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ABSTRACT
Increasing evidences show that unmodified extracellular vesicles (EVs) derived from various cells 
can effectively inhibit the malignant progression of different types of tumors by delivering the 
bioactive molecules. Therefore, EVs are expected to be developed as emerging anticancer drugs. 
Meanwhile, unmodified EVs as an advanced and promising nanocarrier that is frequently used in 
targeted delivery therapeutic cargos and personalized reagents for the treatment and diagnosis 
of cancer. To improve the efficacy of EV-based treatments, researchers are trying to engineering 
EVs as an emerging nanomedicine translational therapy platform through biological, physical and 
chemical approaches, which can be broaden and altered to enhance their therapeutic capability. 
EVs loaded with therapeutic components such as tumor suppressor drugs, siRNAs, proteins, 
peptides, and conjugates exhibit significantly enhanced anti-tumor effects. Moreover, the design 
and preparation of tumor-targeted modified EVs greatly enhance the specificity and effectiveness 
of tumor therapy, and these strategies are expected to become novel ideas for tumor precision 
medicine. This review will focus on reviewing the latest research progress of functionalized EVs, 
clarifying the superior biological functions and powerful therapeutic potential of EVs, for researchers 
to explore new design concepts based on EVs and build next-generation nanomedicine therapeutic 
platforms.

Abbreviations:  EVs: extracellular vesicles; MSCs: mesenchymal stem cells; DCs: dendritic cells; 
EMT: epithelial-mesenchymal transition; Exos: exosomes; MVBs: multivesicular bodies; ILVs: 
intraluminal vesicles; ESCRT: endosomal sorting complex required for transport-dependent pathway; 
GTPases: rab guanosine triphosphatases; VPS33B: vacuolar protein sorting protein 33b; TSAP6: 
p53-regulated protein tumor suppressor-activated pathway 6; KIBRA: kidney and brain expressed 
protein; SIRT1: Sirtuin1; ESCs: embryonic stem cells; hBMMSCs: human bone marrow MSCs; 
hMMSCs: human menstrual MSCs; hucMSCs: human umbilical cord MSCs; TRA2B: transformer 2β; 
ESM1: endothelial cell specific molecule 1; ADMSCs: adipose MSCs; MARCKS: myristoylated 
alanine-rich C-kinase substrate; NK cells: natural killer cells; GM-CSF: granulocyte-macrophage 
colony stimulating factor; αPD-1: anti-programmed death-1; AFP: α-fetoprotein; TAM: tumor- 
associated macrophages; FasL: fas/fas ligand; LFA-1: lymphocyte function-associated antigen; 
DNAM1: DNAX accessory molecule-1; PD-1: programmed cell death protein; TRAIL: tumor necrosis 
factor-related apoptosis-inducing ligand; OXA: oxaliplatin; PDAC: pancreatic ductal adenocarcinoma; 
ADCs: antibody-drug conjugates; EGFR: epidermal growth factor receptor; HER2: human epidermal 
growth factor receptor 2; ADCC: antibody-dependent cellular cytotoxicity; STING: stimulator of 
interferon genes; TLR2: toll-like receptor 2; CAR: chimeric antigen receptor; OMVs: outer membrane 
vesicles; Redd1: DNA damage response 1; AGAP2: ankyrin repeat and PH domain 2; TFF3: trefoil 
factor 3; CPPs: cell penetrating polypeptides; ASO: santisense oligonucleotides; Qts: quantum 
dots; GIONP: gold-iron oxide nanoparticles; MYCBP: c-MyC binding protein; hTERT: human 
telomerase reverse transcriptase; 5-FU: 5-fluorouracil; CPPO: bis [2, 4, 5-trichloro-6-(pentoxycarbonyl) 
phenyl] oxalate; Dox-EMCH: aldoxorubicin; FA: folic acid; c-Met: mesenchymal-epithelial transition 
factor; DMD: duchenne muscular dystrophy; PTEN: phosphatase and tensin homologue; circRNA: 
circular RNA; RVG: rabies virus glycoprotein; sFlt-1: soluble fms-like tyrosine kinase-1; Cur: curcumin; 
Tf: transferrin; MVs: matrix vesicles; BPQDs: BP quantum dots; NSCs: neural stem cells; FAP: 
fibroblast activation protein-α; mRNA: messenger RNA; siRNA: small interfering RNA; miRNA: 
microRNA; circRNA: circular RNA; EDC: 1-Ethyl-3-(3′-dimethylaminopropyl)carbodiimide; NHS: 
N-Hydroxysuccinimide; PTX: paclitaxel; MTX: methotrexate; DOX: doxorubicin; TPZ: tirapazamine; 
Cis: cisplatin; PTT: photothermal therapy; PDT: photodynamic therapy; ROS: reactive oxygen species

© 2022 The Author(s). Published by informa uK limited, trading as Taylor & Francis group.

CONTACT Haoyuan Jia  jyy8707@163.com; Peipei Wu  18852867995@163.com
#Manling Wu and Min Wang contributed equally to this work.

https://doi.org/10.1080/10717544.2022.2104404

This is an Open Access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE HISTORY
Received 17 May 2022
Revised 4 July 2022
Accepted 11 July 2022

KEYWORDS
Engineered EVs; cancer 
therapy; drug delivery; 
functionalization strategy; 
bioinspiration

mailto:jyy8707@163.com
mailto:18852867995@163.com
https://doi.org/10.1080/10717544.2022.2104404
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080/10717544.2022.2104404&domain=pdf&date_stamp=2022-7-30
http://www.tandfonline.com


2514 M. WU ET AL.

1.  Introduction

Cancer is one of the most significant burdens that a human 
could experience all over the world (Torre et  al., 2015). In 
particular, with the change of disease patterns and the trend 
of population aging, cancer prevention and treatment are 
facing a grim situation. During the past several decades, 
despite years of investigations, the scientists still have not 
developed effective therapies for many types of tumors. 
Currently, lacks of specificity and effectiveness remain the 
main limitations of clinical tumor therapy. Therefore, there is 
an urgent need to find new therapeutic regimens for the 
precise treatment of tumors. EVs are nanoscale to micron-sized 
membrane structure vesicles with a size ranging from 30 to 
5000 nm (Cocozza et  al., 2020), which are shed from cell 
membranes or secreted by almost all bacteria, archaea and 
eukaryotic cells in a constitutive or fine-tuning manner (van 
Niel et  al., 2018). EVs are spherical, bilayered proteolipids 
that harbor multiple biomolecules including proteins, nucleic 
acids, lipids and metabolites. The interaction between tumor 
cells and tumor microenvironment is closely related to tumor 
initiation, development, metastasis and drug resistance. As 
one of the important components of tumor microenviron-
ment, EVs play an important role in tumor relapse and drug 
resistance, angiogenesis, immune monitoring and other 
aspects. In addition, EVs are also the main content of tumor 
liquid biopsy, which can provide new insights for the diag-
nosis, treatment and prognosis of tumor.

EVs do not only play critical roles in numerous pathophys-
iological processes, but also have broad clinical application 
prospects in the diagnosis, prognosis and therapy of cancer 
(Yang et  al., 2019; Pan et  al., 2021). Currently, many studies 
have shown that EVs have a double-edged sword effect, 
which can promote and inhibit tumor under different con-
ditions. However, the pro-tumor and anti-tumor functions of 
EVs are closely related to the origin of parental cells. EVs 
released by tumor cells and cells in their microenvironment 
almost promote tumor initiation, development, metastasis, 
immune escape and drug resistance. However, numerous 
studies shown that unmodified EVs are employed as advanced 
therapeutic ingredient for treating various common and 
refractory tumor diseases, including cancer (Wiklander et  al., 
2019). For example, dendritic cells (DCs) and tumor 
cell-derived EVs can be also used as bioactive reagent to 
enhance anti-tumor immune response of the body (Tan et  al., 
2010). In addition, stem cell therapy and tumor 
bio-immunotherapy are gradually becoming an emerging 
and efficient antitumor therapy manner after surgery, radio-
therapy and chemotherapy. Recent studies demonstrated that 
mesenchymal stem cells (MSCs) derived EVs as a key com-
ponent of cell paracrine have emerged as potential thera-
peutic agents that exert their antitumor effects. Proteins, 
miRNAs, and other antitumor active molecules carried by 
MSC-EVs can inhibit growth and retard tumor progression 
by inhibiting the proliferation, migration, invasion and 
epithelial-mesenchymal transition (EMT) of tumor cells.

Unmodified EVs possess excellent biocompatibility, higher 
safety and better physiochemical stability, as well as good 
antitumor effects. However, it still has some drawback 

including low yield, insufficient targeting and circulation 
instability. Currently, researchers are trying to develop more 
efficient and convenient methods to enhance the therapeutic 
applications of EVs in cancer therapy (Zhang et  al., 2021). 
Therefore, engineered EVs are attracting wide interest of 
biomedical workers and becoming a new alternative cell-free 
strategy for cancer therapy. In this review, we generalize the 
research status of current methods for separation, identifica-
tion and functionalization of EVs and discuss the potential 
application of engineered EVs in cancer therapy.

2.  Biogenesis, release, uptake and components 
of  EVs

EVs are a general term for subsets of membrane structures, 
which are secreted by almost all bacteria, archaea and 
eukaryotic cells in a constitutive or regulated manner. The 
EVpedia (http://evpedia.info), a complete and comprehensive 
database of proteomics, transcriptomics and metabolomics 
for the systematic analyses of EVs, contains a variety of EVs 
from archaea, bacteria, and eukaryotes, including humans. 
Prokaryotes and eukaryotes release different vesicles into the 
extracellular space, these various types of secreted nanosized 
membrane vesicles with different size, density, composition 
and intracellular sources. EVs have diverse nomenclature, and 
the EVpedia provides a complete overview of vesicles nomen-
clature and classification. EVs contain many subtypes, includ-
ing enveloped virus, exosomes, ectosomes, microvesicles, 
microparticles, large oncosomes, and apoptotic bodies. The 
latest research found that exosomes have different subtypes, 
which are named small exosomes (Exo-S, 60–80 nm) and large 
exosomes (Exo-L, 90–120 nm) respectively. These exosomes 
subsets have different biophysical and molecular character-
istics. Meanwhile, the authors also discover a previously 
unknown class of nanoparticles, called exomere (30–50 nm). 
Compared with exosomes, exomere is a discrete and abnor-
mally small nanoparticle with a diameter of about 35 nm that 
exhibits different proteins, lipids, RNAs and DNAs profiles 
(Kowal et  al., 2016; Zhang et  al., 2018; Hoshino et  al., 2020). 
EVs are a highly heterogeneous population. Due to the lack 
of universal molecular markers to distinguish different types 
of EVs, the nomenclature and classification of vesicles are 
still complex and controversial. To resolve these controversies 
and further standardize the study of EVs, the ISEV publishes 
its latest guidelines and recommends using the physical and 
chemical properties to describe EVs (Thery et  al., 2018). 
According to EVs notable differences in physical properties, 
biogenesis process and functions, these vesicles are classified 
into three major categories: exosomes, microvesicles and 
apoptotic bodies (Figure 1).

EVs are secreted by almost all types of cells in pathophys-
iological conditions and are found in a variety of human 
body fluids such as blood, urine, and ascites, which can 
mediate cellular communication and reflect their cell of ori-
gin. Exosome formation is a continuous fine-tuning process, 
which are divided into the following three stages: endocy-
tosis, multivesicular bodies (MVBs) formation, fusion and 
efflux. Firstly, cells produce endocytic vesicles through 

http://evpedia.info
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lipid-mediated endocytosis, multiple endocytic vesicles fuse 
to form the early endosome. The early endosome again 
invaginate and encapsulates the intracellular material form 
the intraluminal vesicles (ILVs), and gradually evolving into 
late endosomes. Finally, MVBs directly fuse with the plasma 
membrane and release ILVs into the extracellular space 
known as exosomes. Other EVs (including apoptotic bodies, 
microvesicles, ectosomes, microparticles, and large onco-
somes) can be generated directly from the plasma membrane 
by outward membrane budding manner (Cocozza et  al., 
2020). Currently, researches show that the formation of 
microvesicles is related to the asymmetric distribution of 
phospholipids in the cell membrane bilayer (Hugel et al., 2005).

Both the endosomal sorting complex required for trans-
port (ESCRT)-dependent and independent pathways are 
responsible for the sorting of cargos into the MVBs and 
participate in regulating exosomes release (He et  al., 2018). 

Multiple regulatory molecules (including proteins, nucleic 
acids, and lipids) and pathway have been found to critically 
regulate exosome secretion, such as the Rab guanosine tri-
phosphatases (GTPases) (Colombo et  al., 2014), RAL GTPases 
(Hyenne et  al., 2015), vacuolar protein sorting protein 33 b 
(VPS33B) (Gu et  al., 2016), heparinase (Thompson et  al., 
2013), lncRNA HOTAIR (Yang et al., 2019), ceramides (Trajkovic 
et  al., 2008), phospholipase D and phosphatidic acid, as well 
as sphingolipids (Egea-Jimenez & Zimmermann, 2018; 
Verderio et  al., 2018), oncogenes and tumor suppressors (Yu 
et  al. ,  2005),  and p53-regulated protein tumor 
suppressor-activated pathway 6 (TSAP6) (Lespagnol et  al., 
2008). Recently, some new regulatory moleculessuch as kid-
ney and brain expressed protein (KIBRA) (Song et  al., 2019), 
ISGylation of TSG101 (Villarroya-Beltri et  al., 2016), mTORC1 
(Zou et  al., 2019), sirtuin1 (SIRT1) (Latifkar et  al., 2019; Li 
et  al., 2019) are revealed. In addition, intracellular and 

Figure 1. The biogenesis, release and uptake of evs and their interactions with target cells. The biosynthesis and regulatory mechanisms of different types of 
secreted evs. Three major mechanisms have been suggested to mediate the uptake of evs, including cell membrane fusion, receptor-ligand interactions and 
endocytosis.
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intercellular microenvironmental changes also have import-
ant effects on exosome secretion, such as microenvironmen-
tal pH (Parolini et  al., 2009), intracellular Ca2+ (Savina et  al., 
2003), glucose deprivation and lack of oxygen (Mulcahy 
et  al., 2014). The donor cells derived EVs transfer genetic 
cargos to the receptor cells through the following three 
main ways: (1) endocytosis; (2) receptor-ligand interaction; 
(3) direct fusion with the plasma membrane (Figure 1) 
(Kalluri & LeBleu, 2020). The type of exosomes and the type 
of recipient cells also influence the target cells uptake exo-
somal cargos. EVs contain diverse subsets of proteins, nucleic 
acids, lipids, metabolites (Figure 2).

3.  Unmodified EVs for cancer therapy

3.1.  Stem cell-derived EVs

MSCs are a type of undifferentiated adult stem cells that 
derived from the mesoderm, they possess high self-renewal 
and multidirectional differentiation potential, and can dif-
ferentiate into multiple mesenchymal tissues (Hass et  al., 
2011). MSCs are abundant in almost all human tissues and 
organs, such as bone marrow, umbilical cord blood, placenta, 
adipose tissues (Heo et  al., 2016), umbilical cord (Beeravolu 
et  al., 2017), dental pulp (Liu et  al., 2018), menstrual blood 
(Xiang et  al., 2017; Rosenberger et  al., 2019), urine (Bento 

Figure 2. The overall compisition of evs. The main components of evs include nucleic acids, proteins, lipids and metabolites. Main classification of nucleic 
acids and proteins components enriched in evs that mediates the intercellular communication between different cell types in the body, thus affecting the 
normal and pathological stateand their potential biological functions.
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et  al., 2020), chorionic and amniotic membrane (Chen et  al., 
2019). Currently, the mounting evidence revealed that MSCs 
are crucial components of the tumor microenvironment and 
can inhibit tumor progression in different types of tumors 
(Ridge et  al., 2017; Weng et  al., 2021). Several studies 
revealed that EVs derived from native embryonic stem cells 
(ESCs) (Zhu et  al., 2019) and other MSCs (Zhao et  al., 2020) 
can suppress various tumors progression via delivering 
tumor-suppressive miRNAs into cancer cells, thereby possibly 
enabling a clinically relevant EV-based theraoeutic strategy 
for complex refractory tumor diseases (Table 1 and Figure 
3). Human bone marrow MSCs (hBMMSCs) and human men-
strual MSCs (hMMSCs) derived EVs can inhibit different tumor 
malignant progression (Bruno et  al., 2013), and restrain 
angiogenesis and tumor growth of oral squamous cell car-
cinoma (Rosenberger et  al., 2019), respectively. In addition, 
human umbilical cord MSCs (hucMSCs) also enhanced the 
systemic efficacy of radiotherapy-induced cell death in tumor 
and metastatic tumor foci (de Araujo Farias et  al., 2018). 
However, the specific mechanism of these MSCs anti-tumor 
effect is not clear.

Some studies demonstrated that miRNAs are enriched in 
MSCs derived EVs are responsible for their anti-tumor effects. 
For example, BMMSC-EVs containing miR-206 inhibits osteo-
sarcoma progression by targeting transformer 2β (TRA2B) 
(Zhang et  al., 2020), and containing miR-9-3p inhibits the 
growth and metastasis of bladder cancer by targeting ESM1 
(Endothelial cell specific molecule 1) gene expression (Cai 
et  al., 2019). Moreover, miR-100 and miR-16 shuttled by 

BMMSC-EVs suppressed breast cancer cells angiogenesis in 
vitro through modulating the mTOR/HIF-1α/VEGF signaling 
axis (Pakravan et  al., 2017), suppressed angiogenesis by 
down-regulating VEGF expression in breast cancer cells (Lee 
et  al., 2013), respectively. Again, BMMSC-EVs containing 
miR-23b promoted dormancy in metastatic breast cancer 
cells by targeting MARCKS (Myristoylated alanine-rich C-kinase 
substrate) (Ono et  al., 2014). Adipose MSCs (ADMSCs) derived 
EVs containing miR-145 increased the expression of Caspase 
3/7 and reduced anti-apoptotic protein Bcl-xL expression in 
prostate cancer cells (Takahara et  al., 2016). HucMSC-EVs 
enhanced the sensitivity of human leukemia cells K562 to 
imatinib-induced apoptosis via activation of caspase signaling 
pathway (Liu et  al., 2018). Unlike normal MSC-derived EVs, 
the role of apoptotic MSC-derived EVs in tumors is unclear. 
Recently, Wang et al. demonstrated that staurosporine-induced 
apoptotic murine BMMSCs derived EVs (apoEVs) induce mul-
tiple myeloma (MM) cell apoptosis and inhibit MM cell 
growth by activating Fas/FasL mediated apoptotic signaling 
pathways (Wang et  al., 2021). Yaddanapudi et  al. reported 
that GM-CSF expressing human ESCs release EVs is an effec-
tive prophylactic vaccine for cancer prevention (Yaddanapudi 
et  al., 2019). However, the application of EVs derived from 
MSCs in tumors is still controversial. Studies have also shown 
that MSC-derived EVs can promote the malignant progression 
of tumors, which may be closely related to the state of the 
stem cells themselves, the environment in which they are 
located, and the isolation process of EVs (Zhu et  al., 2012; 
Roccaro et  al., 2013; Figueroa et  al., 2017; Zhao et  al., 2020).

Table 1. The application of stem cells derived unmodified and functionalized evs in cancer therapy.

evs type evs sources guest molecules Target gene Applications ref

sevs MenSCs, hucMSCs — vegF inhibit angiogenesis and tumor growth of OSCC (rosenberger et  al., 2019)
Mvs BMMSCs — — inhibit tumor growth (Bruno et  al., 2013)
sevs BMMSCs mir-206 TrA2B inhibit osteosarcoma progression (Zhang et  al., 2020)
sevs mBMMSCs mirNA-9-3p eSM1 inhibit bladder cancer growth (Cai et  al., 2019)
sevs hBMMSCs mir-100 mTOr/HiF-1α/vegF Suppress angiogenesis  in breast cancer cells (Pakravan et  al., 2017)
sevs mBMMSCs mir-16 vegF Suppress angiogenesis  in breast cancer cells (lee et  al., 2013)
sevs hBMMSCs mir-23b MArCKS Promote dormancy  in metastatic breast cancer 

cells
(Ono et  al., 2014)

sevs hucMSCs — Activated caspase pathway enhance imatinib-induced apoptosis in 
leukemia cells

(liu et  al., 2018)

Apo evs mBMMSCs — — Ameliorate multiple myeloma by activating  
Fas/Fasl pathway

(Wang et  al., 2021)

evs gM-CSF-heSCs — — A preventive vaccine against cancer (yaddanapudi et  al., 2019)
sevs   BMMSCs mir-15a — inhibit the growth of MM cells (roccaro et  al., 2013)
sevs gA-hMSCs mir-1587 NCOr1 enhance the aggressiveness of glioblastoma (Figueroa et  al., 2017)
sevs hBMMSCs mir-199a AgAP2 inhibit glioma progression (yu et  al., 2019)
sevs hADMSCs antagomir-222/223 — Promote early dormancy of breast cancer (Bliss et  al., 2016)
sevs hADMSCs mir-122 CCNg1, ADAM10, igF1r increase chemosensitivity of hepatocellular 

carcinoma
(lou et  al., 2015)

sevs hucMSCs mir-145-5p Smad3 inhibit PDAC progression (Ding et  al., 2019)
sevs hBMMSCs mir-143 TFF3 inhibit prostate cancer growth (Che et  al., 2019)
sevs MSCs mir-124, mir-145 SCP-1, Sox2 inhibit gliom cells growth (lee et  al., 2013)
sevs hBMMSCs mir-143 — inhibit osteosarcoma cells migration (Shimbo et  al., 2014)
sevs hucMSCs mir-375 eNAH retard eSCC progression (He et  al., 2020)
sevs hBMMSCs PTX — For breast cancer chemotherapy (Kalimuthu et  al., 2018)
sevs MSCs sirNA PlK-1 induced cell apoptosis and necrosis (greco et  al., 2016)
sevs MSCs mir-146b egFr inhibit glioma xenograft growth (Katakowski et  al., 2013)
sevs hBMMSCs mirNA-1231 — inhibit the activity of pancreatic cancer (Shang et  al., 2019)
sevs ADMSCs mir-145 — Suppress prostate cancer progression (Takahara et  al., 2016)
sevs BMMSCs mir-126-3p ADAM9 inhibit pancreatic cancer development (Wu et  al., 2019)
sevs mBMMSCs mir-133b eZH2 Suppress glioma progression (Xu et  al., 2019)
sevs hBMMSCs anti-mir-9 P-gp reverse chemoresistance (Munoz et  al., 2013)
sevs hMSCs SPiONs — Target tumor cell ablation (Altanerova et  al., 2017)
sevs hBMMSCs Circ0030167 — inhibit the malignant progression of pancreatic 

cancer
(yao et  al., 2021)
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3.2.  Tumor cell-derived EVs

Tumor bio-immunotherapy can mobilize the immunity of 
human body, antitumor immune response. By reinfusion of 
autologous immune cells, such as DCs, T lymphocytes, natural 
killer (NK) cells, and tumor cell lysates, the immune system 
can be mobilized cells to stimulate and enhance the antitu-
mor immune response, and thus inhibit tumor growth, metas-
tasis and recurrence (Zhang et  al., 2021). Tumor bioimmunity, 
as another emerging antitumor therapy technology, has more 
extensive application prospects (Yang, 2015). Whole tumor 
cell lysates have been implemented as tumor antigens for 
cancer vaccine development, and EVs derived from tumor 
cells (T-EVs) are also facing vaccine transformation applica-
tions because they have similar functions to cells (Table 2). 
T-EVs have a double-edged sword effects in tumors. TEVs 
stimulate T cell activation (Yao et  al., 2014) and trigger its 
mediated anti-tumor immune response, thereby inhibiting 
tumor growth and metastasis (Wolfers et  al., 2001; Lee et  al., 
2012; Gu et  al., 2015; Wang et  al., 2020). However, cargos 
carried by TEVs can promote tumor occurrence, development, 
metastasis, resistance and immune escape. Therefore, the 
direct use of T-EVs for cancer treatment has huge safety risks, 

which prevents them from becoming safe cellular cancer 
vaccines. In phase I clinical trial, autologous ascites-derived 
EVs combined with granulocyte-macrophage colony stimu-
lating factor (GM-CSF) is feasible and safe immunotherapy 
for colorectal cancer treatment (Wolfers et  al., 2001). In addi-
tion, TEVs delivered immunostimulatory CpG DNA enhances 
anti-tumor immune activity (Morishita et  al., 2016). PEGylated 
tumor cell membrane derived NVs combined with 
anti-programmed death-1 (αPD-1) IgG as a new vaccine plat-
form for cancer immunotherapy (Ochyl et  al., 2018). Although 
T-EVs show beneficial anticancer immune effects, but there 
is still a need to explore more measures to avoid its potential 
clinical application risks.

3.3.  DC-derived EVs

DCs are the most powerful antigen-presenting cells. Mature 
DCs express high levels of co-stimulatory molecules, adhesion 
molecules, functional MHC peptide complexes, and other 
components that interact with immune cells. However, imma-
ture DCs expressed low levels of co-stimulators and adhesion 
factors, but had strong antigen-phagocytosis ability. 

Figure 3. MSCs derived evs for cancer therapy. The evs derived from MSCs carry a variety of bioactive molecules that play an effective anti-tumor efficacy in 
various cancer diseases. evs derived from MSCs are also ideal candidates for engineered evs.
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DC-derived EVs also express these functional molecules with 
antigen-presenting ability, and promote the potential of 
immune cell-dependent tumor rejection (Figure 4). Currently, 
phase I and II clinical trials based on DC-derived EVs have 
been conducted in advanced malignancies, demonstrating 
the feasibility and safety of this approach (Pitt et  al., 2016). 
DC-derived EVs can activate the anti-tumor activity of NK 
cells (Munich et  al., 2012) and T cells (Besse et  al., 2016) via 
TNF superfamily ligands and IFN-γ, respectively. Lu et  al. 
found that α-fetoprotein (AFP)-enriched DC-derived EVs elic-
ited strong antigen-specific antitumor immune responses and 
retarded tumor growth in ectopic, orthotopic and 
carcinogen-induced HCC mice (Lu et  al., 2017). Fluorouracil 
entrapped DC-derived EVs can significantly inhibit the pro-
liferation of colon cancer cells and induce their apoptosis, 
exerting an anti-tumor effect (Xu et  al., 2020). In recent years, 
it has been confirmed that the engineered DC-derived EVs 
exhibit enhanced anti-tumor efficacy and is most likely to 
be the first vaccine to be used in clinical transformation.

3.4.  Macrophage-derived EVs

Tumor-associated macrophages (TAM) are the most common 
in tumor microenvironment, accounting for about 50% of 
the tumor microenvironment. Macrophages affected by tumor 
microenvironmental cytokines can differentiate into different 

types of TAM, which are mainly divided into tumor suppres-
sor M1 type and tumor promote M2 type according to their 
functions. M1 polarized macrophage-derived nanovesicles 
(NVs) can repolarize M2 TAMs to M1 macrophages that 
release pro-inflammatory cytokines and induce antitumor 
immune responses  (Figure 4) .  Moreover,  M1 
macrophage-derived NVs combined with immune checkpoint 
inhibitor PD-L1 enhanced the anti-tumor efficacy (Choo et  al., 
2018). Glioma originated from glial cells and is the most 
common primary brain tumor, accounting for about 30–40% 
of all intracranial tumors. M2 macrophage-derived EVs pro-
mote the migration and invasion of glioma cells, while the 
low-expressed miR-15a and miR-92a in EVs have opposite 
effects on glioma cells. The miR-15a and miR-92a contained 
in M2 macrophage-derived EVs inhibit the migration and 
invasion of glioma cells through CCND1 and RAP1B activation 
of the PI3K/AKT/mTOR signaling pathway, respectively (Yao 
et  al., 2021).

3.5.  NK cell-derived EVs

NK cells originated from hematopoietic stem cells, which 
have dual roles of effector and regulatory cells in innate 
immunity. NK cells can inhibit the malignant biological 
behavior of tumors through their direct cytolytic activity, and 
cytokine secretion. In recent studies, EVs, as a key component 

Table 2. The application of other cells derived evs in cancer therapy.

evs type evs sources guest molecules Target gene Applications ref

sevs K562 cells — — induce anti-leukemic immunities (yao et  al., 2014)
sevs vδ2-T cells — — induce antitumor immunity (Wang et  al., 2020)
Nvs Autologous tumor — — inhibit melanoma growth and 

metastasis
(lee et  al., 2012)

sevs Tumor cells — — induce CD8+ T-cell-dependent antitumor 
effects

(Wolfers et  al., 2001)

sevs Tumor cells Cpg DNA — For cancer immunotherapy (Morishita et  al., 2016)
sevs Pegylated Tumor cells — — For cancer immunotherapy (Ochyl et  al., 2018)
sevs DC cells — — Kill tumor and activate NK cells (Munich et  al., 2012)
sevs DC cells — — Maintenance immunotherapy (Besse et  al., 2016)
sevs AFP express DC cells — — For HCC immunotherapy (lu et  al., 2017)
sevs DC cells Fluorouracil — enhance anti-colon cancer effect (Xu et  al., 2020)
Nvs M1 Macrophage aPD-l1 — Potentiate aPD-l1 anticancer efficacy (Choo et  al., 2018)
evs M2 macrophage mirNAs — inhibit cell migration and invasion of 

gliomas
(yao et  al., 2021)

sevs NK cells — — Target and therapy of glioblastoma (Zhu et  al., 2018)
sevs NK cells — — exert therapeutic effect in melanoma (Zhu et  al., 2017)
sevs NK cells — — Antitumor activity of cytokine-activated 

NK cells
(Shoae-Hassani et  al., 

2017)
sevs NK cells — — Maintain immune surveillance and 

homeostasis
(lugini et  al., 2012)

sevs NK cells mir-186 MyCN AurKATgFBr1TgFBr2 inhibit neuroblastoma growth and 
immune escape

(Neviani et  al., 2019)

sevs NK cells mir-3607-3p il-26 inhibited pancreatic cancer progression (Sun et  al., 2020)
evs il15-cultured NK cells — — enhance the anti-tumor effect (Zhu et  al., 2019)
sevs il2/il15-NK cells DNAM1 — Mediate cytotoxicity of tumor (Di Pace et  al., 2020)
sevs Circulating NK cells — — exhibit antitumoral activity (Kang et  al., 2021)
sevs CD4+ T cells — — inhibit CD8+ T cells responses and 

anti-tumor immunity
(Zhang et  al., 2011)

evs Activated CD8+ T cells — — Prevent tumor progression (Seo et  al., 2018)
sevs Activated T cells PD-1 — Attenuate PD-l1-induced immune 

dysfunction
(Qiu et  al., 2021)

sevs CD45rO-CD8+ T cells mir-765 — restrict cancer development (Zhou et  al., 2021)
Nvs Activated CD8+ T cells granzyme B, PD-1, — For cancer immunotherapy (Hong et  al., 2021)
Nvs ginseng — — inhibit melanoma growth (Cao et  al., 2019)
Nvs Citrus limon — — inhibit CMl xenograft growth (raimondo et  al., 2015)
Nvs Pegylated asparagus 

cochinchinensis
— — inhibit tumor growth (Zhang et  al., 2021)
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of NK cell therapy, have been proven to be effective in can-
cer therapy (Zhu et  al., 2018). EVs derived from NK cells exert 
tumor cell killing and inhibitory functions through four main 
mechanisms, including Fas/Fas ligand (FasL) pathway, perfo-
rin/granzyme pathway, tumor necrosis factor (TNF)-α pathway, 
and miRNA-mediated targeted regulation pathways (Figure 
4). Several studies have confirmed that NK cells derived EVs 
containing killer proteins such as FasL and perforin, and these 
molecules could activate immune cells and display cytotoxic 
activity in several tumor cell lines (Lugini et  al., 2012; 
Shoae-Hassani et  al., 2017; Zhu et  al., 2017). In addition, Zhu 
et  al. also confirmed for the first time NK-92 cells derived 
EVs contain TNF-α, which affected the melanoma cell prolif-
eration, survival, and apoptosis (Zhu et  al., 2017). Neviani 
et  al. found that NK cell derived EV miR-186 inhibits neuro-
blastoma growth and immune escape by targeting MYCN, 
AURKA, TGFΒR1 and TGFΒR2 (Neviani et al., 2019). Furthermore, 
Sun et al. found that NK cells derived EV miR-3607-3p inhibits 
pancreatic cancer progression by targeting tumor-promoting 
cytokines IL-26 (Sun et  al., 2020). Interestingly, using IL-2 or 
IL-15 cytokines to stimulate NK cells can significantly enhance 
the anti-tumor ability of their derived EVs (Zhu et  al., 2019; 
Di Pace et  al., 2020). Mechanically, Di Pace et  al. found that 
IL-2 or IL-15-stimulated NK cells derived EVs exert their 

cytolytic effect against tumor by delivering IFN-γ, lymphocyte 
function-associated antigen-1 (LFA-1), DNAX accessory 
molecule-1 (DNAM1) and programmed cell death protein 
(PD-1) (Di Pace et  al., 2020). Recently, Kang et  al. designed 
a novel microfluidic system to collect non-small cell lung 
cancer patient-specific NK cells and on-chip biogenesis of 
circulating NK derived EVs. The development of this 
high-throughput, general-purpose device for the acquisition 
of NK derived EVs has demonstrated cytotoxic effects on 
CTC, and thus may hold a promise for antitumor therapies 
based on autologous patient EVs (Kang et  al., 2021). These 
findings suggest that unmodified or functionalized NK 
cell-derived EVs are expected to become a new and powerful 
strategy for anti-tumor immunotherapy.

3.6.  T cell-derived EVs

Helper T cells and cytotoxic T cells release their EVs to 
mediate interactions and functional changes (Figure 4). For 
example, activated ovalbumin (OVA)-specific CD4+ T cell 
released EVs inhibit CD8+ cytotoxic T-lymphocyte responses 
and antitumor immunity (Zhang et  al., 2011). This study 
shows that CD4+ T cell-EVs are expected to be potential 
therapeutic agents for autoimmune-related diseases. 

Figure 4. Other Mammalian cells derived evs for cancer therapy. The evs derived from tumor cells and main immune cells carry a variety of bioactive mole-
cules that play an effective anti-tumor efficacy in various cancer diseases. evs derived from tumor cells and DC cells mainly induce specific humoral and cellular 
immune responses in the body, enhance the anticancer ability of the body and prevent the growth of tumors. M1-type macrophages are derived from evs 
polarized M2-type macrophages into anti-tumor M1-type macrophages and release inflammatory cytokines to play a role in tumor therapy. evs from NK cells 
and T cells play a therapeutic role by releasing tumor-killing molecules and cytotoxic effects.
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However, CD8 + T  cell EVs have been found to be beneficial 
for tumor immunotherapy. Activated CD8 + T cell from 
healthy mice release cytotoxic EVs prevent tumor invasion 
and metastasis by depleting lesional fibroblastic stroma cells 
(Seo et  al., 2018). Wang et  al. found that Vδ2-T cells derived 
EVs enriched in FasL, TRAIL, NKG2D, CD80, CD86, MHC class 
I and II, and these components can directly kill Epstein-Barr 
virus-associated tumor cells and induced T cell-mediated 
antitumor response (Wang et  al., 2020). These findings indi-
cate that T cell-derived EVs may be a promising strategy 
for tumor therapy. Currently, there exists few studies on the 
use of T cell derived EVs for direct anti-tumor or as tumor 
drug delivery vehicles. Recently, Qiu et  al. found that acti-
vated T cell-derived exosomal PD-1 can induce cell surface 
or exosomal PD-L1 internalization, and thereby restoring 
tumor surveillance and attenuating PD-L1-induced immune 
dysfunction in triple-negative breast cancer (Qiu et  al., 2021). 
CD45RO- CD8+ T cell-derived EVs released miRNAs to restrict 
estrogen-driven endometrial cancer development via regu-
lation of the ERβ/miR-765/PLP2/Notch signaling axis (Zhou 
et  al., 2021). NVs from cytotoxic T cells produced by con-
tinuous extrusion of micro/nanopore membranes, inhibited 
T cell failure, and exhibited superior antitumor activity in 
the immunosuppressed tumor microenvironment (Hong 
et  al., 2021).

3.7.  Plant cell-derived EVs

Ginseng-derived EVs inhibited the growth of melanoma by 
changing the polarization of macrophages (Cao et  al., 2019). 
Citrus limon-derived EVs inhibited cancer cell proliferation in 

different tumor cell lines and suppress CML xenograft growth 
by activating a TRAIL-mediated apoptotic cell death 
(Raimondo et  al., 2015). EVs derived from plants provide a 
promising nanoplatform that can be applied to anti-tumor 
therapy with negligible side effects. PEGylated Asparagus 
cochinchinensis derived EV-like NVs could significantly inhib-
ited tumor growth in Hep G2 cell xenograft model (Zhang 
et  al., 2021).

4.  Functionalized EVs for cancer therapy

The excellent properties of EVs, such as active substance 
carrier, good biocompatibility, high circulatory stability, low 
immunogenicity and toxicity and ability to penetrate biolog-
ical barriers and escape systemic clearance, have aroused 
great interest among researchers in the field of cancer ther-
apy. There are many sources of EVs, including mammalian 
cells, bacteria, plants, honey (Chen et  al., 2021), and body 
fluids (Figure 5). Unmodified produced EVs directly as poten-
tial anti-tumor drugs are limited (Table 2). Engineered EVs 
enhances the ability of targeted delivery to tumor sites, and 
plays a synergistic effect in combination with other thera-
peutic methods, which obviously has greater application 
potential (Table 3). Engineered EVs have a broader applica-
tion prospects and they are gradually becoming a current 
research hotspot. Loading exogenous antitumor molecules 
into EVs include passive loading and active loading. Passive 
loading refers to the antitumor drug molecules and EVs incu-
bation directly or after incubation with donor cells to collect 
the source EVs. Active load is through the physical methods, 
such as ultrasonic, extrusion, repeated freezing and thawing, 

Figure 5. Source of functionalized evs. evs can be produced by almost all prokaryotic and eukaryotic, and plant cells, and are widely present in body fluids 
such as blood, urine, ascites and milk, etc.
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electroporation, chemical methods, such as liposome medi-
ated membrane fusion, click chemistry, biology/cell engineer-
ing technology such as gene modification, immunological 
methods, such as technology, nanotechnology will antitumor 
molecules are loaded into EVs or connection on its surface 
(Figure 6).

4.1.  Chemotherapy

Chemotherapy is currently one of the main methods for the 
treatment of malignant tumors. However, due to the lack of 
specific targeting of tumor sites, anti-cancer drugs have poor 
efficacy and serious side effects in the clinical treatment 
process. EVs, as superior drug delivery vehicles, have been 
shown to deliver a variety of drug molecules to play an 
anti-tumor role (Figure 7). EVs can be used to deliver various 
chemotherapeutic drugs such as DOX (Doxorubicin), PTX 
(Paclitaxel), MTX (Methotrexate), TPZ (Tirapazaming), Cis 
(Cisplatin), imperialine, and nischarin (Maziveyi et  al., 2019). 
Lung cancer cell-derived EVs enhance the targeted delivery 
of immunogenic oncolytic adenovirus and PTX in immuno-
competent mice (Garofalo et  al., 2019). Tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) engineering 
EVs targeted delivery triptolide for the treatment of malignant 
melanoma (Jiang et  al., 2021). EVs derived from neutrophils 

have many functions including drug-loading, rapid BBB pen-
etration and enhanced tumor targeting. Wang et  al. found 
that inflammatory tumor microenvironment responsive neu-
trophil exosomes can be used to delivery DOX for targeted 
glioma therapy (Wang et  al., 2021). Zhou et  al. constructed 
a BMMSC-EV-based galectin-9 siRNA and oxaliplatin (OXA) 
prodrug dual delivery biosystem for enhancing immunother-
apy and reprogramming tumor microenvironment. This com-
bined strategy elicits anti-tumor immunity and achieves 
significant therapeutic efficacy in PDAC (pancreatic ductal 
adenocarcinoma) treatment by increasing the polarization of 
M2 macrophages, recruiting cytotoxic T lymphocytes and 
downregulating Treg cells (Zhou et  al., 2021). Antibody-drug 
conjugates (ADCs) are a novel class of anti-cancer drugs, 
which are composed of specifically targeted a monoclonal 
antibody, a highly effective small molecule cytotoxic drugs, 
as well as a chemical linker between the two. The surface 
of EVs derived from cancer cells expresses specific antigen 
molecules that can bind to ADCs. Therefore, EV-delivered 
ADCs can be localized at tumor sites or home to the tumor 
microenvironment to exert anti-cancer effects (Barok et  al., 
2021). How to effectively enhance the anti-cancer effect of 
EVs mediated ADCs, and avoid its adverse effects, may be 
an important direction for researchers to engineer EVs in 
the future.

Figure 6. Functionalized approchs of evs. Traditional bio-techniques and advanced nanotechnologies have been generalized in the engineering modification 
of evs. These methods are divided into two main categories: membrane modification and content loading.
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4.2.  Immunotherapy

EVs derived from NK cells have been shown to have good 
anti-tumor effects. To enhance their efficacy, Zhu et  al. used 
IL-15-pretreat NK cells significantly enhances the anti-tumor 
potency of NK cell-EVs (Zhu et  al., 2019). Engineered EVs 
showed potential application prospects in cancer immuno-
therapy and improved therapeutic efficacy (Bell et  al., 2016; 
Yong et  al., 2020). To enhance the anti-tumor activity of T 
cells, the researchers synthesized a multivalent antibody to 
retarget EVs, which express monoclonal antibodies specific 
for T-cell CD3, and cancer cell-associated epidermal growth 
factor receptor (EGFR) (Cheng et  al., 2018) or human epi-
dermal growth factor receptor 2 (HER2) (Shi et  al., 2020). 
CpG DNA, a new type of tumor immune activator, can acti-
vate innate immune response, enhance antibody-dependent 
cellular cytotoxicity (ADCC), and can also cause specific 

immune responses as an effective vaccine adjuvant. 
Tumor-cell derived EVs anchored assembly CpG-DNA may 
serve as a promising tumor vaccine through the induction 
of the cytotoxic T cell response (Matsumoto et  al., 2019). 
The dual-targeting engineered EVs enhance the anti-tumor 
activity of T cells and the targeting performance of breast 
cancer. Activating the stimulator of interferon genes (STING) 
pathway effectively enhances the anti-tumor immune 
response. However, the rapid clearance and limited cyto-
plasmic absorption of STING agonists lead to poor pharma-
cological properties and ineffective targeting, which limits 
its application in cancer treatment. McAndrews et  al. engi-
neered EVs loaded with the STING agonist cyclic GMP-AMP 
suppressed B16F10 tumor growth and increased accumula-
tion of activated CD8+ T-cells and enhanced anti-tumor 
immunity (McAndrews et  al., 2021). B16F10 melanoma 
cell-EVs expressing TNFSF ligand 4-1BBL and OX40L enhanced 

Figure 7. Functionalized evs for cancer therapy. Currently, the application of Functionalized evs in cancer therapy has five main directions, including chemo-
therapy, gene therapy, immunotherapy, phototherapy, and vaccine development.
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anti-tumor immune activity (Semionatto et  al., 2020). Shock 
protein 70 (HSP70) on the membrane of tumor-derived EVs 
can activate MDSC by interacting with toll-like receptor 2 
(TLR2). Gobbo et  al. used the A8 peptide to compete with 
HSP70 on tumor cell EVs to restore the anti-tumor immune 
response (Gobbo et  al., 2016).

Chimeric antigen receptor (CAR) expressed T cells are a 
powerful and innovative therapeutic strategy for cancer 
patients. However, problems with serious side effects and 
toxicities caused by CAR T cells infusion in vivo limit its 
clinical application. Studies have shown that CAR T cells 
derived EVs have the potential to substitute mother cells 
for antitumor function. CAR T cell-EVs possess highly effec-
tive tumor inhibition rate and low toxicity with no signifi-
cant side effects in vitro and in vivo (Fu et  al., 2019; Haque 
& Vaiselbuh, 2021; Yang et  al., 2021). Gram-negative bac-
teria derived outer membrane vesicles (OMVs) containing 
many pathogen-associated molecular patterns which can 
activate systemic immune responses. Nanoscale unmodified 
bacterial OMVs secreted by bacteria are not only a good 
adjuvant/antigen, but also a superior delivery carrier with 
great potential in the regulation of tumor immunosuppres-
sive microenvironment. Nevertheless, the consequence of 
multiple administration of OMVs is a high risk of repeated 
cytokine storms and systemic coagulation. Recently, it is 
reported that OMVs derived from attenuated Salmonella 
typhimurium (S.t ΔpG) may be an emerging therapeutic 
agent for anticancer therapy without obvious adverse 
responses. Specifically, single intravenous injection of OMVs 
not only could activate the immune system by boosting 
the secretion levels of anti-tumor related cytokines, but 
also could also lead to extravasation of red blood cells in 
the tumor (Zhuang et  al., 2021). Moreover, to overcome the 
obstacles of antibody-dependent clearance and high toxicity 
of OMVs when administered intravenously, Qing et  al. used 
a calcium phosphate shell to cover the surface of OMVs, 
thus achieving effective OMV-based tumor microenviron-
ment reprogramming without side effects (Qing et  al., 
2020). Engineered OMVs with their enhanced anti-tumor 
performance and safety have great potential in cancer ther-
apy (Gerritzen et  al., 2017; Peng et  al., 2020). Compared 
with the eukaryotic EVs, the bacteria-derived OMVs may be 
a unique reagent or therapeutic carrier for anti-tumor 
immunotherapy. Recently, several engineered approaches 
have been reported to enhance the antitumor immune 
response of OMVs. Li et  al. found that PD-L1 modified OMVs 
can comprehensively regulate the tumor microenvironment 
to markedly increase anti-tumor immune efficacy (Li et  al., 
2020). In addition, Cheng et  al. developed a versatile 
OMV-based antigen display platform to elicit a synergistic 
antitumor immune response by presenting multiple distinct 
tumor antigens onto OMV surface (Cheng et  al., 2021). 
Furthermore, Guo et  al. designed a sequentially triggered 
OMVs that loaded with PTX and Redd1 (DNA damage 
response 1)-siRNA for modulating macrophage metabolism 
and suppressing tumor metastasis (Guo et  al., 2021). Tumor 
cell (Hu et  al., 2021) and macrophage (Mehryab et  al., 

2020)-derived EVs were hybridized with synthetic liposome 
for the delivery of DOX for breast cancer targeted therapy.

4.3.  Gene therapy

Gene therapy is a promising cancer treatment technology, 
which mainly aims at the tumor genome changes and carries 
on the corresponding inter vention. MiRNA-199a 
overexpressed-BMMSC-EVs inhibited glioma progression by 
down-regulating ArfGAP with GTPase domain, ankyrin repeat 
and PH domain 2 (AGAP2) (Yu et  al., 2019). BMMSC-derived 
EVs loaded with antagomiR-222/223 stimulate cycling qui-
escence and early breast cancer dormancy (Bliss et  al., 2016). 
MiR-122-modified AD-MSCs derived EVs significantly 
increased the chemosensitivity of hepatocellular carcinoma 
cells to sorafenib (Lou et  al., 2015). HucMSC-EVs delivered 
exogenous miR-145-5p to inhibit pancreatic ductal adeno-
carcinoma progression (Ding et  al., 2019). BMMSC-EVs deliv-
ered exogenous miRNA-143 to inhibit cell migration and 
invasion of human prostate cancer by downregulating trefoil 
factor 3 (TFF3) (Che et  al., 2019). BMMSC-EVs delivered syn-
thetic miRNA-124 and miRNA-145 mimics to glioma cells 
and glioma stem cells and inhibit their cell migration and 
self-renewal (Lee et  al., 2013). BMMSC-EVs with transfected 
synthetic miRNA-143 significantly inhibited the migration of 
osteosarcoma cells (Shimbo et  al., 2014). HucMSC-EVs deliver 
miRNA-375 to downregulate ENAH and inhibit the initiation 
and progression of esophageal squamous cell carcinoma 
(ESCC) (He et  al., 2020). In 2017, Kamerkar et  al. engineered 
EVs to carry KrasG12D siRNAs or shRNAs to achieve direct and 
specific targeting to oncogenic KRAS in pancreatic cancer 
(Kamerkar et  al., 2017). Subsequently, they prepared and 
tested this clinical-grade good manufacturing practice stan-
dard engineered EVs for pancreatic cancer in a phase I clin-
ical trial (Mendt et  al., 2018). Exogenous miR-let-7i and 
miR-142 modified tumor-derived EVs could increase the 
survival rate of tumor-bearing mice and induce reduction in 
tumor growth by promoting DC maturation and T cell acti-
vation along with tumor shrinkage. The administration of 
EVs loaded with miRNAs enhanced the ability of cytotoxic 
T cells to produce IFN-γ and Granzyme B (Khani et  al., 2021). 
The authors developed a peptidized EV platform to enhance 
the delivery of anti-apoptotic Bcl-2 antisense oligonucleotide 
G3139 (antisense phosphorothioate oligodeoxynucleotide to 
Bcl2) into tumor cells. HepG2 cell-derived EVs are coupled 
to cell penetrating polypeptides (CPPs) on the surface to 
enhance the penetrating ability of EVs and assist EVs to load 
antisense oligonucleotides (ASOs) (Xu et  al., 2021). Covalent 
conjugation of EVs with peptides and nanobodies for tar-
geted therapeutic delivery (Pham et  al., 2021), this method 
may be effective against solid tumors. In brief, these studies 
suggest that EV-based gene therapy for cancer has great 
application value. Currently, the FDA has approved some 
gene therapies for specific cancer diseases (FDA, 2018a, 
2018b). However, how to safely and effectively deliver 
genetic tools to the primary site of a tumor remains a major 
challenge.
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4.4.  PTT and PDT therapy

Photothermal therapy (PTT) and photodynamic therapy (PDT) 
are the two most common optical-based therapies. Under 
near-infrared laser irradiation, nanoparticles with photother-
mal conversion effect or photosensitizers can generate heat, 
singlet oxygen or reactive oxygen free radicals to kill tumor 
cells. Some studies have shown that EVs can be used as a 
promising delivery vehicle for targeted delivery of photo-
therapeutic substances, enhanced tissue penetration of tumor 
tissues, and real-time multimodal imaging in vivo. Recent 
studies suggest that gold nanoparticles, quantum dots (Qts), 
multifunctional nanoparticles such as gold-carbon dots, gold 
nanostars, gold-iron oxide nanoparticles (GIONPs), and PMA/
Au-BSA@Ce6, etc. can be decorated on the surface or inside 
of EVs for the early diagnosis and targeted treatment of 
tumors. The engineered EVs not only exhibit good tumor 
PTT and PDT effects, but also exhibit good biocompatibility, 
safety, long-circulation retention and endosomal escape 
capabilities.

4.5.  Radiotherapy

Radiotherapy has become one of the main methods in the 
treatment of malignant tumors. More than 70% of tumor 
patients require radiotherapy including comprehensive 
treatment and individual treatment. Previous research has 
shown that unmodified EVs combined with radiotherapy 
have a significant effect on promoting the treatment of 
tumors (de Araujo Farias et  al., 2018). However, radiother-
apy resistance is a thorny problem that severely reduces 
the effect of radiotherapy. Wan et  al. demonstrated that 
miR-34c overexpressing EVs inhibit malignant progression 
and reverse the radioresistance of nasopharyngeal carci-
noma (Wan et  al., 2020). In another study, Zuo et  al. found 
that BMMSC-derived EVs alleviate radiation-induced bone 
loss by restoring the function of recipient BMMSCs and 
promoting β-catenin expression (Zuo et  al., 2019). 
Multifunctional gold-based nanomaterials are gradually 
becoming promising candidates for tumor thermal radiation 
therapy due to their properties in the near-infrared II zone. 
Recently, Zhu et  al. fabricated multifunctional gold nano-
stars loaded colon cancer cell-derived EVs for penetrative 
targeting tumor NIR-II thermo-radiotherapy (Zhu et  al., 
2020). HEK293 cells derived exosomes delivered exogenous 
miR-22 enhanced the radiosensitivity of ovarian cancer by 
inhibiting the expression of c-MyC binding protein (MYCBP) 
and human telomerase reverse transcriptase (hTERT ) 
(Konishi et  al., 2020). The above studies showed that EVs 
have broad prospects in tumor radiotherapy. The rise of 
engineered EV technology has brought new hopes for 
enhancing the efficacy of tumor radiotherapy and avoiding 
its related shortcomings.

4.6.  Synergistic therapy

There are a variety of anti-tumor treatment methods in clin-
ical practice, but a single treatment method often does not 
achieve the best therapeutic effect. Therefore, combined 

treatment methods are often used. Combined treatment can 
enhance the therapeutic effect while reducing the toxic side 
effects of drugs, and it can alleviate the suffering of patients. 
In the treatment of different tumor diseases, the combined 
application of two or more strategies such as radiotherapy, 
chemotherapy, immunotherapy, gene therapy and optical 
therapy is expected to open up new horizons for tumor 
treatment. EVs were developed for the simultaneous delivery 
of the anticancer drug 5-fluorouracil (5-FU) and miR-21 inhib-
itor oligonucleotide to reverse drug resistance in colon cancer 
(Liang et  al., 2020). Recently, Ding et  al. designed for the 
first time an engineered self-activating photo-EV that cleverly 
combined immunotherapy, PDT and chemotherapy for syn-
ergistic anti-cancer treatment (Ding et  al., 2021). Bis [2, 4, 
5-trichloro-6-(pentoxycarbonyl) phenyl] oxalate (CPPO), Ce6 
and the prodrug aldoxorubicin (Dox-EMCH) were simultane-
ously loaded into M1 macrophage-derived EVs. Many studies 
confirmed that M1 macrophage-derived EVs have superior 
tumor homing ability, can select actively target tumor cells, 
and M1 macrophage-derived EVs repolarizes M2 into M1 
macrophages. The engineered M1 macrophage-derived EVs 
are administered sequentially to induce chemiluminescence 
and photodynamic therapy, and mediate the release and 
activation of Dox-EMCH at the tumor site. Wang et  al. 
designed a versatile EV-based chemo/gene/photothermal 
therapy plantform for the next-generation precision cancer 
nanomedicines (Wang et  al., 2021). Engineered EVs encap-
sulating PGM5 antisense RNA 1 and oxaliplatin can reverse 
drug resistance in colon cancer (Hui et  al., 2021).

5.  Biomimetic EV membrane enveloped 
nanomaterials for cancer therapy

In 2011, Zhang et  al. creatively ‘put on’ the cell membrane 
of nanoparticles, and proposed a revolutionary ‘bionic nano-
medicine’ technology, which solved one of the biggest prob-
lems that plagued the nanomedicine community (Fang et  al., 
2018). Inspired by the success of cell membrane delivery of 
nanoparticles technology, researchers began to try to use 
the membrane components of EVs to deliver nanoparticles. 
EVs coated with high-density nano-raspberry (RB@EVs) effec-
tively inhibited tumor metastasis, and RB@EVs induced extra-
cellular leakage in lung metastatic lesions, and also enhanced 
T lymphocyte infiltration in metastatic lung cancer models 
(Shen et  al., 2021). Chen et  al. also reported that EV mem-
brane coated metal-organic framework nanoparticles for pro-
tection and intracellular delivery of functional proteins (Cheng 
et  al., 2018). In order to improve the efficiency of EV mem-
brane biomimetic delivery, researchers have developed a 
microfluidic ultrasound device to produce EV membrane-coated 
nanoparticles on a large scale for immune evasion-mediated 
targeting (Liu et  al., 2019). To avoid the safety problem of 
tumor-derived EVs carrying contents, the isolated EVs are 
treated with hypotonicity and re-prepared into uniform NVs 
under the action of mechanical extrusion (Li et  al., 2020). 
Although some challenges of EV membrane coating nano-
technology have been continuously solved, the source of EVs 
faces the challenge of low yield. Currently, researchers are 
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trying to prepare NVs derived from cell membranes to replace 
the functions of EVs (Kalimuthu et  al., 2018).

6.  Functionalization strategy of EVs

Unmodified EVs have some disadvantages such as targeted 
insufficient, poor stability, low delivery efficiency and effi-
cacy. In order to overcome these deficiencies, researchers 
designed some ideal functionalization strategies for engi-
neered EVs according to specific pathogenic mechanisms 
and corresponding diseases (Jayasinghe et  al., 2021). 
According to the differences in the antitumor molecules 
carried by EVs and the different methods of engineering 
EVs, the application of EVs in tumor therapy can be divided 
into the following two categories: engineered EVs via cell 
modification, direct modification of EVs. In this part, the 
principles of engineering strategy design were briefly 
summarized.

6.1.  Genetic manipulation

Genetic manipulation is the earliest and most mature strategy 
in all the operations based on cell modification to engineer 
EVs. Among them, HEK293 cells, tumor cells, immune cells, 
and MSCs are the main cell sources of engineering modified 
EVs (Wu et  al., 2021). This strategy can decorate interesting 
nucleotides such as DNA, mRNA, miRNA, siRNA, circRNA, 
lncRNA, as well as proteins and peptides to the inside or 
surface of EVs. In addition, the surface of EVs highly expresses 
a variety of transmembrane protein molecules such as 
Lamp2b, CD9, CD63, PDGFR, and CD47, etc. Therefore, mem-
brane protein fusion strategies are often employed to deliver 
some target proteins and peptides to the surface or inside 
of EVs through genetic manipulation.

6.2.  Hydrophobic insertion

Researchers have developed many amphiphilic polymers, 
(including DSPE-PEG, DMPE-PEG). These nanomaterial with 
one end coupled to the substance of interest can be embed-
ded into EVs through hydrophobic insertion. Recently, 
researchers have been inspired by the accumulation of high 
levels of cholesterol, neurophospholipids and other compo-
nents in the lipid bilayer of EVs, and have developed some 
novel lipidomimetic chain for the delivery of goods to EVs 
(Liu et  al., 2019; Yerneni et  al., 2019). Folic acid (FA) receptors, 
integrin αvβ3 and other molecules are overexpressed on the 
surface of various tumor cells. Aptamer (Yerneni et  al., 2019), 
FA (Wang et  al., 2018; Aqil et  al., 2019; Zheng et  al., 2019), 
SH (Wang et  al., 2018), RGD (Wang et  al., 2017; 2017; Zhu 
et  al., 2017; Antes et  al., 2018; Wang et  al., 2018; Zheng et  al., 
2019; Zhu et  al., 2019), mesenchymal-epithelial transition 
factor (c-Met) (Li et  al., 2020), hyaluronic acid (HA) (Liu et  al., 
2019), etc., can be anchored on the surface of EVs, and target 
drugs to specific tumor cells through ligand interactions. 
Hydrophobic insertion is a simple and common modification 
strategy via co-incubation. Therefore, it has broad prospects 
in the application of engineered EVs.

6.3.  Physical strategies

Co-incubation, electroporation, ultrasonic, extrusion, repeated 
freezing and thawing, are mainly based on the fluidity of 
the lipid bilayer of EVs (Lu et  al., 2018; Ou et  al., 2021). 
Hypotonic dialysis, PH gradient are mainly based on concen-
tration and osmotic pressure dependence. The co-incubation 
method is relatively simple to operate and does not destroy 
the integrity of the lipid bilayer membrane of the EVs. 
However, it is worth noting that the loading efficiency of 
this method is low. The efficiency of drug loading into EVs 
depends on the hydrophobicity of the drugs. Hydrophobic 
drugs can interact with the lipid membrane of EVs to facil-
itate their entry into EVs. Electroporation and ultrasound are 
the most commonly used drug delivery methods with high 
loading efficiency. They change the permeability of the lipid 
bilayer membrane of EVs to actively load drugs into EVs. 
Mechanical extrusion methods are also frequently used to 
load drugs into EVs, which deform/remodel the EVs through 
physical extrusion, destroy the EV membrane and mix vig-
orously with the loaded drug. Freeze-thaw methods tempo-
rarily disrupt EV lipid bilayer membranes by forming ice 
crystals. Freeze-thaw cycles lead to changes in the structure 
and function of the membrane by removing water molecules 
from the hydrophilic surface of the plasma membrane. The 
loading efficiency of other methods is higher than that of 
co-incubation and lower than that of ultrasound and elec-
troporation (Wu et  al., 2021). Similar to the uptake of exog-
enous materials by cells, the efficiency of uptake of exogenous 
materials by EVs mainly depends on the characteristics of 
the materials. For example, glucose-coated nanoparticles can 
enter the interior of EVs mediated by the GLUT1 protein on 
the surface (Betzer et  al., 2017).

6.4.  Chemical strategies

Strategies such as chemical reagent transfection and 
liposome-mediated membrane fusion (Mehryab et  al., 2020; 
Hu et  al., 2021; Ou et  al., 2021) are mainly to enhance the 
distance and affinity between the cell membrane or EVs and 
the delivered molecule under the action of chemical 
reagents, thereby promoting the effective delivery of sub-
stances. The surface saponin penetration strategy uses chem-
ical reagents to change the permeability of the cell 
membrane to enhance the entry of molecules into EVs 
(Podolak et  al., 2010; Fuhrmann et  al., 2015; Haney et  al., 
2015). Although these methods can achieve the ideal deliv-
ery of EV cargo, the remaining chemical reagents such as 
cationic liposomes, PEG or saponin may be a potential 
safety threat.

6.5.  Exogenous material uptake

Exogenous materials such as organic or inorganic nanopar-
ticles can be encapsulated into EVs after ingested by cells. 
This process is mainly mediated by cell endocytosis and 
pinocytosis. The efficiency of cell encapsulation of these 
nanoparticles also depends on nanoparticle size, shape, sur-
face charge, and surface functionality (Wong & Wright, 2016; 
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Zhang et  al., 2020), concentrations and incubation times 
(Correia Carreira et al., 2016). The appropriate size of nanopar-
ticles, cationic materials, PEG modification, high concentration 
and extended incubation time can all improve the cell uptake 
efficiency. In addition, the efficiency of cell encapsulation of 
these nanoparticles also depends on the cell type and size 
(Wang et  al., 2016). Compared with other types of cells, mac-
rophages, as a unmodified phagocytic immune cell, are easier 
to swallow nanoparticles. In addition, the nanoparticles 
encapsulated by macrophage-derived EVs can also mediate 
their escape from the retention of the mononuclear phago-
cytic system and achieve a good tumor-targeted delivery 
function.

6.6.  Metabolic labeling and click chemistry

Metabolic labeling technology is mainly to label chemical 
groups on cell surface sugars and glycoproteins. These groups 
through combined bio-orthogonal chemical reactions become 
a powerful tool to couple multiple components to the surface 
of EVs (Lee et  al., 2018). Click chemistry reactions are often 
used to further functionalize metabolically labeled EVs due 
to their mild, high efficiency and high selectivity (Smyth 
et  al., 2014; Wang et  al., 2015).

7.  Delivery of nucleic acids

7.1.  DNA

The CRISPR/Cas9 vector, as a functional genome editing sys-
tem, has been successfully applied to the treatment of some 
human refractory diseases (Frangoul et  al., 2021). Currently, 
synthetic nanocarriers to delivery DNA plasmids face many 
challenges, such as low efficiency and poor safety. Therefore, 
how to achieve effective delivery of DNA plasmids has 
become the key to the development of this field. Researchers 
have developed some CRISPR/Cas9 system delivery platforms 
by using EVs, which achieves efficient in vitro genome manip-
ulation in cancer cells, and as well as various hard-to-transfect 
cells, including MSCs, iPS cells, myoblasts, and neurons. Lin 
et  al. found that Runx2 or CTNNB1 CRISPR-Cas9 expression 
vectors can be encapsulated into hybrid EVs through the 
co-incubation of liposomes, plasmids and EVs (Lin et  al., 
2018). Gee et  al. have developed an EV-based ribonucleop-
rotein delivery system for packaging of CRISPR-Cas9 protein 
and sgRNA to induce therapeutic exon skipping in Duchenne 
muscular dystrophy (DMD) patient iPS cells derived skeletal 
muscle cells and in mdx mice model (Gee et  al., 2020). 
CRISPR/Cas9-loaded cancer-derived EVs suppress expression 
of poly (ADP-ribose) polymerase-1 (PARP-1), enhance the 
chemical sensitivity of ovarian cancer cells to cisplatin and 
induce cell apoptosis (Kim et  al., 2017). To overcome the 
challenge of cellular selective delivery, following this strategy, 
Zhuang et  al. designed specific cell targeting EVs for delivery 
CRISPR/Cas9 endonucleases. The surface of EVs loaded with 
the valency-controlled tetrahedral DNA nanostructures that 
conjugated with DNA aptamer and cholesterol anchor. This 
system efficiently promoted the tumor-specific accumulation 

of the EVs in vitro HepG2 cells and human primary liver 
cancer-derived organoids, as well as in vivo xenograft tumor 
models. The intracellular delivery of RNP by using TDN1-EVs 
significantly inhibits tumor growth (Zhuang et  al., 2020). To 
improve genome editing efficiency and safety, Yao et  al. 
developed an engineered EVs platform for ribonucleoprotein 
delivery. This strategy utilizes RNA aptamer and 
aptamer-binding protein interactions to enrich RNPs into EVs 
(Yao et  al., 2021). In addition to delivering gene editing tools, 
the new immune adjuvant CpG-DNA can also be delivered 
to the surface (Matsumoto et  al., 2019) and inside of EVs 
(Zheng et  al., 2020) to exert anti-tumor effects.

7.2.  mRNAs

With the continuous advancement of mRNA synthesis, mod-
ification and delivery technology, the stability, safety and 
translation efficiency of mRNA have been greatly improved, 
and it has shown great clinical translational value in the field 
of tumor treatment. EVs are a good gene therapy vector, and 
they have good prospects for delivering mRNA of interest. 
Mizrak et  al. reported that for the first time genetically engi-
neered HEK293T cells derived EVs expressing high levels of 
the suicide gene mRNA and protein-cytosine deaminase (CD) 
fused to uracil phosphoribosyltransferase (UPRT) to inhibit 
schwannoma tumor growth (Mizrak et  al., 2013). In addition, 
Erkan et  al. also found that EVs uploaded with therapeutic 
CD-UPRT mRNA/protein is a promising strategy for glioblas-
toma treatment (Erkan et al., 2017). The continuous resolution 
of challenges such as the safety, efficiency, method, and yield 
of mRNA delivery to EVs also brings hope for its future clin-
ical applications. Altanerova et  al. used engineered MSC 
derived EVs to develop a prodrug suicide gene therapy for 
cancer targeted intracellular (Altanerova et  al., 2019). Kojima 
et  al. have developed exosomal transfer into cells devices to 
consistently deliver therapeutic mRNA into target cells for 
Parkinson’s disease treatment. Recently, Yang et  al. developed 
a cellular nanoporation for large-scale generation of func-
tional phosphatase and tensin homologue (PTEN) 
mRNA-encapsulating EVs (Yang et  al., 2020). This method not 
only improves the efficiency of mRNA loading into EVs, but 
also achieves efficient, customizable production of engi-
neered EVs (Kojima et  al., 2018).

7.3.  siRNAs

The silencing-inducing complex mediated by small interfering 
RNA (siRNA) can simply and efficiently interfere with abnor-
mally expressed genes in tumors to achieve effective treat-
ment of tumors (Alvarez-Erviti et  al., 2011). In 2011, 
Alvarez-Erviti and colleagues were the first to identify and 
demonstrate that EVs could be a promising engineered drug 
delivery platform for the treatment of disease. They devel-
oped the delivery of siRNA based on DC derived-EVs express-
ing fusion of Lam2b and neuron-specific RVG peptide. 
Targeted EVs have been shown to be effective in delivering 
GAPDH and BACE1 siRNA to nerve cells and significantly 
knocking down the targeted molecule’s mRNA and protein 



2530 M. WU ET AL.

in Alzheimer’s disease models (Alvarez-Erviti et  al., 2011). To 
improve the efficiency of siRNA delivery by EVs, the authors 
designed folate-displaying EVs to mediate cytoplasmic deliv-
ery of siRNA by avoiding endosome capture (Zheng et  al., 
2019). Over the past decade, increasing evidences have 
shown that EVs of different types of cell origin can deliver 
different siRNA (such as KRAS (Kamerkar et  al., 2017), surviv-
ing (Pi et  al., 2018; Zhupanyn et  al., 2020), KSP (Aqil et  al., 
2019), S100A4 (Zhao et  al., 2020), PLK-1 (Greco et  al., 2016), 
BCR-ABL (Bellavia et  al., 2017), etc) to treat various tumor 
diseases (including pancreatic cancer, prostate cancer, col-
orectal cancer, lung cancer, breast cancer, bladder cancer, 
and chronic myelogenous leukemia, etc.).

7.4.  miRNAs

MiRNAs, can be efficiently wrapped into EVs and delivered 
to recipient cells to perform bioactive functions, inhibiting 
target mRNA transcription, translation and promoting its 
degradation. Multiple studies have shown that the use of 
EVs to deliver exogenous miRNAs provides a novel approach 
to miRNA-based cancer therapy in a variety of tumors. 
Unmodified EVs are enriched with a variety of miRNA mol-
ecules (such as miR-9-3P, miR-143, miR-375, miR-199a, 
miR-146b, miR-100, miR1231, miR-145, miR-126-3p, miR-133b, 
miR-206, miR-186, and miR-3607-3p), and the presence of 
these endogenous miRNAs in EVs of different cell (such as 
MSCs (Katakowski et  al., 2013; Takahara et  al., 2016; Pakravan 
et  al., 2017; Cai et  al., 2019; Che et  al., 2019; Shang et  al., 
2019; Wu et  al., 2019; Xu et  al., 2019; Yu et  al., 2019; He 
et  al., 2020; Zhang et  al., 2020), NK cells (Neviani et  al., 2019; 
Sun et  al., 2020)) origins shows beneficial therapeutic pros-
pects for various cancer treatment. In order to improve the 
loading efficiency of miRNA into EVs and enhance the ther-
apeutic efficacy of EVs in cancer therapy, the researchers 
enriched miRNAs into EVs by different engineering strategies, 
such as gene overexpression of parental cells (Lou et  al., 
2015; Yu et  al., 2019) or loading exogenous miRNAs (Munoz 
et  al., 2013; Shimbo et  al., 2014) (including miRNA mimics 
and inhibitors). Although the efficacy of siRNAs or miRNAs 
in EVs for cancer treatment is relatively mature. However, 
how to on demand design, quickly and efficiently, and pro-
duce small nucleotides engineered EVs still need to be further 
improved.

7.5.  circRNAs

Circular RNA (circRNA) is a new type of non-coding RNA with 
functions such as regulation and translation. It has a closed 
loop structure and exists in a large number of eukaryotic 
transcriptomes. Yang et al. generated rabies virus glycoprotein 
(RVG) decorated-EVs to targeted deliver circSCMH1 to 
ischemia-reperfusion injury of the brain, and engineered 
RVG-circSCMH1-EVs treatment promotes functional recovery 
in rodent and nonhuman primate ischemic stroke models 
(Yang et  al., 2020). In another experiment, Chen et  al. found 
normal liver cells derived-EVs transmitted circular RNA hsa_
circ_0051443 suppressed hepatocellular carcinoma malignant 

progression by promoting cell apoptosis and arresting the 
cell cycle (Chen et  al., 2020). In conclusion, with the in-depth 
studies on the functions of circRNAs in tumors, targeted 
intervention of circRNAs based on the engineered EV strategy 
will have a broad prospect for the treatment of tumor dis-
eases. EVs have unique advantages over liposome delivery 
technology, which has attracted the attention of many phar-
maceutical companies. With the development and progress 
of technology, EV-based gene therapy strategies are under-
going clinical translational application.

8.  Delivery of proteins and peptides

The application of biological functional enzymes and thera-
peutic proteins in clinical and pre-clinical treatments can 
inhibit the occurrence and progression of tumors. However, 
there are still many challenges in the process of systemic 
protein administration to treat tumor diseases, including easy 
degradation, low bioavailability, poor targeting, and short 
half-life. EVs have been suggested as ideal delivery tools for 
delivery therapeutic proteins, receptors and ligands, cyto-
kines, monoclonal antibodies, and nanobodies. Hao et  al. 
reported that soluble fms-like tyrosine kinase-1(sFlt-1)-en-
riched EVs derived from HEK293 cells suppressed the growth 
of small cell lung cancer by inhibiting endothelial cell migra-
tion (Hao et  al., 2019). Recently, researchers have developed 
a strategy of membrane fusion for the delivery of macromo-
lecular proteins into EVs. In addition, peptides also can be 
decorated on the surface of EVs increases the targeting of 
EVs to disease lesions through genetic manipulation or phys-
ical and chemical modification. In recent years, researchers 
have tried to modify some disease-specific peptides, such as 
RGD (Tian et  al., 2014; Cao et  al., 2019; Zhu et  al., 2019; Chen 
et  al., 2020), GE11 (Ohno et  al., 2013), and other peptides 
onto EVs in different ways.

9.  Delivery of drugs

EV-mediated delivery enhances the targeting of drugs, pro-
longs the half-life of drugs, improves the aggregation of 
drugs, and reduces the toxic and side effects of drugs at 
tumor sites (Pullan et  al., 2019). Hydrophobic and hydrophilic 
small molecule drugs can be integrated into EVs by using 
different methods. After the hydrophilic anti-tumor drugs 
include DOX (Tian et  al., 2014), Curcumin (Cur) (Sun et  al., 
2010; Aqil et  al., 2017), PTX (Kim et  al., 2016), and Rhodamine 
(Yang et  al., 2015)), etc., are incubated with the EVs, they 
can interact with the lipid bilayer of the EVs and enter the 
EVs driven by the concentration gradient. However, it is worth 
noting that the loading efficiency of this simple incubation 
method is not high (Kim et  al., 2016). These strategies such 
as electroporation, saponins, extrusion and dialysis have sig-
nificantly improved the loading efficiency of this hydrophobic 
drug delivery to EVs (Fuhrmann et  al., 2015). However, these 
strategies also have some shortcomings such as causing the 
aggregation of EVs, destroying the activity and integrity of 
EVs, and preventing the release of drugs (Luan et  al., 2017). 
In order to further promote the clinical translational 
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application of EV drug delivery, more breakthrough delivery 
strategies need to be further explored.

10.  Delivery of nanomaterials

10.1.  Magnetic nanomaterials

Magnetic nanomaterials can actively target the tumor site 
under an external magnetic field, which have been widely 
applied to tumor imaging and therapy. However, the inability 
of nanoparticles to reach a sufficient concentration at the 
tumor site is the main obstacle that limits their clinical appli-
cation. Human MSC-derived EVs delivery iron oxide to target 
ablation of tumor cells via magnetic hyperthermia (Altanerova 
et  al., 2017). Kang et  al. have designed magnetic and target-
ing EVs as a targeted drug delivery vehicle for hepatoma 
cancer therapy. Superparamagnetic iron oxide nanoparticles 
are one of the most commonly used nanomaterials for tar-
geted modification of EVs (Zhuo et  al., 2021). Multiple super-
paramagnetic nanoparticles are anchored to the surface of 
blood-derived EVs through transferrin (Tf )-Tf receptor inter-
action (Qi et  al., 2016). These strategies overcame the prob-
lem of insufficient targeting of drugs for cancer therapy, 
enhanced cancer targeting, and suppressed tumor growth 
under an external magnetic field. Furthermore, Silva et  al. 
co-coated magnetic NPs and m-THPC photosensitizer into 
macrophage-derived NVs to enable them to have magnetic 
and optical response capabilities to achieve therapeutic and 
imaging functions (Silva et  al., 2013).

10.2.  Au-based nanomaterials

Gold nanomaterials have unique optical properties, high 
chemical stability, good biocompatibility and easy function-
alization. Gold-based nanoparticles (including gold nano-
spheres, gold nanorods, gold nanocages, and gold nanowires, 
etc.) have broad application prospects in a variety of bio-
medical fields (such as bio-imaging, biosensing, and cancer 
treatment). Based on the many advantages of EVs, researchers 
combine different types of gold-based nanomaterials with 
EVs for tumor treatment. Researchers decorated gold 
nanorods (Wang et  al., 2018) or gold nanoparticles (Zhang 
et  al., 2019) on the surface of EVs encapsulated with DOX 
for combinatorial chemo-photothermal therapy. In addition, 
in order to facilitate the direct delivery of gold nanoparticles 
to EVs. Pan et  al. prepared monodisperse ultra-small gold 
nanoparticles (4-5 nm) and sequentially coated them with 
amphiphilic polymer, BSA and Ce6. The composite nanopar-
ticles are delivered to EVs derived from the urine of tumor 
patients for real-time fluorescence imaging and enhanced 
targeted photodynamic therapy with deep penetration and 
superior retention behavior in tumor (Pan et  al., 2020).

10.3.  Carbon-based nanomaterials

The most researched carbon-based nanomaterials are car-
bon nanotubes and graphene. Because of their unique 
advantages, such as larger surface area, higher strength, 

electrical properties, optical properties, and the ability to 
carry drugs in the form of non-covalent bonds, carbon-based 
nanomaterials have great potential in the field of photo-
thermal treatment of tumors. Cao et  al. generated TAT 
peptides-V2 C quantum dots engineered RGD-EVs for 
nucleus-target low-temperature photothermal therapy and 
three-modality imaging (including fluorescent imaging, pho-
toacoustic imaging, and magnetic resonance imaging) (Cao 
et  al., 2019). Gold-carbon quantum dots, as a composite 
nanomaterial, have higher biocompatibility and imaging 
effects than single carbon quantum dots. Jiang et  al. syn-
thesized gold-carbon quantum dots which are used to label 
cancer cell-derived EVs for in vivo real-time imaging (Jiang 
et  al., 2018).

10.4.  Black phosphorus nanomaterials

Black phosphorus (BP) is an emerging two-dimensional 
metal-free layered material. Due to its good biocompati-
bility, BP has been explored for potential biomedical appli-
cations. Wang et  al. reported that bone-related functional 
cells derived Matrix vesicles (MVs) embedded with BP and 
functionalized with cell-specific aptamer for molecular 
recognition-guided biomineralization (Wang et  al., 2019). 
Furthermore, BP quantum dots (BPQDs) have many advan-
tages, such as ultra-small size, good tissue permeability 
and biocompatibility, higher photothermal conversion effi-
ciency, low side effects, and high in vivo degradability. 
Therefore, BPQDs are superior PTT and PDT reagents for 
anti-tumor therapy. Serum derived EVs in tumor-bearing 
mice treated by hyperthermia expressed an array of 
patient-specific tumor-associated antigens, and strong 
immune-regulatory abilities in accelerating DC differenti-
ation and maturation. In another study, Liu et  al. devel-
oped an immunogenic  EV- encapsulated BPQDs 
nanoparticles as an effective anticancer photo-nanovaccine 
(Liu et  al., 2020).

10.5.  Near-infrared dye and aggregation-induced 
emission nanomaterials

The phospholipid bilayer of EVs can be labeled with lipophilic 
dyes, such as PKH dyes (such as PKH26, PKH67) and carbo-
cyanine dyes (such as DiI, DiD, DiO, and DiR). In addition, 
EVs can also be labeled with some membrane-permeable 
compounds (such as CFSE, CFDA, and Calcein-AM). After 
nearly a decade of efforts and development, aggregation- 
induced emission (AIE) materials have been developed as a 
new photosensitizer, which has greatly promoted the devel-
opment of tumor photodynamic therapy. Zhu et  al. designed 
4T1 tumor cell-derived EVs loaded with AIE luminogen, which 
facilitate efficient breast cancer penetration and photody-
namic therapy (Zhu et  al., 2020). In addition, AIE luminogen 
has also been reported to exhibit superior labeling efficiency 
and tracking capability for in vivo real-time imaging of EVs 
(Cao et  al., 2019; 2020). Therefore, AIE luminogen is expected 
to become an ideal photosensitizer and imaging agent for 
tumor photodynamic therapy.
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11.  Challenges and perspectives

Compared with traditional synthetic nanomaterials, EVs have 
a natural targeting properties, good biocompatibility, stability, 
plasticity, and safety (Ullah et  al., 2021). Therefore, EVs show 
great commercial value in drugs delivery, diseases diagnosis 
and prognosis, multimodal imaging tracking, as well as regen-
erative medicine. Although substantial breakthroughs have 
been made in the field of engineered EV-based cancer ther-
apy, there still have several shortcomings and technical chal-
lenges that may hinder therapeutic applications of engineered 
EVs. (1) Isolation and purification of EVs. EVs come from a 
wide range of sources, such as plants, bacterium, honey, 
mammalian cells culture supernatants, and body fluids. The 
complex origin of EVs leads to high inconsistency in purity, 
yield and safety of the vesicles. Although the separation 
methods have made great progress, they still have some 
disadvantages. When carrying out scientific research, research-
ers should combine their own laboratory conditions, carefully 
choose the most suitable experimental separation technol-
ogy, and conduct preliminary verification to ensure that the 
EVs used for engineering have high purity, yield, biological 
activity, as well as excellent integrity and safety. (2) Large-scale 
production of EVs. Researchers often need to use a large 
number of engineered EVs to evaluate the intervention 
effects of engineered EVs in pre-clinical animal models. This 
urgently requires a simple and efficient strategy for the 
large-scale production of unmodified EVs in the future clinical 
transformation application process. Although some expansion 
culture devices have been developed, but their production 
costs, technical difficulties and other issues are still not well 
resolved. (3) Cargos loading efficiency of engineered EVs. 
Whether it is endogenous, exogenous or targeted modifica-
tion of EVs, the loading efficiency of these methods still has 
huge shortcomings. In the actual operation of engineered 
EVs, a great quantity of EVs is often destroyed, biological 
activity is lost, and loading efficiency is insufficient. These 
problems are partially resolved, but they are far from enough. 
(4) A universal integrated engineered EV modification plat-
form. Currently, the engineering strategies of EVs are diverse 
for different tumor diseases. The difficulty of operation, oper-
ation time, cost, and other issues of these strategies are very 
different. Currently, cellular nanoporation and microfluid-based 
approaches have been used to rapidly and efficiently load 
therapeutic nucleic acids into EVs (Yang et  al., 2020; Wang 
et  al., 2021). In addition, turbulence promotes the production 
of high-throughput MTHPC-loaded EVs (Pinto et  al., 2021). 
How to develop a direct, fast, on-demand design, and 
low-cost engineered EV delivery platform will be one of the 
focuses of more and more attention in the future. (5) Safety 
of EVs. EVs have similar components to the cells of origin. 
Some studies have used EVs derived from tumor cells or 
tumor-associated cells as engineered delivery vectors. 
However, these EVs themselves may contain many active 
molecules that promote tumorigenesis and development. 
Therefore, the effective prevention of this important threat 
to tumor growth is intriguing. Therefore, their biosafety, bio-
stability and biocompatibility are the biggest challenge for 
future clinical translational applications. Such as, the problem 

of self-toxicity of engineered EVs derived from bacteria; 
Immune rejection caused by transplantation of allogeneic 
engineered EVs; Security issues based on genetic modification 
strategies; The problem of reagent residue caused by mod-
ification strategies such as physical chemistry; Cardiovascular 
problems caused by the accumulation of EVs. In some current 
research reports, during the application of engineered EVs 
in vivo, many experiments did not conduct safety evaluations 
or only conducted short-term follow-up evaluations. These 
shortcomings will seriously hinder the safe application of 
engineered EVs in vivo in the future.

12.  Conclusions

In the past 30 years, EVs have shown excellent efficacy and 
transformation prospects in preclinical studies and trials. 
With the development of materials science and the integra-
tion of interdisciplinary disciplines, new breakthroughs have 
been made in advanced separation technologies, detection 
platforms and engineering modification strategies for EVs. 
These EVs include unmodified, engineered, or in combination 
with other nanomaterials, as a new concept as a cancer 
treatment is an attractive and promising strategy. Here, the 
latest advances in the field of EV-based and its applications 
in the creation and customization of therapeutic nanoma-
terials, and focus on their underlying design principles. With 
the continuous breakthrough of EV key technical bottlenecks, 
engineered EVs will become a promising strategy for the 
treatment of complex and refractory tumors in clinical 
practice.
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