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Abstract: Surface electromyography (sEMG) has great potential in investigating the neuromuscular
mechanism for knee pathology. However, due to the complex nature of neural control in lower limb
motions and the divergences in subjects’ health and habits, it is difficult to directly use the raw sEMG
signals to establish a robust sEMG analysis system. To solve this, muscle synergy analysis based on
non-negative matrix factorization (NMF) of sEMG is carried out in this manuscript. The similarities
of muscle synergy of subjects with and without knee pathology performing three different lower
limb motions are calculated. Based on that, we have designed a classification method for motion
recognition and knee pathology diagnosis. First, raw sEMG segments are preprocessed and then
decomposed to muscle synergy matrices by NMF. Then, a two-stage feature selection method is
executed to reduce the dimension of feature sets extracted from aforementioned matrices. Finally,
the random forest classifier is adopted to identify motions or diagnose knee pathology. The study
was conducted on an open dataset of 11 healthy subjects and 11 patients. Results show that the
NMF-based sEMG classifier can achieve good performance in lower limb motion recognition, and is
also an attractive solution for clinical application of knee pathology diagnosis.

Keywords: knee pathology; lower limb motions; surface electromyography; muscle synergy analysis;
non-negative matrix factorization; feature selection

1. Introduction

Lower limb motions are essential in many human activities, especially the ability to
independently perform the activity of daily living (ADL), such as standing, sitting and
walking, and very important for avoiding injuries caused by falls, improving personal
happiness and reducing the social costs of nursing. Recently, sensor-based intelligent
motion recognition and disease diagnosis has been greatly developed due to the rapid
development of sensing, machine learning and computing science. By analyzing the
sensor data during motions, we can establish an objective method to identify a patient’s
movement intention or disease state, and this has been widely applied in fall detection [1,2],
artificial limbs and exoskeletons [3,4], as well as disease monitoring and assessment [5,6].
Traditional technologies for motion identification and disease assessment require expensive
laboratorial instruments, such as gait channel, electro-optical motion capture and three-
dimensional force platform. Compared with these methods, surface electromyography
(sEMG) is a kind of portable, non-invasive and low-cost wearable device, which has
been widely used for assessing human activities, especially in the field of neurological or
musculoskeletal disorder diagnosis, exoskeleton control and rehabilitation guidance [7–9].

The sEMG sensors are used to record and analyze muscle activation during gestures
and motions. Each voluntary motion involves the activation of a large amount of muscles,
and the functions of muscles vary from motion to motion. For example, when performing
leg flexion at standing position (STD), the gluteus maximus, quadriceps, triceps surae and
erector spinae are recruited to keep balance for straight standing, while femoral biceps
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(FB) and semitendinosus (SEM) are recruited as agonistic muscles with rectus femoris
(RF) and vastus medialis (VM) as antagonist muscles for knee flexion. Leg extension at
sitting position (ST) involves recruitment of a powerful group of thigh muscles, which
are quadriceps recruited as agonistic muscles and hamstrings recruited as antagonists.
In addition, most of the lower limb muscles are recruited for multiple functions when
performing complex and nature movements like gait exercise (Gait). STD, ST and Gait
reveal the main functions and activation patterns of knee muscles. Therefore, study of
the lower limb muscle activation pattern during the aforementioned motions can help us
to investigate the effects of knee pathology on neuromuscular control during voluntary
movement, and to establish objective metrics for disease diagnosis. Moreover, classification
on patients’ lower limb motions is an important and challenging task in remote disease
monitoring and rehabilitation based on task-specific assessment, as well as neural control
of external devices to assist movements of patients with lower limb motor dysfunction or
amputation. Such applications require the use of a compact and portable system while
overcoming the classification bias caused by various muscle abnormalities. Thus, to design
a robust lower limb motion classifier for subjects with and without knee pathology is one
of the objectives of this work.

Note that the sEMG signals of thigh muscles are often multilayer overlapping of sur-
face and deep muscles [10–12], and performing lower limb motions is often accompanied
by a wide range of body movements and large load bearing, which leads to the complex
nature of the signals. This problem is more pronounced in subjects with muscular abnor-
malities. As a matter of fact, not only for the lower limb motions, voluntary movements
often involve multiple muscles and joints, which makes it difficult to extract robust and
useful information from raw sEMG data. Thus, it is necessary to establish a method to
explore the mechanism of motor nervous system on multi-freedom control. In order to
explain this mechanism, Bernstein [13] proposed a hypothesis of muscle synergy. The
muscle synergy hypothesis holds that the central nervous system (CNS) tends to achieve
efficient and precise control of a multi-degree of freedom by combining a small amount
of discrete muscle coordination patterns that are fixed and embedded in the brainstem
and spinal cord. That is, in the framework of muscle synergy, one synergy can activate
multiple muscles at a fixed intensity, while one muscle can be activated by multiple muscle
synergies. Figuratively, muscles are like letters, muscle synergies are words, and voluntary
movements are sentences composed of individual words [14].

Recent studies on the mechanism of motor neural control have provided evidence
for the hypothesis of muscle synergy. For instance, researchers found that the muscle
activation patterns that humans recruit for different sports (walking, jumping, swimming,
kicking a ball) have similar synergy structures [15]. While studies on postural responses
in newborns have shown that the muscle synergy pattern can be altered by learning on
the one hand, and is also innate on the other [16], which explains the similarities and
personalities between different people when performing the same movement. In addition,
from the perspective of a biomechanical model, researchers also proved that the muscle
synergy model can achieve a good reconstruction of complex motor behavior [17,18].

As muscle synergy patterns are the underlying mechanisms of the neuromuscular
control system, it is difficult to obtain such information directly from external sensors. One
solution is to perform matrix factorization algorithms on the raw sEMG signals, which can
reveal complex connections between different channels, and isolate a linear combination of
deep components, which are likely to be closely related to the motor unit action potential,
from the source information [19]. Non-negative matrix factorization (NMF) provides a
method to extract the linear representations of the input data which are a mixture of
multiple channels of information [20,21]. Unlike other matrix factorization algorithms,
such as principal component analysis (PCA) and independent component analysis (ICA),
NMF requires that the sub-matrices obtained by decomposition be non-negative, which
means the raw data can be described as an additive combination of lower-dimensional
patterns [22]. Because all the muscle activation data are non-negative and there is no
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need to limit muscle synergy patterns to orthogonal to each other, therefore, NMF is more
suitable for muscle synergy extraction than other matrix factorization algorithms.

Several works have been carried out to study the underlying mechanism of neu-
romuscular control for a variety of human activities based on the NMF-based muscle
synergy analysis, such as crawling [23], walking [24], running [25], golfing [26] and dart
throwing [27]. Furthermore, the function of this method to reveal intrinsic patterns in
the neuromuscular system prompted the researchers to use it to study the expression of
human muscle states. For example, Smale et al. [28] proposed a method to supplement
continuous wavelet transforms with muscle synergies in the traditional sEMG fatigue
analysis and achieve better performance of describing muscle fatigue. Studies on patients
with Parkinson’s disease [29], cerebral palsy [30], and spinal cord tract disease [31] have
found that the muscle synergy of these patients are different from those of healthy people
when performing specific tasks, and NMF-based sEMG analysis can be used to establish
assessment metrics for the diseases. In addition, in engineering application, Lin et al. [32]
proposed a multi-degree of freedom control method for artificial limb based on NMF of
sEMG with the inclusion of sparseness constraints. Experiments were conducted on normal
subjects and two patients with unilateral limb defects, and achieved better performance
than the previous supervised algorithms. Naik et al. [22] proposed a NMF-based method
to classify 10 finger movements recorded from two sEMG sensors up to 92% accuracy.
Similarly, a series of studies on upper limb motion based on NMF of sEMG have been
carried out in a normal person and patients [33–36], which indicated that it is also feasible
to use this method to study the lower limb motions.

The present study first extracts the thigh muscle synergy of subjects with and without
knee pathology when performing three different lower limb motions, and then analyzes
and compares the muscle synergy patterns and corresponding activation coefficients of
different subjects during different motions. Therein, a muscle synergy similarity calculation
method is proposed and a lower limb motion classifier based on the features extracted
from muscle synergy matrices is designed. Moreover, a pilot study is conducted to explore
the feasibility of the diagnosis of knee pathology with NMF of sEMG data. In particular, a
two-stage feature selection method is introduced to investigate the best NMF-based feature
sets for motion classification or knee pathology diagnosis.

2. Algorithm for Muscle Synergy Analysis
2.1. Muscle Synergy Extraction

The NMF algorithm was used in this work to extract the muscle synergy pattern
and the corresponding activation coefficient. Generally, a set of sEMG envelope signals
obtained from multichannel recordings can be expressed as a m× n matrix Am×n, where m
means the number of channels and n means number of samples. Am×n is decomposed in
two non-negative matrices W and H by NMF as:

Am×n = Wm×k × Hk×n + ε (1)

where, Wm×k is the muscle synergy pattern matrix with k synergies, Hk×n is the activation
coefficient matrix of the k synergies, and ε is the residue of the factorization. An example of
NMF decomposition of multi-channel sEMG signals is shown in Figure 1.
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Figure 1. An example of the non-negative matrix factorization (NMF) decomposition of multiple channel surface elec-
tromyography (sEMG) signals. The muscles are the rectus femoris (RF), femoral biceps (FB), vastus medialis (VM) and
semitendinosus (SEM). The five subgraphs from left to right are raw sEMG signals, envelops of the sEMG signals, the
muscle synergy pattern when k = 2, the activation coefficient when k = 2 and the comparison diagram between the original
envelops and reconstructed signals.

The goal of NMF is to find W and H which solve:

minimize J(A, W, H)
subject to W ≥ 0 and H ≥ 0

, (2)

where, J(A, W, H) is the cost function and the one we used in this work is Euclidian
distance, as:

J = ‖A−W × H‖, (3)

To solve the problem shown in Equation (2), a multiplicative update algorithm pro-
posed by Lee and Seung [21] was applied due to its low computational complexity. The
update rules are:

H ← H × WT ·A
WT ·W·H

W ←W × A·HT

W·H·HT

, (4)

For the proposed research, each column vectors of W in each iteration were normalized
to make the synergy matrices of different subjects comparable. Moreover, to reduce the risk
of falling into locally optimal solutions, the iterations were carried out 20 times begin with
different random initial W and H, as well as one time with singular value decomposition
(SVD) based initial W and H [37]. The final submatrices were determined as those with
maximum variability accounted for (VAF), which is calculated as:

VAF = 1− (A−W × H)2(
A− A

)2 , (5)

Considering a special case in which the activation coefficient matrix is calculated when
muscle synergy pattern matrix is determined. A modified version of Equation (4) was used,
i.e., only the update algorithm of the H was used, while W remained unchanged.

2.2. Quantify the Similarity between Muscle Synergies

The muscle synergy consists of two parts, one is muscle synergy pattern and the
other is activation coefficient. Similarity of different muscle synergy pattern matrices is
calculated by the maximum correlation coefficient (CC) of the two matrices [30,38]. For two
synergy matrices W1m×k1 and W2m×k2 (k1 ≤ k2), the first step to calculate the maximum
CC is to select k1 of the k2 column vectors of W2m×k2 and reconstruct them into a new
matrix W2m×k1, of which the CC with W1 can be easily obtained. The maximum CC is the
largest CC of W1 with all the reconstructed matrices W2. The intra-similarity of a group of
muscle synergy pattern matrices is obtained by computing the average of the maximum
CCs between all pairs of matrices within the group. The inter-similarity of two groups



Diagnostics 2021, 11, 1318 5 of 23

is figured out by averaging the maximum CCs between all pairs of matrices consisting
of one matrix from each group. In addition, the method for quantifying similarity of the
activation coefficient matrix is the same as that for the muscle synergy pattern matrix.

3. Materials and Methods

The flow chart of methods in the present study is shown in Figure 2.

Figure 2. Schematic diagram of the NMF-based sEMG classifier for lower limb motions identification and knee
pathology diagnosis.

3.1. Data Description

Raw data were downloaded from the UCI Machine Learning Repository [39], which
contains four channels of lower limb sEMG signals and one channel of goniometry signal
obtained from 22 male subjects older than 18 years of age. Half of the subjects were healthy
participants without any knee injury or pain (Control Group, CG), and the other half
were individuals with knee pathology and had not started a rehabilitation process before
the tests (Study Group, SG). Among the SG, six subjects had anterior cruciate ligament
injury, four were suffering from meniscus injury and one’s sciatic nerve was injured. The
raw data were recorded by using a data logger (Datalog MWX8 by Biometrics) with four
channels of sEMG and one SG150B goniometer at sampling frequency of 1000 Hz. The
surface electrodes were spaced apart by 20 mm and placed on the surface of four thigh
muscles, which were RF, FB, VM and SEM. Meanwhile, the goniometer was attached to
both sides of the knee to record the dynamics of knee angle during the experiments. All
the sensors were attached to the left leg for normal subjects and to the diseased leg for
abnormal subjects. During the experiments, each subject was asked to perform three lower
limb motions, which were STD, ST and Gait, respectively. To be specific, STD was started
with static standing, following with flexing the target shank slowly to achieve maximum
flexion, keeping the flexion for a while and then extending the shank to the initial position.
ST was started with sitting on a chair at rest, following with extending the target shank to
the horizontal position, keeping the extension for a while and flexing the shank to the initial
position at last. According to the description of Herrera-González [40], each subject was
required to perform at least four times STD/ST according to the following time sequence:
2 s for flexing the leg, extending the leg and maintaining leg flexion/extension, respectively;
while relaxing 3 s between each motion. The Gait was straight walking back and forth on
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level ground at the pace subject felt comfortable with. For each straight walking, subjects
were required to take four steps on each leg.

3.2. Data Preprocessing

Data processing was performed on the Matlab software (MATLAB R2018a, The Math-
Works, Inc., Novi, MI, USA). Raw sEMG data were first filtered through a fourth-order
Butterworth 20–450 Hz bandpass filter, then zero-centered and rectified. Afterwards, the
amplitude of the processed data of each muscle was normalized to the respective maximum
amplitude across all movements [25]. Finally, a 100 ms moving average root-mean-square
(RMS) window was used to extract the envelope of sEMG signals.

Moreover, the raw angle data were smoothed by using a moving average window,
and then a segmentation algorithm was introduced to segment the movements. For ST
and STD, the curve of knee angle in one motion is bell shaped, and the beginning point set
to the first point reached 10% of the maximum speed over the extension/flexion phase in
one movement for ST/STD, respectively, while the ending point was set to the first point
less than 10% of the maximum speed over the flexion/extension phase. Meanwhile, the
segment point for Gait was set to the first minimum point after the maximum joint angle,
which was considered to be the beginning of the support phase.

Note that the walking speeds were different between subjects, which could induce
variations. Although there is a lack of information about walking speed of each subject,
we can still monitor the speed-related variations by using the goniometer. Based on the
segment of Gait, we calculated the average duration of each Gait segment for each subject
as shown in Figure 3. Independent-samples t-test was performed to compare the difference
of average duration of Gait between subjects in CG and SG, and the results showed no
significant difference (p = 0.693). With the exception of one subject (SG group, subject No.6),
subjects in both CG and SG walked at a similar gait cycle (1.32 ± 0.103 s).

Figure 3. Average duration of each Gait for subjects in different groups. The ‘+’ in the figure
represents the outlier.
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3.3. Data Analysis
3.3.1. Non-Negative Matrix Factorization (NMF) Decomposition for Each Segment

The processed sEMG data for each segment were resampled to 100 samples to generate
the sEMG signal matrix (a 4 × 100 matrix with 4 channels of sEMG and 100 sample points).
Then the NMF algorithm was applied to these matrices. To optimize the number of
synergies, the VAF were calculated for each matrix while changing the synergy number k
from 1 to 4. Optimal k of each motion were set as the minimum number of synergies that
makes the mean global value of VAF larger than 0.85 [41].

3.3.2. Building Representative Muscle Synergy for Each Motion of Each Subject

For each subject, the synergy pattern matrices extracted from the EMG data of each
motion were grouped and averaged across segments to generalize the representative muscle
synergy matrix. In particular, the outlier matrices were removed from the averaging by the
following steps: first, the similarities of each synergy pattern matrix with other matrices in
the same group were calculated and then averaged. Afterwards, the distribution of all the
average similarities were analyzed, and the matrices with average similarities that cannot
satisfy the following equation were considered outliers.

Si − S < 3δ, (6)

where, Si is the average similarity of the i-th matrix, S and δ are the mean and standard
deviation of all the average similarities in the group. Out of all 385 synergy pattern matrices,
10 were considered outliers and were eliminated.

For each motion segment of each subject, the activation coefficient matrix is calculated
by the method described in Section 2.1 under the premise of determining representative
synergy pattern matrix. Afterwards, the activation coefficient matrices are averaged across
motion segments to obtain the representative activation coefficient for each motion of
each subject.

Finally, 2× 11× 3 (2 subject types, 11 subjects for each type and 3 motions) representa-
tive muscle synergy matrices and 2 × 11 × 3 representative activation coefficient matrices
were generalized for the similarity analysis.

3.3.3. Similarity Analysis

Analysis of intra-similarity of the muscle synergies in three lower limb motions
within different subject groups (which were CG group, SG group and the combined group
consisting of all subjects) were implemented, while the inter-similarity of muscle synergies
between different subject groups were also calculated. Results of these analyses can reveal
the differences in the muscle synergy of the thigh muscles during three motions between
subjects with and without knee pathology, which may be helpful for the diagnosis of
knee abnormal based on the muscle synergy analysis. In addition, similarities of muscle
synergies between different motions were also analyzed for all subject groups, which may
be helpful to establish a lower limb motion classifier based on muscle synergy analysis.

3.4. NMF-Based Classification of Lower Limb Motions with sEMG Data
3.4.1. Segmentation

The processed sEMG data were divided into epochs by a moving window, which
consists of 256 samples with an overlap of 64 samples [19]. Then each epoch of sEMG data
were supplied to the NMF algorithm to extract the synergy pattern matrix W = [w1 · · ·wk]

and the activation coefficient matrix H = [h1 · · · hk]
T . Considering that the optimal synergy

number k is different in different motions (2 in ST and STD, 3 in Gait, which are described
in Section 4.1), the NMF algorithm was executed once for k = 2 and once for k = 3 to figure
out the best solution.
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3.4.2. Feature Extraction

To facilitate the classification, features were extracted from W and H. Nonetheless, due
to the random initialization in NMF algorithm, the order of the column vectors of W (syn-
ergy pattern vectors) and row vectors of H (activation coefficient vectors) are also random.
To solve this problem, vectors were rearranged in the order of the corresponding activation
ratios from largest to smallest. The activation ratio of the i-th synergy pattern vector as
well as that of the i-th activation coefficient vector are calculated by the following equation:

ri =
RMS(hi)

k
∑

i=1
RMS(hi)

, (7)

Weights of corresponding muscles in the reordered synergy pattern vectors were
selected as features, as

[
w1

1, w2
1, w3

1, w4
1, . . . , w1

k , w2
k , w3

k , w4
k
]
; where wj

i represents the weight
of j-th muscle of i-th synergy pattern vector. Moreover, a set of time-domain features were
also generated from each reordered activation coefficient vector, which was a time series
h(t), t = 1, . . . ,N, where N = 100. Features extracted from H and their computational
formula are shown as follows:

• RMS.

RMS =

√√√√ 1
N

N

∑
t=1

h(t)2, (8)

• Fourth-order auto-regressive model (AR).

h(t) = −
4

∑
i=1

aih(t− i) + e(t), (9)

where, ai and e(t) are the AR parameters and residual, respectively.

• Interquartile Range (IQR).

IQR = Q3 −Q1, (10)

where, Q1 and Q3 are the first and third quartile of h, respectively.

• Waveform Length (WL).

WL =
N−1

∑
t=1
|h(t + 1)− h(t)|, (11)

• Mean Absolute Value (MAV).

MAV =
1
N

N

∑
t=1
|h(t)|, (12)

3.4.3. Feature Selection

Two feature combinations were tested both in the case of k = 2 and k = 3 in the
present work. One of them contains only the features obtained from W (coarse feature sets,
8 features in the case of k = 2, 12 features in the case of k = 3), and the other contains all the
features generated from W and H (fine feature sets, 8 + 2 × 8 = 24 features in the case of
k = 2, while 12 + 3 × 8 = 36 features in the case of k = 3).

The Relief-F Index (RI) is used to evaluate the class separability of the features [42,43].
The Relief-F is an iterative algorithm that gives weight to each feature by calculating its



Diagnostics 2021, 11, 1318 9 of 23

correlation to all categories, with the higher the correlation with classification performance,
the higher the weight. The update rule for Relief-F is:

RI(A) = RI(A)−
k
∑

j=1
di f f

(
A, R, Hj

)
/(mk)+

∑
C/∈class(R)

[
p(C)

1−p(class(R))

k
∑

j=1
di f f

(
A, R, Mj,C

)]
/(mk)

(13)

where, RI(A) represents the weight of feature A, before the iteration, all RI(A) were
initialized to 0. Moreover, m is the number of iterations and was set to equal the number
of samples, k is the number of k-nearest neighbors, which was set to 1 in this work.
di f f (A, B, C) means the distance between sample B and Sample C in the dimension of
feature A, which is calculated as:

di f f (A, B, C) =
|B[A]− C[A]|

max(A)−min(A)
, (14)

This considered that the raw feature vectors in the fine feature sets were multidi-
mensional data with redundant and irrelevant information. A two-stage feature selection
method was introduced. First, RI of all features were calculated, and those with RI less
than zero were eliminated. Then, the sequential forward selection (SFFS) algorithm was
carried out to reduce the dimension of the retained feature sets [44,45]. In particular, the
evaluation criterion of the SFFS algorithm was the classification performance of selected
feature subsets with the random forests (RFS) classifier.

3.4.4. Data Classification and Cross Validation

Note that the raw data were unbalanced between different classes, which may lead to
classification bias towards the majority class by using the unbalanced raw data as training
set directly. To overcome this barrier, a resampling method was applied. Specifically, the
minority class was oversampled through the ADASYN algorithm and the majority class
was undersampled by random sampling with replacement [46,47] while the resampling
scale was set to the geometric mean of the scale of all classes.

The RFS algorithm was applied as the classifier. RFS, which was first proposed by
Breiman [48], is an ensemble algorithm consisting of many decision tree-based classifiers.
Compared with other classifiers like support vector machine (SVM) and K-nearest neighbor
algorithm (KNN), it has high classification accuracy and calculation speed, as well as good
anti-overfitting and anti-noise performance. The number of trees is an important parameter
of RFS, increasing the number of trees results in a linear increase in running time and
an increase in classification performance [49]. In the present study, we calculated the
classification performance when the number of trees increased from 8 to 100, and the
relationship curve between the number of trees and classification performance could be
approximately fitted to a first-order rational curve, which means that there is an upper
bound on the increase in performance. Considering the classification performance and
operation efficiency of the algorithm, the number of trees was set to 30.

The 10-fold cross validation method was adopted to evaluate the classification perfor-
mance. This required randomly splitting the NMF-based feature data set into 10 subsets,
and repeating the validation method 10 times. For each time, one of the 10 subsets was
selected as the testing set with the remaining 9 subsets as training set. The classification
performance was determined as the average F-measure (FM) of all 10 folds. The FM is a
classification performance evaluation metric obtained as the weighted harmonic average
of precision and recall.

Pi =
nii

∑
j=1

nji
, (15)
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Ri =
nii

∑
j=1

nij
, (16)

FMi =
2PiRi

Pi + Ri
, (17)

where, nij represents the number of samples identified as class j and actually class i.

3.5. Diagnosis of Knee Pathology with NMF of sEMG Data

An additional pilot study was conducted to explore the feasibility of using NMF-based
sEMG features in the diagnosis of knee pathology. Features used for diagnosing were
extracted with the same methods described above, while the only difference was to change
the multi-category label of different lower limb motions to the binary label of with or
without knee pathology. Moreover, the methods described in Section 3.4 were also used to
identify subjects with or without knee pathology.

3.6. Statistical Analysis

An independent sample t-test was used to check the difference in average duration of
Gait between CG and SG. One-way analysis of variance (ANOVA) was applied to evaluate
the intra-group and inter-group differences of similarities of muscle synergy in different
subject groups or movement pairs. Wilcoxon signed-rank tests was utilized to analyze the
influence of synergy number and feature sets on the classification performance. Results
were considered significant for p < 0.05.

4. Results
4.1. Optimal Number of Muscle Synergies

The mean VAF of CG group and SG group performing different motions when k
equals from 1 to 3 are shown in Table 1. Figure 4 shows the mean VAF as functions of the
numbers of muscle synergies in different subject groups when performing different lower
limb motions. According to the criteria described in Section 3.3.1, the minimum number of
synergies that makes the mean VAF larger than 0.85 is 2 for STD and ST, while 3 for Gait.
Therefore, these parameters were used in subsequent studies.

Table 1. The mean variability accounted for (VAF) of Control Group (CG) and Study Group (SG)
performing different motions when k equals different values.

Motion Number of Synergy Control Group Study Group

Leg flexion at
standing position

(STD)

1 0.7388 0.8015
2 0.8570 0.9058
3 0.9500 0.9725

Leg extension at
sitting position (ST)

1 0.8088 0.6633
2 0.8989 0.8730
3 0.9580 0.9338

Gait exercise (Gait)
1 0.6486 0.5797
2 0.8085 0.7586
3 0.8973 0.8639
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Figure 4. Relationship between the number of muscle synergy structures and the mean VAF in
different groups when performing different lower limb motions. (a) STD, (b) ST, and (c) Gait. The ‘+’
in the figure represents the outliers.



Diagnostics 2021, 11, 1318 12 of 23

Figure 5 shows typical examples (CG group, subject No.10 and SG group, subject
No.11) of the muscle synergy pattern and the corresponding activation coefficient with the
optimal number of muscle synergies. The synergy patterns among thigh muscles extracted
from different lower limb motions are different. Take the subject CG10 cited in Figure 5 as
an example, FB and SEM play the main role during STD, while RF and VM are primarily
activated during ST. The activation ratios of the two muscle synergies are comparable
during STD and ST. However, all four muscles are activated to varying degrees during
Gait. The first two muscle synergies produce most of the contributions with a combined
activation ratio of 79%. According to the first two synergies, for subject CG10, RF and SEM
provide the main contribution during Gait and the main period of activation of the thigh
muscle synergies is the support phase.

Figure 5. Typical examples of the muscle synergy pattern and the corresponding activation coefficient with the optimal
number of muscle synergies in CG (subject No.10, denote as CG10) and SG (subject No.11, denote as SG11). The muscle
synergy and its corresponding activation coefficient of each subgraph from top to bottom is arranged from large to small
according to its activation ratio described in Section 3.4.2. (a) The STD of CG10, (b) the ST of CG10, (c) the Gait of CG10,
(d) the STD of SG11, (e) the ST of SG11, (f) the Gait of SG11.

4.2. Muscle Synergy Similarities

The intra-similarities of muscle synergy pattern and activation coefficient in each
subject group when performing different motions are shown in Figure 6. The muscle
synergy pattern extracted from each subject group when performing STD has high degree
of intra-similarity. While, the intra-similarity of muscle synergy pattern when performing
ST and Gait are moderate. Moreover, the intra-similarities of activation coefficient in each
group are much lower than that of the synergy pattern. The inter-similarity of muscle
synergy between the CG group and SG group is also shown in Figure 6. For muscle
synergy pattern, the inter-similarity is at a moderate level, while for activation coefficient,
the inter-similarity is much lower. Figure 7 shows the inter-similarity between different
motions (three different motion pairs, which are STD against ST, STD against Gait and
ST against Gait) in different groups. The inter-similarity of synergy pattern between STD
and ST was significantly lower than that between Gait and each of the other two motions



Diagnostics 2021, 11, 1318 13 of 23

(p < 0.05, one-way ANOVA), while the opposite is true in that of activation coefficient
(p < 0.05, one-way ANOVA). Besides, in both CG and SG, the similarities of synergy pattern
and activation coefficient when performing the same lower limb motion were significantly
higher than that when performing different motions (p < 0.05, one-way ANOVA).

Figure 6. Intra-similarity of different subject groups (CG, SG and the combined group CG + SG)
and the inter-similarity between CG group and SG group (CG-SG) when performing three differ-
ent motions (STD, ST and Gait). The numbers on the bar represent the corresponding average
similarity coefficient.

Figure 7. Inter-similarity between any two of the three motions (STD, ST and Gait) performed
of different subject groups (CG, SG and the combined group CG + SG). The numbers on the bar
represent the corresponding average similarity coefficient.

4.3. Lower Limb Motions Classification

Figure 8a shows the RI of all features when k = 2 in the decreasing order. 4 features
(AR51, AR52, rms1 and MAV1, where the subscript i in feature Fi means the i-th synergy
pattern vector or activation coefficient vector) with RI less than zero were eliminated in
the first step of the feature selection method described in Section 3.4.3. Moreover, the red
scatters in Figure 8a represents all the features obtained by the feature selection method.
To be specific, 15 features were selected, which were all the 8 features in the coarse feature
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sets, rms1, AR21, WL1, MAV1, AR22, AR32 and WL2. Moreover, the class separability of
features when k = 3 is shown in Figure 8b. Therein, 8 features (rms2, AR42, AR53, MAV2,
WL1, AR52, WL3 and WL2) were eliminated and 13 features (W1

2, W1
3, W1

4, W3
1, W3

2,
W3

3, AR21, MAV1, AR32, IQR2, rms3, AR23 and AR43) were selected.

Figure 8. The Relief F Index of all features in the fine feature sets and features (the red scatters) selected by the feature
selection method in different synergy numbers. (a) k = 2 and (b) k = 3. The blue scatters represent features that are not
selected by the feature selection method.

The classification performance of different feature sets in three subject groups with
two kinds of synergy number are listed in Table 2. Mean FM of the coarse feature sets is
the smallest among all three feature sets, while the classification performance of the fine



Diagnostics 2021, 11, 1318 15 of 23

feature sets and selected feature sets are comparable. Significance probability of Wilcoxon
signed-rank tests on mean FM of classification on feature sets when k = 2 and k = 3 is below
0.05, and FM of classification on feature sets when k = 2 is higher than that when k = 3 in
all conditions. Therefore, subsequent studies on motion identification were all carried out
under the condition of k = 2.

Table 2. Mean F-measure of different subject groups and different feature sets with different
synergy number.

Feature Sets Subject Group k = 2 k = 3

Coarse Feature Sets
Control Group 0.920 0.902
Study Group 0.938 0.910

Combined Group 0.913 0.897

Fine Feature Sets
Control Group 0.968 0.955
Study Group 0.973 0.958

Combined Group 0.962 0.952

Selected Feature Sets
Control Group 0.964 0.944
Study Group 0.973 0.949

Combined Group 0.960 0.943

Figure 9 shows the performance of motion classification with all feature sets extracted
from subjects of different groups performing three lower limb motions when synergy
number is set to 2. Motion classification performance with fine feature sets and selected
feature sets are significantly higher than that with coarse feature sets (p < 0.05, Wilcoxon
signed-rank tests).

Figure 9. Mean F-measure per lower limb motion for different subject groups and feature sets.

4.4. Knee Pathology Identification

Results of feature selection for NMF based knee pathology identification are shown
in Figure 10. Figure 10a reveals that for performing STD, 8 features (AR42, rms1, AR21,
MAV1, AR51, AR31, AR41, AR52) with RI lower than zero were eliminated in the first step
of feature selection and additional 8 features (W1

1 , W2
1 , W3

1 , W1
2 , W2

2 , W3
2 , WL2, AR32) were

selected in the second step. In Figure 10b, 5 features (WL1, W2
3 , AR42, AR51 and rms2)

were eliminated in the first step and 8 features (W2
1 , W3

1 , W4
1 , W2

2 , W4
2 , AR21, AR32, AR31)

were selected in the second step for performing ST. While, for performing Gait, Figure 10c
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shows that 5 features (W2
2 , W2

3 , AR43, AR31, AR41) were eliminated and 9 features (W2
1 ,

W3
1 , W4

1 , W3
2 , W1

3 , IQR2, WL3, WL1, rms3) were selected at the end of the feature selection.
The classification performance of identifying subjects with or without knee pathology

when performing different lower limb motions by using different feature sets are shown
in Figure 11. The mean FMs of negative subjects (subjects without knee pathology) and
positive subjects (subjects with knee pathology) are 0.895 and 0.887, respectively. Moreover,
mean FMs for knee pathology identification based on sEMG synergy information when
performing STD, ST and Gait are 0.875, 0.918 and 0.880, respectively. Mean FMs obtained
by using coarse feature sets, fine feature sets and selected feature sets are 0.867, 0.903 and
0.902, respectively.

Figure 10. Cont.
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Figure 10. The ReliefF Index of all features in the fine feature sets and features (the red scatters) selected by the feature
selection method when performing different motions. (a) STD, (b) ST and (c) Gait. The blue scatters represent features that
are not selected by the feature selection method.

Figure 11. Mean F-measure of identifying subjects with or without knee pathology at different feature sets and lower
limb motions.

All the data analysis and classification algorithms were implemented in Matlab R2018a
on a 3.0 GHz Inter(R) Core_(TM) i5 processor with 8 GB RAM. Mean time for NMF of a
segment of four channel sEMG data was 119 ms, while time for feature extraction was
11 ms for selected feature sets and 17 ms for fine feature sets. Additionally, the training
time of RFS classifier with coarse feature sets, fine feature sets and selected feature sets
were 3.704 s, 5.771 s and 3.825 s, respectively. While, the prediction speed for the three
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feature sets were approximately 14,000 observation per second (obs/s), 11,000 obs/s and
13,000 obs/s, respectively.

5. Discussion

The present work studies the muscle synergy of thigh muscles during three lower limb
motions. According to the muscle synergy hypothesis, muscle synergy is the minimum unit
for CNS to recruit skeletal muscles to perform various movements, and the neuromuscular
control of complex and natural motions can be regard as linear combination of several
muscle synergies with different functions. STD, ST and Gait reveal the muscle synergy in
knee flexion, extension and hybrid motion, respectively. Although synergy number in Gait
is larger than those in STD and ST, results of the present work show that a small amount
of muscle synergy can be used to reconstruct the sEMG signals of the thigh muscles in
the three motions. The reason for the difference in synergy number between Gait and
the other two motions may be that the former involves motion of bilateral multi-joints
with multi-degree of freedom, while the latter mainly involves a single degree of freedom
of knee flexion or extension. In fact, only one synergy pattern is required to reconstruct
the STD or ST for some subjects, as shown in Figure 4, while it cannot be achieved in
Gait. Extending the sEMG channels to the shank and contralateral lower limb can solve
this problem. For example, a study by Hikaru Yokoyama [50] showed that the sEMG
information of 16 ipsilateral lower limb muscles could be reconstructed by only one or two
synergy patterns during walking at different speeds. Results of muscle synergy analysis
of the present study provide new evidence for the muscle synergy hypothesis in the
neuromuscular control of knee movements.

5.1. Muscle Synergy Differences between Different Subject Groups or Different Motions

By analyzing the similarities between subjects in performing specific lower limb
motions, the results of the present work showed the consistency in synergy pattern across
subjects within the same motion. In Figure 6, the degree of intra-similarity of muscle
synergy pattern within each subject group has high level in STD as well as medium level
in ST and Gait, even in the worst case the intra-similarity coefficient of synergy pattern
is still 0.556. However, such consistency did not appear in activation coefficient under
the same conditions mentioned above. These findings suggest that the CNS tends to
recruit similar muscle synergy patterns when performing the same lower limb motions in
different subjects, and the subjects’ personalities are mainly defined by the difference of
the activation sequences of these patterns.

Figure 7 shows an opposite results on the differences of inter-similarity between
different motion pairs in synergy pattern and activation coefficient. The reason for this
phenomenon is that the CNS mainly recruit the single flexion or extension function of
the knee in STD or ST, while both functions are recruited in Gait. Nonetheless, the de-
gree of inter-similarity between each motion’s pair was low either in synergy pattern or
activation coefficient.

According to the results of Figures 6 and 7, the intra-similarity of muscle synergy
within same motions is significantly higher than the inter-similarity between different
motions, which indicates that it is feasible to use the features extracted from the muscle
synergy matrices for lower limb motion recognition. In particular, although the inter-
similarity of muscle synergy across subject groups was lower than the intra-similarity
within each group when performing different motions (0.114 less on average for synergy
pattern and 0.109 less on average for activation coefficient), it was still much greater than
the inter-similarity between different motions (0.245 higher on average for synergy pattern
and 0.117 higher on average for activation coefficient), which suggests that the lower
limb motion recognition based on muscle synergy may have good consistency in both
healthy subjects and subjects with knee pathology. Moreover, differences between the
inter-similarity across subject groups and the intra-similarity within each subject group
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also indicated that it is possible to use muscle synergy information to distinguish subjects
with or without knee pathology.

To date, several studies have analyzed the similarities of muscle synergy during dif-
ferent movements in different condition. For example, Akira Saito et al. [25,38] proved that
the muscle synergies extracted from lower limb muscles are consistent between different
walking conditions, such as ground inclination angle. However, this consistency changes
with significant differences in speed, Yokoyama et al. [50] found that muscle synergies
are different while walking and running. Ortega-Auriol et al. [51] studied the adaptions
of muscle synergies to the development of fatigue and found that synergy patterns were
conserved with fatigue, but activation coefficients decreased. When discussing the effects of
neuromuscular disease, Francesca Lunardini et al. [52] found that despite children with dys-
tonia presenting abnormal kinematics of the writing outcome, they still tend to have similar
number and structure of the synergy vectors compared with age-matched controls during
the execution of writing tasks. In a study that explored a muscle synergy-based method
to assess the upper limb motor dysfunction of cerebral palsy children, Lu Tang et al. [30]
analyzed the similarities of muscle synergy when performing three similar upper limb
motion tasks between the patients and controls. They found many abnormal synergy
patterns specific to the patients and developed seven muscle synergy based upper limb
assessment metrics. These studies suggest the consistency and specificity of muscle syn-
ergies between different movements or different motion conditions (speed, fatigue and
disease for example), which is similar to our similarity analysis of the muscle synergy of
knee related muscles in different subject groups performing different movements.

5.2. Performance of Muscle Synergy-Based Lower Limb Motion Classifier

Several works have been undertaken by other researchers based on the dataset we
used. For motion recognition, Marcelo Herrera-González [40] developed an MP-ANN
classifier to recognize the lower limb motions by using the frequency domain and wavelet-
based time-frequency domain features extracted from raw sEMG and a goniometer. Ac-
curacy of identifying STD, ST and Gait in this work were 0.92, 0.94 and 0.88 on average,
respectively. Although the classification performance was good, this work lacked a de-
scription of the classification performance in different subject groups. Furthermore, the
high accuracy was obtained by the fusion of two heterogeneous sensors. Accordingly,
the accuracy dropped to 0.82 when only sEMG was used. Building a robust, responsive
and concise motion classifier with only sEMG information is useful in clinical application.
However, Naik [19] et al. found that the classification performance is low by building a
classifier with features extracted from raw sEMG segments. To solve this problem, they
designed an ICA-EBM-based sEMG classification scheme by building an LDA classifier
with time-domain features and fractal dimension extracting from the source estimates
obtained by decomposing the multi-channel sEMG data with the ICA-EBM algorithm. The
average classification accuracy in CG and SG of that work were 0.961 and 0.862, respectively.
Note that the classification performance in SG was much lower than that in CG, and the
data segments were obtained after the ICA-EBM algorithm had been adopted to the whole
sEMG dataset, which may be difficult in real-time applications.

In the present work, the lower limb motion recognition were realized by building a
RFS classifier using features extracted from NMF of the multi-channel sEMG data. Table 2
shows that the classification performance in CG and that in SG is comparable, which meets
the analysis on the muscle synergy similarity mentioned above. Note that the mean FMs of
motion classification with all three feature sets are higher than 0.9, and higher than 0.96
for the feature sets extracted from both the synergy pattern matrix and corresponding
activation coefficient matrix as well as the reduction version of this feature set. These
results indicate that the NMF-based sEMG lower limb motion recognition has good and
consistent performance among subjects with and without knee pathology.

Motion classification performance with fine feature sets and selected feature sets are
significantly improved compared with that with coarse feature sets, which suggests that
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the muscle synergy activation sequence contains additional useful information that the
muscle synergy pattern dose not. In addition, motion recognition by using selected feature
sets can improve the training and testing speed compared with by using all the features,
while it can still achieve good and consistence classification performance compared with
by using features only extracted from the synergy pattern. Therefore, the NMF-based
sEMG lower limb motion recognition with the selected feature sets has great potential in
real-time applications, especially in the case of limited number of sensors required, such as
intelligent prosthetic control for patients with calf cutoff.

5.3. Muscle Synergy Based Classification Is a Potential Method for Knee Pathology Diagnosis

For knee pathology diagnosis, Majid Janidarmian et al. [53] investigated eight different
classification techniques with a set of time-domain features extracted from sEMG and
goniometer data of the same dataset we used. The best accuracy was 0.972 by using the
bagged decision tree in this work. Note that the high classification performance were
achieved by using the fusion information of sEMG and a goniometer, and the slide window
size was 5.5 s. Ertugrul et al. [54] built an adaptive local binary pattern (ALBP) algorithm
to detect hidden patterns of sEMG signals, which can express the illness. The ALBP was
adopted in the dataset we used, and achieved an accuracy of 0.85 for distinguishing subjects
with and without pathology.

In the present work, the identification performance for knee pathology diagnosis
when performing ST was better than that when performing the other two motions. For
subjects with knee pathology, it is a challenging task to keep one leg supported while
flexing the other leg. Compared with healthy people, subjects with knee pathology may
need some compensatory muscle activation to overcome the damage caused, especially in
a difficult task such as ST. This compensatory muscle activation can lead to changes in the
muscle synergy pattern, which is evidenced by the results in Figure 6 that the inter-group
similarity of synergy pattern when performing ST was significantly lower than that when
performing the other two motions (p < 0.05, one-way ANOVA). Additionally, similar to the
lower limb motion recognition, the selected feature sets is recommended in knee pathology
identification due to its good classification performance and high speed.

Performance of knee pathology diagnosis can be improved by combining the sEMG
information of subjects in various types of motion. Nonetheless, it must be remembered
that the data used in the present work came from open source datasets, and the temporal
relationships between different types of motions performed by the same subject are lacking,
which makes it difficult to establish a fusion classifier based on multi-motion information.
Therefore, only the diagnostic models of subjects performing each motion were established
respectively in the present study. Besides, the knee pathology of subjects in SG was diverse
and varying in number, which may also reduce the classification performance. However,
despite these problems, the muscle synergy-based knee pathology classifier still achieved a
good performance and showed the potential to assist in clinical applications, not only in
the field of knee pathology diagnosis, but can also help to carry out targeted rehabilitation
training for neuromuscular control abnormality of knee muscles.

5.4. Limitation and Future Work

This paper conducted a preliminary study on the muscle synergy of knee-related
muscles of subjects with and without knee pathology when performing three lower limb
motions. Based on this, a muscle synergy based lower limb motion recognition frame-
work and a knee pathology diagnosis method were proposed. Despite some interesting
achievements, there are still some limitations that need to be improved in future work.

Firstly, only 11 healthy adult male subjects and 11 adult male patients with knee
pathology were involved in this study. The small number of subjects and incomplete
demographic distribution, and lack of female subjects, for example, may limit the statistical
results. Thus, more subjects with different kinds of demographic information should be
recruited in future work. Secondly, the open datasets we used included only four major
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thigh muscles, which may limit our understanding of neuromuscular control strategies in
knee movements, especially in complex motions such as walking. More muscles should be
considered in the future. Finally, patients in this work had three different knee pathologies,
which affects the accuracy and specificity of the diagnostic classifier, so there is still a lot
of work to be done in the clinical application of muscle synergy-based knee pathology
diagnosis. Future work should focus on designing continuous and complete test methods,
collecting more data to train the hybrid model, and proposing the assessment metrics for
specific knee pathology.

6. Conclusions

In the present study, muscle synergy analysis of three different lower limb motions
was conducted in subjects with and without knee pathology. Intra-group similarity of
synergy pattern when performing each motion was found to be at a medium-to-high level,
while inter-subject group similarity was lower than intra-group similarity. By contrast, the
activation coefficient similarity of subject groups was much lower, but the relation between
intra-subject group similarity and inter-subject group similarity in the activation coefficient
was the same as that in the synergy pattern. Moreover, the inter-similarity of either the
synergy pattern or activation coefficient between each two motions is generally at a low
level. The studies on muscle synergy similarity revealed the feasibility of identifying lower
limb motions or distinguishing subjects with or without knee pathology by using NMF of
sEMG signals.

In order to improve the classification performance of NMF-based lower limb motion
recognition, a two-stage feature selection method was introduced. Results show that
the RFS classifier by using the selected feature sets containing entries of synergy pattern
matrices and time-domain features of activation coefficient sequences can achieve good
classification performance and high execution speed. A similar study was carried out on
the diagnosis of knee pathology with NMF of sEMG signals. The mean FM of that was
highest with selected feature sets extracted from NMF of sEMG signals when subjects were
performing ST.

The proposed methods can be serve as a promising approach to develop a tool
for quantifying the underlying neuromuscular mechanisms involved in the execution of
lower limb motions for patients, which can be used for knee pathology diagnosis, motion
recognition and rehabilitation.
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