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Abstract

Background & Aims: Diet contributes to colorectal cancer development and may be potentially modified. We
wanted to identify the biological mechanisms underlying colorectal carcinogenesis by assessment of diet-gene
interactions.
Methods: The polymorphisms IL10 C-592A (rs1800872), C-rs3024505-T, IL1b C-3737T (rs4848306), G-1464C
(rs1143623), T-31C (rs1143627) and PTGS2 (encoding COX-2) A-1195G (rs689466), G-765C (rs20417), and
T8473C (rs5275) were assessed in relation to risk of colorectal cancer (CRC) and interaction with diet (red meat, fish,
fibre, cereals, fruit and vegetables) and lifestyle (non-steroid-anti-inflammatory drug use and smoking status) was
assessed in a nested case-cohort study of nine hundred and seventy CRC cases and 1789 randomly selected
participants from a prospective study of 57,053 persons.
Results: IL1b C-3737T, G-1464C and PTGS2 T8473C variant genotypes were associated with risk of CRC
compared to the homozygous wildtype genotype (IRR=0.81, 95%CI: 0.68-0.97, p=0.02, and IRR=1.22, 95%CI:
1.04-1.44, p=0.02, IRR=0.75, 95%CI: 0.57-0.99, p=0.04, respectively). Interactions were found between diet and
IL10 rs3024505 (P-value for interaction (Pint); meat=0.04, fish=0.007, fibre=0.0008, vegetables=0.0005), C-592A (Pint;
fibre=0.025), IL1b C-3737T (Pint; vegetables=0.030, NSAID use=0.040) and PTGS2 genotypes G-765C (Pint;
meat=0.006, fibre=0.0003, fruit 0.004), and T8473C (Pint; meat 0.049, fruit=0.03) and A-1195G (Pint; meat 0.038, fibre
0.040, fruit=0.059, vegetables=0.025, and current smoking=0.046).
Conclusions: Genetically determined low COX-2 and high IL-1β activity were associated with increased risk of CRC
in this northern Caucasian cohort. Furthermore, interactions were found between IL10, IL1b, and PTGS2 and diet
and lifestyle factors in relation to CRC. The present study demonstrates that gene-environment interactions may
identify genes and environmental factors involved in colorectal carcinogenesis.
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Introduction

Colorectal cancer (CRC) is one of the most common cancers
in the Western World [1]. Increasing incidence suggests that
lifestyle factors are deeply involved in the etiology of CRC and,
that modification of these factors may affect risk [2]. The
assessment of gene-environment interactions provides a tool

for understanding the underlying biological pathways by which
diet affects colorectal carcinogenesis [3–5]. This topic has
recently been reviewed [6].

Chronic intestinal inflammation is a well-known risk factor for
CRC [7]. Diet and lifestyle factors may affect intestinal
inflammation in many ways, directly or indirectly. Meat, for
example, has been found to affect the intestinal homeostasis
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e.g. by activation of pattern recognition receptors such as toll-
like receptors (TLRs) [8]. Also, meat is a source of n-6 poly-
unsaturated fatty acids (PUFA) which may undergo metabolic
conversion to arachidonic acid and predominantly pro-
inflammatory prostaglandins [9]. Fish is a source of n-3 PUFA,
which may modify inflammation [10]. Furthermore, dietary fibre
from vegetables, fruit and cereals are converted by colonic
bacteria to short-chain fatty acids (SCFA) which have been
found to affect intestinal inflammation in various ways including
stimulation of IL-10 production [11].

IL-10, IL-1β and COX-2 (encoded by IL10, IL1B, and PTGS2,
respectively), are important mediators of intestinal
inflammation. Both SCFA and TLR activation have been found
to affect production of IL-10 and IL-1β and thereby COX-2
activation [11,12]. IL-10 is a key anti-inflammatory cytokine
orchestrating the innate and adaptive immune response. IL-10
-/- mice develop colitis and subsequently colorectal
adenocarcinomas [13]. IL-1β is a proinflammatory cytokine and
genetic variation in IL1B has been associated with risk of lung
cancer and multiple myeloma [14,15]. A central function of
COX-2 in colorectal carcinogenesis is suggested by the finding
that long term use of COX-2 inhibitors (COXIB) has been found
to confer protection against CRC in some studies [16].

The use of functional polymorphisms has the advantage that
the results may allow interpretation of the involved biological
pathways in colorectal carcinogenesis.

We have previously assessed diet and IL10 gene
interactions in a prospective Danish cohort of three hundred
and seventy-eight CRC cases and a comparison group of 775
participants [17]. We found no association with CRC per see,
yet, we found interactions between IL10 polymorphisms and
intake of dietary fibre [17]. We have also previously assessed
genetic variation in IL1B and PTGS2 in this cohort, finding no
statistically significant associations with risk of CRC [3,18]. We
now extend our studies to a larger cohort with more than twice
the number of cases and members of the comparison group
and include more dietary factors and all the three functional
promoter polymorphisms in IL1B.

Therefore, we assessed the functional polymorphisms IL10
C-592A (rs1800872), IL1B C-3737T (rs4848306), G-1464C
(rs1143623), T-31C (rs1143627) and PTGS2 (encoding
COX-2) A-1195G (rs689466), G-765C (rs20417), T8473C
(rs5275) and the IL10 marker polymorphism C-rs3024505-T in
relation to diet (red meat, fish, fibre, cereals, fruit and
vegetables) and lifestyle (non-steroid-anti-inflammatory drug
use and smoking status) in a nested case-cohort study of nine
hundred and seventy CRC cases and 1789 randomly selected
participants from the prospective Diet, Cancer and Health study
encompassing 57,053 persons.

Methods

Studied Subjects
The Diet, Cancer and Health Study is an ongoing Danish

cohort study designed to investigate the relation between diet,
lifestyle and cancer risk [19]. The cohort consists of 57,053
persons, recruited between December 1993 and May 1997. All
the subjects were born in Denmark, and the individuals were

50 to 64 years of age and had no previous cancers at study
entry. Blood samples and questionnaire data on diet and
lifestyle were collected at study entry.

Follow-up and endpoints
Follow-up was based on population-based cancer registries.

Between 1994 and 31th December 2009, nine hundred and
seventy CRC cases were diagnosed. A subcohort of 1897
persons was randomly selected within the cohort. Of these,
108 with missing genotype data were excluded. All information
on genotypes and diet and lifestyle factors was available for
nine hundred and seventy CRC cases and 1789 subcohort
members.

Dietary and lifestyle questionnaire
Information on diet, lifestyle, weight, height, medical

treatment, environmental exposures, and other socio-economic
factors were collected at enrolment using questionnaires and
interviews. In the food-frequency questionnaire, diet
consumption was assessed in 12 categories of predefined
responses, ranking from ’never’ to ’eight times or more per
day’. The daily intake was then calculated by using FoodCalc
[19]; this program uses population specific standardized
recipes and portion sizes. Intake of red meat in grams per day
was calculated by adding up intake of beef, veal, pork, lamb
and offal. Intake of processed meat in grams per day was
calculated by adding up intake of processed red meat,
including bacon, smoked ham, salami, frankfurter, Cumberland
sausage, cold cuts and liver pâté. Dietary fibre intake was
based on country-specific food composition tables, which were
reviewed to ensure comparability to the association of official
analytical chemists (AOAC) fibre definition, which includes
lignin and resistant starch [20]. Fibre intake is calculated by
multiplying the frequency of consumption of relevant foods by
their fibre content as determined from national databases of
food content [21].

Contributing food items to the food group ‘cereals’ included
wholegrain foods (wholegrain bread, rye bread, wholegrain
flour, oatmeal, corncobs, müsli, and crispbread) and refined
grain foods (white wheat bread, wheat flour, rice flour, potato
flour, corn flour/starch, pasta, wheat) and was measured in
grams per day [22]. Intake of ‘fish’ in grams per day was
calculated by adding up intake of fresh and processed fish. For
fruit, only intake of fresh fruit (as indicated on the FFQ) was
examined, while vegetable intake also included estimated
contributions from recipes. The questionnaire was tested in a
validation study preceding the Diet, Cancer and Health study.
Pearson correlation coefficients (adjusted for total energy
intake) illustrating the comparison of nutrient scores estimated
from the food-frequency questionnaire and from weighed diet
records were 0.39 and 0.53 for dietary fibre and 0.37 and 0.14
for meat for men and women, respectively [23,24].

Smoking status was classified as never, past or current.
Persons smoking at least 1 cigarette daily during the last year
were classified as smokers.

The lifestyle questionnaire included this question regarding
use of NSAID: “Have you taken more than one pain relieving
pill per month during the last year?” If the answer was yes, the
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participant was asked to record how frequently they took each
of the following medications: “Aspirin”, “Paracetamol”,
“Ibuprofen”, or “Other pain relievers”. The latter category
included NSAID preparations other than aspirin and ibuprofen.
Based on all records, we classified study subjects according to
use of “any NSAID” (≥ 2 pills per month during one year) at
baseline.

Genotyping
Buffy coat preparations were stored at minus 150°C until

use. DNA was extracted as described [25]. The DNA was
genotyped by KBioscience (KBioscience, Hoddesdon, United
Kingdom) by PCR-based KASP™ genotyping assay. (http://
www.lgcgenomics.com/). One marker polymorphism, the IL10
C-rs3024505-T, and 8 functional polymorphisms were selected;
IL10 C-592A (rs1800872), IL1B C-3737T (rs4848306),
G-1464C (rs1143623), T-31C (rs1143627) and PTGS2
(encoding COX-2) A-1195G (rs689466), G-765C (rs20417),
and T8473C (rs5275). IL1B T-31C (rs1143627) [18], PTGS2
(encoding COX-2) A-1195G (rs689466), G-765C (rs20417),
and T8473C (rs5275) [3] were determined and reported
previously for a subset of the study group. Furthermore, all the
three SNPs in IL1B were determined for the whole comparison
group independently of the present work and reported
previously [26]. To confirm reproducibility, genotyping was
repeated for 10 % of the samples yielding 100% identity.

Statistical Analysis
Deviation from Hardy-Weinberg equilibrium was assessed

using a Chi square test.
Incidence rate ratios (IRR) and 95% Confidence Interval

(95%CI) were calculated according to the principles for
analysis of case-cohort studies using an un-weighted approach
[27]. Age was used as the time scale in the Cox regression
models. Tests and confidence intervals were based on Wald’s
tests using the robust estimate of the variance-covariance
matrix for the regression parameters in the Cox regression
models [28] as previously described [3,5,17,18,29–34].

All models were adjusted for baseline values of suspected
risk factors for colorectal cancer such as body mass index
(BMI) (kg/m2, continuous), NSAID (yes/no), use of hormone
replacement therapy (HRT) (never/past/current, among
women), smoking status (never/past/current), intake of dietary
fibre (g/day, continuous), and red meat and processed meat (g/
day, continuous). Cereals, fibre, fruit and vegetables were also
entered linearly. All analyses were stratified by gender, so that
the basic (underlying) hazards were gender specific. For all the
polymorphisms, IRR was calculated separately for
heterozygous and homozygous variant allele carriers. For all
the SNPs except for PTGS2 A-1195G, all variant allele carriers
were subsequently grouped for interaction analyses since no
recessive effects were observed. For PTGS2 A-1195G, a
recessive mode was used in the subsequent analyses.

Haplotypes of PTGS2 and IL1B were inferred manually as
done previously [3,35,36].

For the different genes, we investigated possible interactions
between the polymorphisms and intake of meat, dietary fibre,

cereals, fish, fruit and vegetables, smoking status and NSAID
use using the likelihood ratio test [3,14,32,35–37].

In another set of interaction analyses between the
polymorphisms and the dietary intake subdivided in tertiles,
dietary intake was entered as a categorical variable. Tertile cut-
points were based on the empirical distribution among cases.
The possible interactions were investigated using the likelihood
ratio test.

All analyses were performed using R version 2.15-1 (R Core
Team, 2013) [38]. A p<0.05 was considered to be significant.

Ethics Statement
All participants gave verbal and written informed consent.

The Diet, Cancer and Health study was approved by the
National Committee on Health Research Ethics (journal nr.
(KF) 01-345/93) and the Danish Data Protection Agency.

Results

Characteristics of the study population and risk factors for
CRC are shown in Table 1. The genotype distribution of the
polymorphisms in the sub-cohort did not deviate from Hardy-
Weinberg equilibrium (results not shown). The variant allele
frequency in the sub-cohort were for IL10 C-592A 0.22,
rs3024505 0.17, IL1B C-3737T 0.43, G-1464C 0.27, T-31C
0.33 and PTGS2 A-1195G 0.19, G-765C 0.15, and T8473C
0.34, respectively.

Associations between polymorphisms and CRC
IL1B C-3737T variant allele carriers were at lowered risk of

CRC and the G-1464C variant allele carriers were at higher risk
of CRC compared to the homozygous wildtype genotype
carriers (p=0.02 and p=0.02, respectively) (Table 2). Haplotype
analyses revealed that the IL1B haplotype combinations which
included the CCC haplotype (C-3737T, G-1464C, T-31C) were
associated with increased risk of CRC compared to the
reference TGT/TGT haplotype (Table S1). However, only the
haplotype combination CCC/CGT were statistically significantly
associated with risk of CRC (p=0.02). Carriers of one copy of
the haplotype CCC had an IRR of 1.20 (p=0.04) and carriers of
two CCC haplotypes had an IRR of 1.29 (p=0.12) (reference
group: no CCC haplotype) (Table 3). Carriers of one copy of
the TGT haplotype had an IRR of 0.82 (p=0.04) and carriers of
two TGT copies had an IRR of 0.79 (p=0.05) (Table 3).

Carriers of the high COX-2 activity PTGS2 T8473C variant
allele were at lower risk of CRC and homozygous carriers of
the low COX-2 activity PTGS2 A-1195G variant G-allele were
at marginally higher risk of CRC than the homozygous wildtype
genotype (p=0.02 and p=0.07, respectively) (Table 2).
Furthermore, carriers of the haplotype combination which
included both copies of the A-1195G variant alleles (GGT/
GGT), were at increased risk of CRC (p=0.09) compared to the
reference PTGS2 AGT/AGT (A-1195G, G-765C, T8473C)
haplotype combination (Table S1). In a separate analysis,
carriers of one GGT copy had an IRR of 1.06 (p=0.51) whereas
carriers of two copies had an IRR of 1.62 compared to all non-
carriers of the haplotype (p=0.02) (Table 3).
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Where no recessive effects were observed, variant
genotypes were combined in the interaction analysis to
maximize the statistical power. A recessive effect was found for
PTGS2 A-1195G and consequently, AA and AG carriers were
grouped versus GG carriers.

Gene-environment analyses
Meat.  IL10 rs3024505 variant carriers were at 6% increased

risk of CRC per 25 g red and processed meat per day (95%CI:
1.00-1.11) whereas homozygous wildtype carriers were at no
risk by meat intake (P-value for interaction (Pint)=0.04) (Table

Table 1. Baseline characteristics of study population
selected for the Diet, Cancer and Health cohort.

 Cases  Sub-cohort
Test for
difference

 No. Medians  No. Medians p-value

 (%)
(5-95%
percentiles)

 (%)
(5-95%
percentiles)

 

Total
970
(100)

  1789(100)   

Sex      0.13
Men 547(56)   954 (53)   
Women 423(44)   835 (47)   
Age at
inclusion
(years)

 58 (51-64)   56 (50-64) <1e-16

BMI
( kg/m2)

 
26.3
(20.7-34.3)

  
25.6
(20.5-33.0)

0.001

Food intake
(g/day)

      

Alcohol1  
14.0
(0.5-69.9)

  
13.5
(0.7-65.4)

0.23

Dietary fiber  
20.0
(10.6-32.8)

  
20.6
(10.8-34.2)

0.01

Red and
processed
meat

 113 (47-233)   109 (42-236) 0.03

Smoking
status

     0.07

Never 286 (30)   603 (34)   
Past 301 (31)   518 (29)   
Current 383 (40)   667 (37)   
NSAID use      0.65
No 699 (70)   1218 (69)   
Yes 293 (30)   557 (31)   
HRT use
among
women2

     0.01

Never 258 (61)   437 (52)   
Past 55 (13)   132 (16)   
Current 110 (26)   266 (32)   
1 Among current drinkers
2 Percentages among female cases/members of the comparison group
doi: 10.1371/journal.pone.0078366.t001

Table 2. Incidence rate ratios and 95% confidence intervals
for the studied gene polymorphisms in the Diet, Cancer and
Health study.

  Ncase

Nsub-

cohort Crudea Adjustedb
P-valuec

   IRR (95%CI) IRR (95%CI)  
IL10 C-592A          
 CC 596 1072 1.00   1.00    
 AC 297 580 0.92 (0.78-1.10) 0.92 (0.77-1.10) 0.38
 AA 56 96 1.02 (0.71-1.45) 1.00 (0.70-1.44) 0.98
 AC-AA 353 676 0.94 (0.79-1.11) 0.93 (0.79-1.11) 0.44

IL10 rs3024505          
 CC 648 1200 1.00   1.00    
 CT 263 511 0.97 (0.81-1.16) 0.98 (0.82-1.18) 0.87
 TT 34 54 1.03 (0.66-1.63) 0.99 (0.62-1.58) 0.96
 CT-TT 297 565 0.98 (0.82-1.16) 0.98 (0.83-1.17) 0.87

IL1B C-3737T          
 CC 336 560 1.00   1.00    
 CT 433 835 0.84 (0.70-1.01) 0.82 (0.68-0.99) 0.04
 TT 172 351 0.79 (0.63-1.00) 0.79 (0.63-1.01) 0.06
 CT-TT 605 1186 0.83 (0.70-0.98) 0.81 (0.68-0.97) 0.02

IL1B G-1464C          
 GG 454 925 1.00   1.00    
 CG 408 683 1.21 (1.02-1.43) 1.21 (1.02-1.44) 0.03
 CC 84 141 1.26 (0.93-1.71) 1.30 (0.95-1.77) 0.10
 CG-CC 492 824 1.21 (1.03-1.43) 1.22 (1.04-1.44) 0.02

IL1B T-31C          
 TT 389 773 1.00   1.00    
 TC 440 779 1.10 (0.93-1.31) 1.11 (0.93-1.32) 0.26
 CC 117 204 1.22 (0.94-1.59) 1.22 (0.93-1.59) 0.16
 TC-CC 557 983 1.13 (0.96-1.33) 1.13 (0.95-1.33) 0.16

PTGS2
A-1195G

         

 AA 587 1126 1.00   1.00    
 AG 313 560 1.06 (0.89-1.27) 1.07 (0.90-1.28) 0.43
 GG 47 61 1.41 (0.94-2.11) 1.46 (0.97-2.20) 0.07

 
AA-AG vs
GGd 900 1686 1.38 (0.93-2.05) 1.42 (0.95-2.14) 0.09

PTGS2 G-765C          
 GG 701 1256 1.00   1.00    
 GC 213 435 0.90 (0.74-1.09) 0.86 (0.71-1.05) 0.14
 CC 22 43 0.91 (0.54-1.54) 0.96 (0.56-1.63) 0.88
 GC-CC 235 478 0.90 (0.75-1.08) 0.87 (0.72-1.05) 0.15

PTGS2 T8473C          
 TT 430 720 1.00   1.00    
 CT 404 815 0.86 (0.72-1.02) 0.84 (0.71-1.01) 0.06
 CC 97 203 0.77 (0.59-1.02) 0.75 (0.57-0.99) 0.04
 CT-CC 501 1018 0.84 (0.71-0.99) 0.82 (0.70-0.97) 0.02
a Adjusted for sex and age
b In addition, adjusted for smoking status, alcohol, HRT status (women only), BMI,
use of NSAID, and intake of red and processed meat, and dietary fibre
c P-value for the adjusted estimates
d AA and AG versus GG.
doi: 10.1371/journal.pone.0078366.t002
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4). These findings were supported by the tertile analyses
(Table S2). IL10 rs3024505 variant carriers were at 1.50
increased risk by high meat intake compared to homozygous
wildtype carriers with low meat intake (95%CI: 1.09-2.06,
Pint=0.02).

PTGS2 G-765C variant allele carriers were at 8% increased
risk of CRC per 25 g red and processed meat per day (95% CI:
1.00-1.15) whereas homozygous wildtype carriers were at no
risk by meat intake (Pint=0.006) (Table 4). Also, PTGS2 G-765C
variant allele carriers were at increased risk of CRC by meat
intake in the tertile analysis compared to the homozygous
wildtype carriers (Pint=0.005) (Table S2).

Fish.  IL10 rs3024505 homozygous wildtype carriers were at
10 % reduced risk of CRC per 25 g fish per day whereas
variant carriers had no risk reduction by similar intake
(Pint=0.007).

Fibre, fruit, vegetables, and cereals.  IL10 rs3024505
homozygous wildtype carriers were at 23 and 6 % reduced risk
of CRC per 10 g fibre and 50 g vegetables per day whereas
variant carriers had no risk reduction by similar intake
(Pint=0.0008, and 0.0005, respectively). Furthermore, IL10
rs3024505 homozygous wildtype carriers were at lowered risk
of CRC among study participants with the highest intake of
fibre (IRR=0.73, 95%CI: 0.57-0.94, Pint=0.007) and vegetables
(IRR=0.72, 95%CI: 0.56-0.93, Pint=0.001).

PTGS2 G-765C homozygous wildtype carriers were at 21%
and 5% reduced risk of CRC per 10 g fibre and 50 g fruit per
day whereas variant carriers had no risk reduction by similar
intake (Pint=0.0003, and 0.004, respectively). In the tertile
analysis, PTGS2 G-765C homozygous wildtype carriers were
at low risk of CRC by high intake of fibre (IRR=0.71, 95% CI:
0.55-0.90, Pint=0.004), and fruit (IRR=0.73, 95% CI: 0.57-0.93,
Pint=0.006).No interaction between any genotypes and cereal in
relation to risk of CRC was found (Table 4). In the tertile
analyses, IL1B G-3737C variant allele carriers were at lowered
risk of CRC in the lowest tertile of vegetables (IRR=0.66, 95%

CI: 0.49-0.89) whereas the risk estimates in the highest tertile
was similar for the two alleles (Pint=0.03) (Table S2).

NSAID use.  A statistically significant association between
IL1B C-3737T and use of NSAID was found (Table S3). Low
risk of CRC was found for the IL1B C-3737T variant allele
carriers among non-NSAID users (IRR=0.74, 95% CI:
0.60-0.91) but not among NSAID users (IRR=0.82, 95% CI:
0.64-1.06) compared to the homozygous wildtype carriers
(reference) (Pint=0.04).

Smoking.  A statistically significant association between
PTGS2 A-1195G and smoking was found (Table S4). Among
current smokers, homozygous PTGS2 A-1195G variant allele
carriers were at higher risk of CRC (IRR=2.33, 95% CI:
1.13-4.78, Pint=0.046) compared to homozygous wildtype
carriers who had never smoked (reference group).

Discussion

In the present candidate gene study, we analysed gene-
environment interactions in relation to risk of CRC in a Danish
prospective cohort. We found that functional IL1B and PTGS2
polymorphisms were associated with risk of CRC (Table 2 and
3, and Table S1). Furthermore, we found interactions between
diet and lifestyle factors and genes involved in the inflammatory
pathway (Table 3 and Table S2, S3 and S4). Thus, we found
interactions between intake of meat and IL10 and PTGS2, fish
and IL10, fibre and IL10 and PTGS2, fruit and PTGS2,
vegetables and IL10, PTGS2, and IL1B, NSAID use and IL1B,
and, finally, between smoking status and PTGS2
polymorphisms.

Associations between polymorphisms and CRC
We now extend our previous studies of IL10, IL1B and

PTGS2 polymorphisms in relation to diet and colorectal
carcinogenesis in a study group of three hundred and seventy-

Table 3. Risk estimates for IL1B and PTGS2 haplotypes in relation to risk of colorectal cancer.

  Copy Ncases Nsubcohort IRRa (95%CI)  IRRb (95%CI)  P-valuec

IL1B TGT 0 330 563 1   1    
  1 424 840 0.84 (0.70-1.01) 0.82 (0.68-0.99) 0.035
  2 168 353 0.78 (0.62-0.99) 0.79 (0.62-1.00) 0.051
 CCC 0 444 929 1   1    
  1 397 688 1.20 1.02-1.43) 1.20 (1.01-1.43) 0.040
  2 81 139 1.25 (0.92-1.70) 1.29 (0.94-1.76) 0.116
PTGS2 GGT 0 560 1104 1   1    
  1 296 559 1.05 (0.88-1.25) 1.06 (0.89-1.27) 0.514
  2 46 57 1.58 (1.04-2.38) 1.62 (1.06-2.47) 0.024
 AGT 0 144 267 1   1    
  1 573 1110 1.01 (0.80-1.27) 1.01 (0.80-1.27) 0.952
  2 185 343 1.05 (0.80-1.39) 1.05 (0.79-1.39) 0.750

Haplotype sequence: IL1B: C-3737T, G-1464C, T-31C. PTGS2: A-1195G, G-765C, T8473C
a Adjusted for sex and age
b In addition, adjusted for smoking status, alcohol, HRT status (women only), BMI, intake of red and processed meat, and dietary fibre
c P-value for the adjusted risk estimates
doi: 10.1371/journal.pone.0078366.t003
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eight CRC cases and 775 participants in a randomly selected
comparison group [3,17,18] studies to a larger cohort with more
than twice the number of cases and members of the
comparison group and include more dietary factors. In contrast
to our previous findings [3,18], the studied functional
polymorphisms in IL1B and PTGS2 were associated with risk
of CRC in the present larger study group probably reflecting the
increased statistical power. We reproduced the previous
findings that the studied IL10 polymorphisms were not
associated with risk of CRC per see 17.

In the present study, the IL1B CCC (C-3737T, G-1464C,
T-31C) haplotype was associated with increased risk of CRC.
This haplotype gives high transcription levels in studies of the
promoter using transient transfections [39]. Conversely, the
TGT haplotype was associated with low CRC risk. This
haplotype leads to low IL1B transcription and encompasses the
variant allele of C-3737T. The IL1B C-3737T polymorphism
abolishes a binding site for the anti-inflammatory NF-κB subunit
p50 [39]. Thus, our results, both in terms of SNP analyses and
haplotype analyses consistently indicate that genetically
determined high IL1B levels are associated with increased risk
of CRC and genetically low IL1B levels leads to lowered risk of
CRC. Furthermore, our result may suggest involvement of the
anti-inflammatory p50 subunit of NF-κB. We found no
statistically significant interaction between the studied IL1B
polymorphisms and any of the studied diet variables. However,
in the tertile analysis of vegetable intake (table S2) the
association between the IL1B polymorphisms and risk of CRC
was strongest in the lowest tertile. Thus, carriers of the variant
allele of IL1B G-1464C and T-31C were at 1.40 (95%CI:
1.05-1.86) and 1.47 (95%CI: 1.11-1.95) fold increased risk of
CRC, respectively, whereas carriers of the variant allele of
C-3737T were at reduced risk of CRC (IRR=0.66, 95% CI:
0.49-0.89). This may suggest that the association between
IL1B polymorphisms and risk of CRC can only be detected in
populations with relatively low vegetable intake such as the
Danish population [40].

The PTGS2 A-1195G variant allele leads to low transcription
levels of COX-2 [41] whereas PTGS2 T8473C gives high
mRNA levels [42]. In Danes including the present study group,
the variant allele of G-765C almost exclusively co-segregates
with the variant allele of T8473C (Table S1). This haplotype
has been shown to be associated with highly elevated COX-2
activity [43]. In the present study, the PTGS2 GGT (A-1195G,
G-765C, T8473C) haplotype was associated with increased
risk of CRC (P=0.024). The PTGS2 A-1195G homozygous
variant genotype was marginally associated with increased risk
of CRC (P=0.07) and PTGS2 T8473C variant carriers with
genetically determined high COX-2 activity were at lowered risk
of CRC (P=0.02). In accordance with the present study,
genetically low COX-2 activity was found to predispose to
inflammatory bowel disease, a risk factor for CRC [44].

Gene-environment analyses
The intake of meat in the Danish population is among the

highest intakes world-wide and we have previously identified
interactions between meat and genes [3,5]. We found
interaction between intake of meat and PTGS2 G-765C. Thus,

among variant allele carriers, daily intake of meat was
associated with 8% increased risk of CRC pr 25g meat,
whereas homozygous wildtype allele carriers were not at
increased risk (Pint=0.006). The result is in accordance with the
finding of a statistically significant association between PTGS2
G-765C variant genotypes and CRC among subjects with high
n-6 PUFA intake in a prospective, population-based cohort of
310 Singapore Chinese cases [45]. N-6 PUFA is present in
meat. We also found interaction between meat intake and IL10
rs3024505. A similar interaction was found for fish intake.
However, it is difficult to interpret the functional implications as
IL10 rs3024505 is a marker SNP with no known function. The
lack of interaction with the functional promoter polymorphism
C-592A may suggest that the detected interaction may be
related to other genes than IL10, but on the other hand, IL10
rs3024505 is located very far away from other genes [46]. In
summary, the interactions between meat intake on one hand
and genetic variation in PTGS2 and IL10 on the other hand,
suggest that inflammation plays a role in meat related
carcinogenesis. In support of this, we have also found
interaction between the functional promoter polymorphism
NFKB1 -94ins/del and meat intake in relation to CRC [5].

We observed strong interaction between the marker IL10
rs3024505 and intake of fibre and vegetables. In both cases,
homozygous wildtype allele carriers benefited from high intake,
whereas variant allele carriers had no risk reduction when
eating fibre or vegetables in relation to CRC risk. However,
since variant allele carriers in the tertile with the lowest fibre
intake were at marginally lowered risk of CRC (IRR: 0.73, 95%
CI: 0.54-1.01) the results suggest that wildtype allele carriers
experience a risk reduction by fibre intake that variant allele
carriers already have. The results support and extend our
previously finding of interaction between fibre and IL10 in a
subcohort of the present study cohort [17]. Similarly, we
observed interactions between dietary fibre, dietary cereals and
fruit on one hand and genetic variation in PTGS2 on the other.
The interactions are quite consistent and suggest that subjects
with genetically low PTGS2 activity benefit the most from high
intake of fibres, fruit, and cereals. Furthermore, tertile analyses
showed that those with the genetically determined lowest
COX-2 activity, namely homozygous carriers of the variant
allele of PTGS2 A-1195G, were at high risk of CRC in the
group with the lowest intake of fibres (IRR=3.08 (95%CI:
1.51-6.28), and fruits (IRR=2.11, 95%CI: 1.03-4.33), whereas
those with the genetically determined high COX-2 activity,
carriers of the variant allele of PTGS2 G-765C, were at low
CRC risk even in the tertile with the lowest fibre intake
(IRR=0.69, 95% CI: 0.50-0.96). Thus, COX-2 seems intimately
implicated in the biological mechanism underlying the
protective effect of fibres in relation to CRC.

We found interaction between NSAID use and IL1B C-3737T
in relation to development of CRC suggesting that NSAID
intake reduce the risk of CRC among those with high risk of
CRC due to genetically determined high IL1B level. We found
no statistically significant interaction between NSAID and
COX-2 in relation to CRC. A non-statistically significant
tendency towards protection by NSAID use among those with
genetically low COX-2 activity was found. Long-term intake of

IL-10, IL-1β, COX-2, Diet and Colorectal Cancer

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e78366



aspirin (a COX-1 inhibitor) has been found to confer protection
against CRC including the presently used Diet, Cancer and
Health cohort [47]. It was not possible to assess the effects of
specific COX-2 inhibitors due to late introduction to the Danish
market and low frequency of use in the follow-up period
[47,48].

The biological interpretation of our results is supported by
other findings. IL-1B, IL-10, and COX-2 are part of the same
inflammatory pathways. IL-1 has been found to induce the
synthesis of COX-2 through activation of the pro-inflammatory
p65 unit of nuclear factor κB (NF-κB) [49]. Furthermore, IL-10
has been found to block IL-1-induced NF-κB activation in
intestinal cells (by inhibiting IκB phosphorylation) and to reduce
COX-2 induction in intestinal cells [49], The latter is in
accordance with the finding that cox-2 expression is high in
il-10 deficient mice [7]. Therefore, diet such as fibre may modify
IL10 which act as an inflammatory “gate-keeper” and thereby
affect inflammation.

Furthermore, our results suggest that those with genetically
determined low COX-2 activity are at high risk of CRC by
smoking and meat intake and, furthermore, protected by fibre
intake. Thus PTGS2 polymorphisms may have differential
impact on CRC risk dependent on environmental factors.
However, once carcinogenesis has been initiated, a high
COX-2 enzyme activity seems to be a risk factor for further
progression [7,50,51].

Taken together, our interaction analyses suggest that diet
modify intestinal carcinogenesis through impact on
inflammatory response and furthermore suggest that the effect
may differ among various populations depending on gene-
environment interactions. Our findings should be explored in
other well-characterized prospective cohorts.

This study used a nested prospective case-cohort design
and has the major advantage that data and samples were
collected before diagnosis thus minimizing the risk of
differential misclassification between cases and comparison
group. The risk estimates were adjusted for known confounding
factors affecting risk of CRC in this cohort including dietary
factors, body mass index (BMI), alcohol, smoking status and
NSAID use. A main strength of the study is the large sample
size. The genes were carefully selected based on their role in
the inflammatory pathway and the polymorphisms were mainly
selected based on their functional effects in order to allow
interpretation of the involved biological pathways in colorectal
carcinogenesis. Only the interactions between fibre and IL10,
fibre and PTGS2, vegetables and IL10, and fruit and PTGS2

withstood correction for multiple analyses. However, as our
hypothesis was biologically based we did not correct for
multiple analyses [52]. In the light of the number of statistical
tests performed, we would expect that some of the findings
may be due to chance, but the number of statistically significant
findings exceed the number expected by chance.

Conclusions

We found evidence that genetically determined variation in
IL-1β and COX-2 levels is associated with risk of CRC.
Moreover, gene-environment interactions suggest that COX-2
and IL10 are implicated in both meat-related carcinogenesis
and in the protective effects of fibre in relation to CRC. This
study demonstrates that gene-environment interactions provide
an efficient tool for identifying factors involved in colorectal
carcinogenesis. Our findings should be replicated in other well-
characterized prospective cohorts.

Supporting Information

Table S1.  Combinations of genotypes/haplotypes and risk
of colorectal cancer.
(DOCX)

Table S2.  Incidence rate ratio (IRR) for colorectal cancer
for tertiles of intake of diet for the studied polymorphisms.
(DOCX)

Table S3.  Interactions between NSAID use (no, yes) and
studied polymorphisms in relation to risk of colorectal
cancer.
(DOCX)

Table S4.  Interaction between smoking status (never,
past, current) and the studied polymorphisms in relation to
risk of colorectal cancer.
(DOCX)

Author Contributions

Conceived and designed the experiments: VA UV. Performed
the experiments: TIK. Analyzed the data: VA UV RH.
Contributed reagents/materials/analysis tools: AT. Wrote the
manuscript: VA UV. Obtained funding: VA.

References

1. Cancer World Research Fund/American Institutefor CancerResearch.
Available: http://www.dietandcancerreport.org/. Accessed 2013 June
16.

2. Huxley RR, nsary-Moghaddam A, Clifton P, Czernichow S, Parr CL et
al (2009) The impact of dietary and lifestyle risk factors on risk of
colorectal cancer: a quantitative overview of the epidemiological
evidence. Int J Cancer 125: 171-180. doi:10.1002/ijc.24343. PubMed:
19350627.

3. Andersen V, Ostergaard M, Christensen J, Overvad K, Tjønneland A et
al. (2009) Polymorphisms in the xenobiotic transporter Multidrug
Resistance 1 (MDR1) gene and interaction with meat intake in relation
to risk of colorectal cancer in a Danish prospective case-cohort study.

BMC Cancer 9: 407. doi:10.1186/1471-2407-9-407. PubMed:
19930591.

4. Andersen V, Christensen J, Overvad K, Tjønneland A, Vogel U (2011)
Heme oxygenase-1 polymorphism is not associated with risk of
colorectal cancer: a Danish prospective study. Eur J Gastroenterol
Hepatol 23: 282-285. doi:10.1097/MEG.0b013e3283417f76. PubMed:
21191307.

5. Andersen V, Christensen J, Overvad K, Tjønneland A, Vogel U (2010)
Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a
prospective study of Danes. BMC Cancer 10: 484. doi:
10.1186/1471-2407-10-484. PubMed: 20836841.

IL-10, IL-1β, COX-2, Diet and Colorectal Cancer

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e78366

http://www.dietandcancerreport.org/
http://dx.doi.org/10.1002/ijc.24343
http://www.ncbi.nlm.nih.gov/pubmed/19350627
http://dx.doi.org/10.1186/1471-2407-9-407
http://www.ncbi.nlm.nih.gov/pubmed/19930591
http://dx.doi.org/10.1097/MEG.0b013e3283417f76
http://www.ncbi.nlm.nih.gov/pubmed/21191307
http://dx.doi.org/10.1186/1471-2407-10-484
http://www.ncbi.nlm.nih.gov/pubmed/20836841


6. Andersen V, Holst R, Vogel U (2013) Systematic review: diet-gene
interactions and the risk of colorectal cancer. Aliment Pharmacol Ther
37: 383-391. doi:10.1111/apt.12180. PubMed: 23216531.

7. Wang D, DuBois RN (2010) The role of COX-2 in intestinal
inflammation and colorectal cancer. Oncogene 29: 781-788. doi:
10.1038/onc.2009.421. PubMed: 19946329.

8. Erridge C (2011) Accumulation of stimulants of Toll-like receptor
(TLR)-2 and TLR4 in meat products stored at 5 degrees C. J Food Sci
76: H72-H79. doi:10.1111/j.1750-3841.2010.02018.x. PubMed:
21535770.

9. Tjonneland A, Overvad K, Bergmann MM, Nagel G, Linseisen J et al.
(2009) Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the
aetiology of ulcerative colitis: a nested case-control study within a
European prospective cohort study. Gut 58: 1606-1611. doi:10.1136/
gut.2008.169078. PubMed: 19628674.

10. Joensen AM, Schmidt EB, Dethlefsen C, Johnsen SP, Tjønneland A et
al. (2010) Dietary intake of total marine n-3 polyunsaturated fatty acids,
eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic
acid and the risk of acute coronary syndrome - a cohort study. Br J Nutr
103: 602-607. doi:10.1017/S0007114509992170. PubMed: 19825219.

11. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of
inflammation by short chain fatty acids. Nutrients 3: 858-876. doi:
10.3390/nu3100858. PubMed: 22254083.

12. Paul G, Khare V, Gasche C (2012) Inflamed gut mucosa: downstream
of interleukin-10. Eur J Clin Invest 42: 95-109. doi:10.1111/j.
1365-2362.2011.02552.x. PubMed: 21631466.

13. Berg DJ, Davidson N, Kühn R, Müller W, Menon S et al. (1996)
Enterocolitis and colon cancer in interleukin-10-deficient mice are
associated with aberrant cytokine production and CD4(+) TH1-like
responses. J Clin Invest 98: 1010-1020. doi:10.1172/JCI118861.
PubMed: 8770874.

14. Vogel U, Christensen J, Wallin H, Friis S, Nexø BA et al. (2008)
Polymorphisms in genes involved in the inflammatory response and
interaction with NSAID use or smoking in relation to lung cancer risk in
a prospective study. Mutat Res 639: 89-100. doi:10.1016/j.mrfmmm.
2007.11.004. PubMed: 18164040.

15. Vangsted AJ, Nielsen KR, Klausen TW, Haukaas E, Tjønneland A et al.
(2012) A functional polymorphism in the promoter region of the IL1B
gene is associated with risk of multiple myeloma. Br J Haematol 158:
515-518. doi:10.1111/j.1365-2141.2012.09141.x. PubMed: 22540426.

16. Garcia Rodriguez LA, Cea-Soriano L, Tacconelli S, Patrignani P (2013)
Coxibs: pharmacology, toxicity and efficacy in cancer clinical trials.
Recent Results Cancer Res 191: 67-93. doi:
10.1007/978-3-642-30331-9_4. PubMed: 22893200.: 67-93

17. Andersen V, Egeberg R, Tjønneland A, Vogel U (2012) Interaction
between interleukin-10 (IL-10) polymorphisms and dietary fibre in
relation to risk of colorectal cancer in a Danish case-cohort study. BMC
Cancer 12: 183. doi:10.1186/1471-2407-12-183. PubMed: 22594912.:
183-12

18. Vogel U, Christensen J, Dybdahl M, Friis S, Hansen RD et al. (2007)
Prospective study of interaction between alcohol, NSAID use and
polymorphisms in genes involved in the inflammatory response in
relation to risk of colorectal cancer. Mutat Res 624: 88-100. doi:
10.1016/j.mrfmmm.2007.04.006. PubMed: 17544013.

19. Tjønneland A, Olsen A, Boll K, Stripp C, Christensen J et al. (2007)
Study design, exposure variables, and socioeconomic determinants of
participation in Diet, Cancer and Health: a population-based
prospective cohort study of 57,053 men and women in Denmark.
Scand J Public Health 35: 432-441. doi:10.1080/14034940601047986.
PubMed: 17786808.

20. Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J et al. (2007)
The EPIC nutrient database project (ENDB): a first attempt to
standardize nutrient databases across the 10 European countries
participating in the EPIC study. Eur J Clin Nutr 61: 1037-1056. doi:
10.1038/sj.ejcn.1602679. PubMed: 17375121.

21. Prosky L, Asp NG, Furda I, DeVries JW, Schweizer TF et al. (1985)
Determination of total dietary fiber in foods and food products:
collaborative study. J Assoc Off Anal Chem 68: 677-679. PubMed:
2993226.

22. Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F et al.
(2002) European Prospective Investigation into Cancer and Nutrition
(EPIC) calibration study: rationale, design and population
characteristics. Public Health Nutr 5: 1125-1145. doi:10.1079/
PHN2002395. PubMed: 12639223.

23. Tjønneland A, Overvad K, Haraldsdóttir J, Bang S, Ewertz M et al.
(1991) Validation of a semiquantitative food frequency questionnaire
developed in Denmark. Int J Epidemiol 20: 906-912. doi:10.1093/ije/
20.4.906. PubMed: 1800429.

24. Tjonneland A, Haraldsdóttir J, Overvad K, Stripp C, Ewertz M et al.
(1992) Influence of individually estimated portion size data on the
validity of a semiquantitative food frequency questionnaire. Int J
Epidemiol 21: 770-777. doi:10.1093/ije/21.4.770. PubMed: 1521982.

25. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure
for extracting DNA from human nucleated cells. Nucleic Acids Res 16:
1215. doi:10.1093/nar/16.3.1215. PubMed: 3344216.

26. Stegger JG, Schmidt EB, Tjønneland A, Kopp TI, Sørensen TI et al.
(2012) Single nucleotide polymorphisms in IL1B and the risk of acute
coronary syndrome: a Danish case-cohort study. PLOS ONE 7:
e36829. doi:10.1371/journal.pone.0036829. PubMed: 22768033.

27. Barlow WE, Ichikawa L, Rosner D, Izumi S (1999) Analysis of case-
cohort designs. J Clin Epidemiol 52: 1165-1172. doi:10.1016/
S0895-4356(99)00102-X. PubMed: 10580779.

28. Barlow WE (1994) Robust variance estimation for the case-cohort
design. Biometrics 50: 1064-1072. doi:10.2307/2533444. PubMed:
7786988.

29. Andersen V, Christensen J, Overvad K, Tjonneland A, Vogel U (2010)
Heme oxygenase-1 (HO-1) polymorphism is not associated with risk of
colorectal cancer; a Danish prospective study. Eur J Gastroenterol
Hepatol.

30. Andersen V, Agerstjerne L, Jensen D, Østergaard M, Saebø M et al.
(2009) The multidrug resistance 1 (MDR1) gene polymorphism G-
rs3789243-A is not associated with disease susceptibility in Norwegian
patients with colorectal adenoma and colorectal cancer; a case control
study. BMC Med Genet 10: 18. doi:10.1186/1471-2156-10-18.
PubMed: 19250544.

31. Hansen RD, Krath BN, Frederiksen K, Tjønneland A, Overvad K et al.
(2009) GPX1 Pro(198)Leu polymorphism, erythrocyte GPX activity,
interaction with alcohol consumption and smoking, and risk of
colorectal cancer. Mutat Res 664: 13-19. doi:10.1016/j.mrfmmm.
2009.01.009. PubMed: 19428376.

32. Hansen RD, Sorensen M, Tjonneland A, Overvad K, Wallin H et al.
(2008) A haplotype of polymorphisms in ASE-1, RAI and ERCC1 and
the effects of tobacco smoking and alcohol consumption on risk of
colorectal cancer: a Danish prospective case-cohort study. BMC
Cancer %20;8:54.: 54.

33. Andersen V, Egeberg R, Tjønneland A, Vogel U (2012) ABCC2
transporter gene polymorphisms, diet and risk of colorectal cancer: a
Danish prospective cohort study. Scand J Gastroenterol 47: 572-574.
doi:10.3109/00365521.2012.668933. PubMed: 22428913.

34. Hansen RD, Sørensen M, Tjønneland A, Overvad K, Wallin H et al.
(2007) XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD
Asp312Asn polymorphisms, interactions with smoking, alcohol and
dietary factors, and risk of colorectal cancer. Mutat Res 619: 68-80. doi:
10.1016/j.mrfmmm.2007.02.002. PubMed: 17363013.

35. Vogel U, Christensen J, Wallin H, Friis S, Nexø BA et al. (2007)
Polymorphisms in COX-2, NSAID use and risk of basal cell carcinoma
in a prospective study of Danes. Mutat Res 617: 138-146. doi:10.1016/
j.mrfmmm.2007.01.005. PubMed: 17307204.

36. Vangsted AJ, Klausen TW, Abildgaard N, Andersen NF, Gimsing P et
al. (2011) Single nucleotide polymorphisms in the promoter region of
the IL1B gene influence outcome in multiple myeloma patients treated
with high-dose chemotherapy independently of relapse treatment with
thalidomide and bortezomib. Ann Hematol, 90: 1173–81. PubMed:
21347685.

37. Ravn-Haren G, Olsen A, Tjønneland A, Dragsted LO, Nexø BA et al.
(2006) Associations between GPX1 Pro198Leu polymorphism,
erythrocyte GPX activity, alcohol consumption and breast cancer risk in
a prospective cohort study. Carcinogenesis 27: 820-825. PubMed:
16287877.

38. Language A and Environment for Statistical Computing (2004).
Available: http://www.R-project.org. Accessed 2013 June 16. .

39. Chen H, Wilkins LM, Aziz N, Cannings C, Wyllie DH et al. (2006) Single
nucleotide polymorphisms in the human interleukin-1B gene affect
transcription according to haplotype context. Hum Mol Genet 15:
519-529. doi:10.1093/hmg/ddi469. PubMed: 16399797.

40. Agudo A, Slimani N, Ocké MC, Naska A, Miller AB et al. (2002)
Consumption of vegetables, fruit and other plant foods in the European
Prospective Investigation into Cancer and Nutrition (EPIC) cohorts from
10 European countries. Public Health Nutr 5: 1179-1196. doi:10.1079/
PHN2002398. PubMed: 12639226.

41. Zhang X, Miao X, Tan W, Ning B, Liu Z et al. (2005) Identification of
functional genetic variants in cyclooxygenase-2 and their association
with risk of esophageal cancer. Gastroenterology 129: 565-576. doi:
10.1016/j.gastro.2005.05.003. PubMed: 16083713.

42. Moore AE, Young LE, Dixon DA (2012) A common single-nucleotide
polymorphism in cyclooxygenase-2 disrupts microRNA-mediated

IL-10, IL-1β, COX-2, Diet and Colorectal Cancer

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e78366

http://dx.doi.org/10.1111/apt.12180
http://www.ncbi.nlm.nih.gov/pubmed/23216531
http://dx.doi.org/10.1038/onc.2009.421
http://www.ncbi.nlm.nih.gov/pubmed/19946329
http://dx.doi.org/10.1111/j.1750-3841.2010.02018.x
http://www.ncbi.nlm.nih.gov/pubmed/21535770
http://dx.doi.org/10.1136/gut.2008.169078
http://dx.doi.org/10.1136/gut.2008.169078
http://www.ncbi.nlm.nih.gov/pubmed/19628674
http://dx.doi.org/10.1017/S0007114509992170
http://www.ncbi.nlm.nih.gov/pubmed/19825219
http://dx.doi.org/10.3390/nu3100858
http://www.ncbi.nlm.nih.gov/pubmed/22254083
http://dx.doi.org/10.1111/j.1365-2362.2011.02552.x
http://dx.doi.org/10.1111/j.1365-2362.2011.02552.x
http://www.ncbi.nlm.nih.gov/pubmed/21631466
http://dx.doi.org/10.1172/JCI118861
http://www.ncbi.nlm.nih.gov/pubmed/8770874
http://dx.doi.org/10.1016/j.mrfmmm.2007.11.004
http://dx.doi.org/10.1016/j.mrfmmm.2007.11.004
http://www.ncbi.nlm.nih.gov/pubmed/18164040
http://dx.doi.org/10.1111/j.1365-2141.2012.09141.x
http://www.ncbi.nlm.nih.gov/pubmed/22540426
http://dx.doi.org/10.1007/978-3-642-30331-9_4
http://www.ncbi.nlm.nih.gov/pubmed/22893200
http://dx.doi.org/10.1186/1471-2407-12-183
http://www.ncbi.nlm.nih.gov/pubmed/22594912
http://dx.doi.org/10.1016/j.mrfmmm.2007.04.006
http://www.ncbi.nlm.nih.gov/pubmed/17544013
http://dx.doi.org/10.1080/14034940601047986
http://www.ncbi.nlm.nih.gov/pubmed/17786808
http://dx.doi.org/10.1038/sj.ejcn.1602679
http://www.ncbi.nlm.nih.gov/pubmed/17375121
http://www.ncbi.nlm.nih.gov/pubmed/2993226
http://dx.doi.org/10.1079/PHN2002395
http://dx.doi.org/10.1079/PHN2002395
http://www.ncbi.nlm.nih.gov/pubmed/12639223
http://dx.doi.org/10.1093/ije/20.4.906
http://dx.doi.org/10.1093/ije/20.4.906
http://www.ncbi.nlm.nih.gov/pubmed/1800429
http://dx.doi.org/10.1093/ije/21.4.770
http://www.ncbi.nlm.nih.gov/pubmed/1521982
http://dx.doi.org/10.1093/nar/16.3.1215
http://www.ncbi.nlm.nih.gov/pubmed/3344216
http://dx.doi.org/10.1371/journal.pone.0036829
http://www.ncbi.nlm.nih.gov/pubmed/22768033
http://dx.doi.org/10.1016/S0895-4356(99)00102-X
http://dx.doi.org/10.1016/S0895-4356(99)00102-X
http://www.ncbi.nlm.nih.gov/pubmed/10580779
http://dx.doi.org/10.2307/2533444
http://www.ncbi.nlm.nih.gov/pubmed/7786988
http://dx.doi.org/10.1186/1471-2156-10-18
http://www.ncbi.nlm.nih.gov/pubmed/19250544
http://dx.doi.org/10.1016/j.mrfmmm.2009.01.009
http://dx.doi.org/10.1016/j.mrfmmm.2009.01.009
http://www.ncbi.nlm.nih.gov/pubmed/19428376
http://dx.doi.org/10.3109/00365521.2012.668933
http://www.ncbi.nlm.nih.gov/pubmed/22428913
http://dx.doi.org/10.1016/j.mrfmmm.2007.02.002
http://www.ncbi.nlm.nih.gov/pubmed/17363013
http://dx.doi.org/10.1016/j.mrfmmm.2007.01.005
http://dx.doi.org/10.1016/j.mrfmmm.2007.01.005
http://www.ncbi.nlm.nih.gov/pubmed/17307204
http://www.ncbi.nlm.nih.gov/pubmed/21347685
http://www.ncbi.nlm.nih.gov/pubmed/16287877
http://www.r-project.org
http://dx.doi.org/10.1093/hmg/ddi469
http://www.ncbi.nlm.nih.gov/pubmed/16399797
http://dx.doi.org/10.1079/PHN2002398
http://dx.doi.org/10.1079/PHN2002398
http://www.ncbi.nlm.nih.gov/pubmed/12639226
http://dx.doi.org/10.1016/j.gastro.2005.05.003
http://www.ncbi.nlm.nih.gov/pubmed/16083713


regulation. Oncogene 31: 1592-1598. doi:10.1038/onc.2011.349.
PubMed: 21822307.

43. Sanak M, Szczeklik W, Szczeklik A (2005) Association of COX-2 gene
haplotypes with prostaglandins production in bronchial asthma. J
Allergy Clin Immunol 116: 221-223. doi:10.1016/j.jaci.2005.03.010.
PubMed: 15990799.

44. Andersen V, Nimmo E, Krarup HB, Drummond H, Christensen J et al.
(2011) Cyclooxygenase-2 (COX-2) polymorphisms and risk of
inflammatory bowel disease in a Scottish and Danish case-control
study. Inflamm Bowel Dis 17: 937-946. doi:10.1002/ibd.21440.
PubMed: 20803508.

45. Koh WP, Yuan JM, van den BD, Lee HP, Yu MC (2004) Interaction
between cyclooxygenase-2 gene polymorphism and dietary n-6
polyunsaturated fatty acids on colon cancer risk: the Singapore
Chinese Health Study. Br J Cancer 90: 1760-1764. PubMed:
15150618.

46. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S et al.
(2008) Sequence variants in IL10, ARPC2 and multiple other loci
contribute to ulcerative colitis susceptibility. Nat Genet 40: 1319-1323.
doi:10.1038/ng.221. PubMed: 18836448.

47. Friis S, Poulsen AH, Sørensen HT, Tjønneland A, Overvad K et al.
(2009) Aspirin and other non-steroidal anti-inflammatory drugs and risk

of colorectal cancer: a Danish cohort study. Cancer Causes Control 20:
731-740. doi:10.1007/s10552-008-9286-7. PubMed: 19122977.

48. Flossmann E, Rothwell PM (2007) Effect of aspirin on long-term risk of
colorectal cancer: consistent evidence from randomised and
observational studies. Lancet 369: 1603-1613. doi:10.1016/
S0140-6736(07)60747-8. PubMed: 17499602.

49. Al-Ashy R, Chakroun I, El-Sabban ME, Homaidan FR (2006) The role
of NF-kappaB in mediating the anti-inflammatory effects of IL-10 in
intestinal epithelial cells. Cytokine 36: 1-8. doi:10.1016/j.cyto.
2006.10.003. PubMed: 17161612.

50. Al-Salihi MA, Terrece PA, Doan T, Reichert EC, Rosenberg DW et al.
(2009) Transgenic expression of cyclooxygenase-2 in mouse intestine
epithelium is insufficient to initiate tumorigenesis but promotes tumor
progression. Cancer Lett 273: 225-232. doi:10.1016/j.canlet.
2008.08.012. PubMed: 18790560.

51. Hedlund M, Padler-Karavani V, Varki NM, Varki A (2008) Evidence for
a human-specific mechanism for diet and antibody-mediated
inflammation in carcinoma progression. Proc Natl Acad Sci U S A 105:
18936-18941. doi:10.1073/pnas.0803943105. PubMed: 19017806.

52. Perneger TV (1998) What's wrong with Bonferroni adjustments. BMJ
316: 1236-1238. doi:10.1136/bmj.316.7139.1236. PubMed: 9553006.

IL-10, IL-1β, COX-2, Diet and Colorectal Cancer

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e78366

http://dx.doi.org/10.1038/onc.2011.349
http://www.ncbi.nlm.nih.gov/pubmed/21822307
http://dx.doi.org/10.1016/j.jaci.2005.03.010
http://www.ncbi.nlm.nih.gov/pubmed/15990799
http://dx.doi.org/10.1002/ibd.21440
http://www.ncbi.nlm.nih.gov/pubmed/20803508
http://www.ncbi.nlm.nih.gov/pubmed/15150618
http://dx.doi.org/10.1038/ng.221
http://www.ncbi.nlm.nih.gov/pubmed/18836448
http://dx.doi.org/10.1007/s10552-008-9286-7
http://www.ncbi.nlm.nih.gov/pubmed/19122977
http://dx.doi.org/10.1016/S0140-6736(07)60747-8
http://dx.doi.org/10.1016/S0140-6736(07)60747-8
http://www.ncbi.nlm.nih.gov/pubmed/17499602
http://dx.doi.org/10.1016/j.cyto.2006.10.003
http://dx.doi.org/10.1016/j.cyto.2006.10.003
http://www.ncbi.nlm.nih.gov/pubmed/17161612
http://dx.doi.org/10.1016/j.canlet.2008.08.012
http://dx.doi.org/10.1016/j.canlet.2008.08.012
http://www.ncbi.nlm.nih.gov/pubmed/18790560
http://dx.doi.org/10.1073/pnas.0803943105
http://www.ncbi.nlm.nih.gov/pubmed/19017806
http://dx.doi.org/10.1136/bmj.316.7139.1236
http://www.ncbi.nlm.nih.gov/pubmed/9553006

	Interactions between Diet, Lifestyle and IL10, IL1B, and PTGS2/COX-2 Gene Polymorphisms in Relation to Risk of Colorectal Cancer in a Prospective Danish Case-Cohort Study
	Introduction
	Methods
	Studied Subjects
	Follow-up and endpoints
	Dietary and lifestyle questionnaire
	Genotyping
	Statistical Analysis
	Ethics Statement

	Results
	Associations between polymorphisms and CRC
	Gene-environment analyses

	Discussion
	Associations between polymorphisms and CRC
	Gene-environment analyses

	Conclusions
	Supporting Information
	Author Contributions
	References


