I-

TSCE model; Figures 5, 6, 8, and 9) have the following strong

implications for exposure modeling and dose–response models.

First, cumulative exposure (in units such as mg/m3-years) is not

an appropriate exposure metric, despite its widespread use in

practice (eg,59,73). One reason is that it does not discriminate

between many years of exposure to a concentration below the

inflammation threshold (eg, at 0.75� T in Figure 1) and half as

many year of exposure to twice the concentration, which may

be well above the threshold (eg, at 1.5 � T in Figure 1). A

second reason is that, once chronic inflammation has been

initiated, continued exposure plays no further role, at least in

the simple I-TSCE model we have described. This modeling

assumption may be too extreme for substances that exert toxic

or immunosuppressive effects that modify the course and

effects of inflammation. But the general point remains that

exposure contributes to cancer risk differently before and after

onset of inflammation. Standard exposure metrics such as

cumulative exposure do not take this into account. Doing so

raises challenges for statistical inference, since when and

whether chronic inflammation begins for each individual is not

typically recorded in industrial hygiene data sets. Thus, the
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Figure 8. Age-specific hazard rates for lung cancer mortality with (upper curve) and without (lower curve) onset of chronic inflammation at age
50, assuming that the effect of inflammation on cancer risk is to increase g from 0.075 to 0.09.
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times at which I-TSCE model parameters change are latent

(unobserved) variables. For practical risk analysis, however,

simple sensitivity analyses and bounds on risks, similar to Fig-

ure 9, can help to quantify plausible ranges of exposure effect

sizes on risks.

Second, dose–response thresholds for inflammatory

changes at the micro level of individual cells and organelles

imply dose–response thresholds for inflammation in cell popu-

lations and tissues. We have reviewed how the existence of

dose–response thresholds for AM inflammatory responses to

RCS and other NLRP3 inflammasome-activating substances at

the subcellular level is now firmly established on biological

grounds, for example, from ultrasensitive switching in signal-

ing via NF-kB and MAPK pathways to the nucleus to secrete

NLRP3 protein filaments into the cytosol; switch-like coopera-

tive polymerization of ASC and cooperative oligomerization in

assembly of the NLRP3 inflammasome once concentrations in

the cytosol exceed critical threshold levels; LMP and lysosome

membrane rupture and release of cathepsins into the cytosol;

receipt of signal 2 to activate the NLRP3 inflammasome; and

pyroptosis and release of ASCs and activated NLRP3 inflam-

masomes into extracellular spaces, where they are taken up by,

and activate inflammation in, nearby cells. We argued that such

intracellular threshold mechanisms, which have been increas-

ingly well elucidated by recent biochemical and biophysical

research, create (probably heterogeneous) thresholds for acti-

vating AMs. These cell-level thresholds, together with trans-

mission of inflammatory signals and elements (ASCs and

inflammasomes) to neighboring cells, imply a corresponding

exposure concentration threshold for triggering spread of self-

sustaining chronic inflammation in cell populations or tissues

(specifically, the administered concentration in inhaled air that

produces a steady-state internal dose of RCS particles interact-

ing with AMs in Figure 3 corresponding to inflammation level

T in Figure 1). These concentration thresholds for causing

chronic inflammation, in turn, imply concentration thresholds

for increasing lung cancer risk in the I-TSCE model. Thus, the

existence of dose–response thresholds for activating NLRP3-

mediated inflammation at the intracellular level ultimately

implies dose–response thresholds for lung cancer caused by

NLRP3-activating agents such as RCS or asbestos.

Qualitatively, because the existence of thresholds in the

inflammation and PBPK models does not depend on the precise

numerical values of the various parameters involved, the fact

that PBPK parameters and RCS properties vary around their

nominal values (eg, the values shown for DQ12 quartz dust in

Table 1) does not alter the conclusion that each individual has a

threshold concentration for RCS exposures below which they

do not increase risk of chronic inflammation or inflammation-

mediated lung diseases such as fibrosis, silicosis, or lung

cancer. Interindividual variability and heterogeneity in the

inflammation, PBPK, and I-TSCE models do not smooth out

the population dose–response function to create an aggregate

population dose–response function that satisfies LNT assump-

tions. Rather, the existence of ranges of values for the steady-

state levels of RCS in AMs in Figure 3 for any given RCS

concentration in inhaled air, together with ranges of values for

the inflammation thresholds in Figure 1 and the resulting times

of onset of chronic inflammation in Figure 9, simply implies

that there is an overall range of values for the RCS exposure

concentration thresholds that increase risk of lung cancer in

different individuals, as well as a range of values for the result-

ing increase in risk (eg, from RR ¼ 1 to RR ¼ 1.6 in Figure 9).

The lower end of the RCS concentration range for increasing

risk in different individuals is a population exposure concen-

tration threshold below which population risk is not increased.

Thus, it is ultimately intracellular thresholds for priming,

assembling, and activating NLRP3 inflammasomes via signals

1 and 2 that prevent sufficiently small (or brief) exposure con-

centrations from increasing risks of inflammation and resulting

diseases in exposed populations, and hence prevent LNT-like

population dose–response relations from emerging from aggre-

gation of individual dose–response relations.

Quantitatively, past PBPK models suggest possible lower

bounds on RCS concentrations that can trigger acute (neutro-

phil-dominated) inflammation in rat lungs. These can be scaled

to estimate corresponding thresholds in humans (eg, at around

0.13 mg/m3 in Figure 3 for DQ12 quartz dust, and about 1 mg/

m3 for a dust with about one-eighth of the inflammatory

potency of DQ12). Such acute inflammation responses are part

of normal, healthy, self-resolving inflammation as a means of

responding to and clearing RCS. Corresponding thresholds for

triggering chronic (macrophage-dominated) inflammation—

the numerical value of T in Figure 1—cannot be easily derived

for humans from acute inflammation data in rats. If no clear

excess risk of lung cancer is found at cumulative exposures less

than about 5 mg/m3-years (Figure 7) among workers with a

median exposure duration of 5.54 years, then average exposure

concentrations below about 5/5.54, or about 1 mg/m3, may not

increase lung cancer risk under past exposure conditions. Such

averages do not reveal the concentrations required to cause

chronic inflammation and increased lung cancer risk, however,

since some individual RCS workers under past exposure con-

ditions might have accumulated exposures 1 or more orders of

magnitude greater than the estimated values for the job groups

to which they belong.68 If the excess risks observed among

workers come primarily from those with the highest exposure

concentrations, then the threshold RCS concentrations for

causing chronic inflammation and excess risk of lung cancer

could also be 1 or more orders of magnitude higher than cal-

culations based on estimated values suggest, for example, more

than 10 mg/m3 instead of less than 1 mg/m3. Almost all past

risk assessments for RCS have ignored such exposure estima-

tion error in fitting risk models, which can make even

exposure-response relations with clearly defined, unique

thresholds mistakenly appear to satisfy LNT assumptions.76,77

To better estimate the exposure concentrations and durations

needed for RCS to induce chronic inflammation, it will be

essential to model individual exposure uncertainty and varia-

bility in future RCS risk assessments.

For QRA, uncertainty about true exposures may dominate

other sources of uncertainty and variability in estimating the
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excess risk of lung cancer created by a given estimated expo-

sure history. An estimated average exposure concentration

such as 0.1 mg/m3 for years or decades might occasionally

produce much higher exposures for an individual worker.68 If

enough such anomalously high-exposure events happen to

occur closely enough together in time to trigger chronic inflam-

mation, then lung cancer risk may be permanently increased,

even though the threshold would never have been crossed had

the variance around the mean concentration been smaller.

Study designs and risk assessments that pair observed lung

cancer mortality rates with estimated average cumulative expo-

sure levels based on job exposure matrices or other dose recon-

struction efforts, ignoring errors and interindividual variability

around the estimated exposures (eg,73), mistakenly attribute to

the estimated average exposure concentration adverse effects

that arise from such unmodeled variability. Hence, they can

greatly overestimate the (possibly 0) risks from low concentra-

tions.76 To obtain more realistic guidance for protecting worker

health, the PBPK model in Table 1 can calculate numerically

how the distribution of daily exposure concentrations affects

the probability distribution of the time to cross an internal dose

threshold such as mcrit. The I-TSCE model (Figure 9) quantifies

the consequences for lung cancer risk of initiating chronic

inflammation at different ages. Data are not yet available to

quantify how many times greater the RCS concentration

needed to trigger chronic inflammation is than the concentra-

tion required to trigger acute inflammation, but RCS exposure

histories that avoid letting internal doses of RCS in macro-

phages cross the acute inflammation threshold mcrit will also

avoid initiating chronic inflammation.

The analysis in this article has several limitations. The mod-

eling is deliberately very simplified; as noted in several places,

detailed transients and stochastic fluctuations are ignored, and

smoothed (mean-field) approximations on relatively long time-

scales are used throughout. This keeps the data requirements

and modeling tractable, but at the cost of omitting potentially

important interindividual variability of individual risks around

the average-case values. Stochastic simulation or agent-based

models could provide much more information about such

variability than the deterministic ODE modeling and sensitivity

analyses presented here (eg, Figure 9). In addition, the pro-

posed model has not been thoroughly validated. Although it

appears to explain some aggregate epidemiological data fairly

well, and although the PBPK and TSCE submodels have been

studied and validated as providing useful descriptions of other

data sets, the integrated I-TSCE model with inflammation is, to

our knowledge, new. It has yet to be applied and validated

using diverse data sets (eg, for asbestos-induced lung cancer

and perhaps mesothelioma) in addition to RCS; thus, at this

stage, we regard it as a promising proposed approach, but in

need of further application and validation. Finally, it is possible

to model mechanisms of RCS-induced lung cancer without

modeling the NLRP3 inflammasome-mediated inflammation

mechanism emphasized here. For example, a previous model49

describes an inflammatory mode of action in which prolonged

exposure to high RCS concentrations activates overlapping

positive feedback loops involving recruitment and activation

of AMs and neutrophils, increasing levels of ROS and nitrogen

species, increased levels of proinflammatory cytokines, and

eventual increases in apoptosis and compensating proliferation

of the alveolar epithelium. That model, which has considerable

biological support, describes the sources and consequences of

chronic inflammation in terms of feedback loops among cell

populations and signals, without specifying how events within

individual cells create and propagate inflammation. The

NLRP3 inflammasome biology discussed earlier supplies these

missing details, explaining how sustained RCS exposure leads

to signaling to the AM cell nucleus, secretion of NLRP3 protein

to the cytosol, intracellular assembly and activation of the

NLRP3 inflammasome, secretion of mature IL-1b and IL-18,

upregulation of other proinflammatory cytokines, recruitment

of neutrophils and macrophages, increases in ROS, eventual

lysosome rupture, pyroptosis, and propagation of activated

NLRP3 and ASC specks between cells. Although the models

are consistent, it is not necessary to understand or model the

NLRP3-mediated events within and between cells to describe

the interdependencies and positive feedback loops among cell

populations and the chemokine and cytokine signals that they

generate. The model in this article explains why sustained high

exposures eventually lead to an inflammation “tipping point”

beyond which inflammation spontaneously spreads (Figures 1

and 2), but dose–response models that simply accept this as an

empirical fact and that do not seek to derive it from cell-level

thresholds could be.

Although this article was focused on RCS as a case study,

the NLRP3 inflammasome mediates inflammatory responses to

many other agents, from viruses and bacteria24 to radiation78 to

mineral fibers such as asbestos.22 The bistability illustrated in

Figures 1 and 2 does not depend on which particular substance

activates the NLRP3 inflammasome. Rather, it reflects the fact

that NLRP3 inflammasome assembly and activation in some

cells, followed by pyroptosis and discharge of NLRP3 inflam-

masomes and ASC specks to the intracellular environment,

makes induction of this same process in nearby cells more

likely. In this sense, NLRP3-mediated inflammation is analo-

gous to a contagious condition in a population (of cells); as in

many models for contagious processes and epidemics, a thresh-

old exists below which the contagion process moves toward a

low-prevalence equilibrium and above which it moves toward a

higher prevalence equilibrium level for the contagious condi-

tion (ie, NLRP3-mediated inflammation). This aspect of the

model may be applicable to many substances other than RCS

that act via NLRP3 inflammasome-mediated inflammation of

various tissues.

In conclusion, the existence of dose–response thresholds for

NLRP3 inflammasome-mediated diseases emphasizes the need

and opportunity to protect worker health by reducing high

exposures that can trigger chronic inflammation. This may not

affect average exposure concentrations much (or, perhaps, at

all), but it is probably essential to reduce risk of inflammation-

mediated diseases such as RCS-associated lung cancer.
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