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Surgery can be a last resort for patients with intractable, medically refractory epilepsy. For many of these patients, however, there is

substantial risk that the surgery will be ineffective. The prediction of who is likely to benefit from a surgical approach is crucial for

being able to inform patients better, conduct principled prospective clinical trials, and ultimately tailor therapeutic approaches to these

patients more effectively. Dynamical computational models, informed with patient data, can be used to make predictions and give

mechanistic insight. In this study, we develop patient-specific dynamical network models of epileptogenic cortex. We infer the network

connectivity matrix from non-seizure electrographic recordings of patients and use these connectivity matrices as the network structure

in our model. The model simulates the dynamics of a bi-stable switch at every node in this network, meaning that every node starts in

a background state, but has the ability to transit to a co-existing seizure state. Whether a transition happens in a node is partly

determined by the stochastic nature of the input to the node, but also by the input the node receives from other connected nodes in

the network. By conducting simulations with such a model, we can detect the average transition time for nodes in a given network,

and therefore define nodes with a short transition time as highly epileptogenic. In a retrospective study, we found that in some

patients the regions with high epileptogenicity in the model overlap with those identified clinically as the seizure onset zone. Moreover,

it was found that the resection of these regions in the model reduces the overall likelihood of a seizure. Following removal of these

regions in the model, we predicted surgical outcomes and compared these to actual patient outcomes. Our predictions were found to

be 81.3% accurate on a dataset of 16 patients with intractable epilepsy. Intriguingly, in patients with unsuccessful outcomes, the

proposed computational approach is able to suggest alternative resection sites. The model presented here gives mechanistic insight as

to why surgery may be unsuccessful in some patients. This may aid clinicians in presurgical evaluation by providing a tool to explore

various surgical options, offering complementary information to existing clinical techniques.
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Introduction
Focal epilepsy is a common neurological disorder charac-

terized by recurrent seizures together with abnormal elec-

trographic activity in localized (focal) brain areas.

Approximately 30% of patients suffering from focal seiz-

ures are refractory to medication, hence surgical interven-

tion is considered as an alternative treatment. To determine

the location of the seizure focus, presurgical evaluations are

usually performed, using a combination of the history,

physical exam, neuroimaging, EEG and other modalities

(Rosenow and Lüders, 2001; Duncan et al., 2016). In

some patients these studies are insufficient and intracranial

EEG is required with a focus on ictal activity as the prime

marker of brain regions underlying the epilepsy. Long hos-

pitalization times are often required for enough seizures to

be captured using intracranial electrodes. If the location of

the epileptic focus is considered to be identified and not

eloquent, the patient undergoes surgical resection of the

epileptic tissue. In cases with a clear-cut lesion seen on

neuroimaging, surgery renders up to 80% of patients seiz-

ure-free (Wiebe et al., 2001; Choi et al., 2008; Jobst and

Cascino, 2015). However, in ‘non-lesional’ cases, surgical

failure rates are up to 50%, where seizures occur with a

similar frequency after the surgery (Yoon et al., 2003; de

Tisi et al., 2011). It will be beneficial to be able to predict

in a patient-specific manner when surgery will not work

and to suggest alternative resection sites.

One of the proposed reasons for unsuccessful surgical

resections is the notion that even focal epilepsies are net-

work diseases (Bragin et al., 2000; Spencer, 2002; Kramer

and Cash, 2012; Terry et al., 2012; Lam et al., 2016). This

notion suggests that epilepsy can be considered a disease of

abnormal network organization of brain areas and the con-

nections between them. Indeed, many studies have shown

alterations in structural brain networks of patients with

focal epilepsies relative to controls (Bonilha et al., 2012;

Richardson, 2012; Diessen et al., 2013; Taylor et al.,

2015a). In functional networks, areas of abnormally

increased synchronization have been identified during inter-

ictal (non-seizure) periods, which appear to overlap with

the seizure onset zone (Schevon et al., 2007; Dauwels

et al., 2009; Laufs et al., 2012; van Mierlo et al., 2014).

Such network approaches have also been successfully

applied to find differences between patient groups who

have differing surgical outcomes (Bonilha et al., 2015;

Englot et al., 2015; Munsell et al., 2015; Coan et al.,

2016). This suggests that functional and structural

networks potentially contain information that could be of

predictive value. However, these approaches tend to rely on

the analysis of the static network structure, and largely

disregard dynamical properties, which are known to be

important in the generation of seizures (Taylor et al.,

2014a).

Dynamical simulations using computer models have pro-

vided mechanistic insight into how network features relate

to clinical manifestations of seizures (Wendling et al., 2002;

Terry et al., 2012; Taylor et al., 2013; Jirsa et al., 2014;

Schmidt et al., 2014). Furthermore, network modelling of

seizure transitions has suggested improved classification of

seizure types (Wang et al., 2014), enabled the prediction

of optimal stimulation protocols (Taylor et al., 2015b) and

suggested alternate seizure onset mechanisms (Lopes da

Silva et al., 2003; Goodfellow et al., 2011; Baier et al.,

2012). However, only limited work has been done using

dynamical network modelling approaches in the context of

epilepsy surgery (Sinha et al., 2014; Hutchings et al., 2015;

Goodfellow et al., 2016).

In this retrospective study, we combine dynamical simu-

lations and functional connectivity derived from interictal

electrocorticographic (ECoG) recordings previously

acquired and where the surgical outcome is known. The

aim of this study is to predict surgical outcomes by simu-

lating surgery (i.e. removal of nodes from the network) in

silico. Finally, we use the model as a network measure to

suggest alternative resection approaches for patients with

poor predicted outcomes.

Materials and methods

Patient information and recordings

We retrospectively studied 16 patients having long-standing
pharmacoresistant epilepsy who were treated at
Massachusetts General Hospital (MGH), and Mayo Clinic
(publicly available from IEEG portal; https://www.ieeg.org).
Patients selected had seizures with focal onset and typical com-
plex partial events, often with secondary generalization. The
mean age of patients was 25.06 � 16.42 years, and seven pa-
tients were female. These patients underwent surgical therapy
with a goal of achieving seizure freedom, and the seizure focus
was delineated using standard clinical techniques (e.g. ECoG,
seizure recordings, MRI). The seizure onset regions were most
common in the neocortical temporal lobe and in mesial tem-
poral lobe or a mix of the two (n = 9). In four patients, seiz-
ures arose from frontal lobe structures and in another four
patients, seizure arose from the parietal and occipital lobes.
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Surgical outcome was defined as at least 1 year of post-sur-
gical follow-up according to the ILAE surgical outcome scale.
Patients were categorized in two groups: good outcome and
poor outcome. Good outcome cases correspond to surgical
outcome class I or II and poor outcome cases correspond to
surgical outcome class III, IV or V. Based on this classification,
eight patients were classified to have good post-surgical out-
come and eight were classified to have poor post-surgical out-
come. The clinical and demographic information of all patients
in this study is summarized in Table 1.

All recordings were performed using standard clinical re-
cording systems with a sampling rate of 500 Hz. Two-dimen-
sional subdural electrode arrays as well as linear arrays of
electrodes (grid/strips and depth electrodes) were placed to
confirm the hypothesized seizure focus, and locate epilepto-
genic tissue in relation to eloquent cortex, thus directing sur-
gical treatment. The decision to implant the electrode targets
and the duration of implantation were made entirely on clin-
ical grounds with no input from this research study. For the
analysis presented here we focused only on the grid and strip
electrodes placed on the cortex. All data were collected con-
forming to ethical guidelines and under protocols monitored
by the local Institutional Review Boards (IRB) according to
NIH guidelines.

Data preprocessing, functional net-
work and ground truth resection site

We extracted a 1-h segment of interictal (non-seizure) ECoG
data for each patient. The ECoG recordings used are from
apparently ‘healthy’ interictal epochs only, with no obvious
epileptiform activity, and recorded several hours away from
any clinical seizure where possible. The data were band-pass
filtered between 1 to 70 Hz, and notch filtered at 60 Hz to
exclude power line interference. A common reference was
used for data analysis and the reference electrode in each
case was located far from the area of recording making the
introduction of spurious correlation or elimination of actual
correlation between cortical regions unlikely (Dauwels et al.,
2009). Use of a Laplacian montage appeared to give no better
results, but rather have the opposite effect (Supplementary Fig.
8). The channels were not selected based on any pre-existing
knowledge, except that clearly dysfunctional channels were
discarded. Symmetric functional connectivity Cij between two
regions of the brain i and j was computed as the average cor-
relation (see below) of the signal recorded by the electrode
contacts of those regions. The use of asymmetric functional
connectivity measure gave broadly similar results
(Supplementary Fig. 9).

To extract (at least approximately) the stationary aspects of
ECoG data, we chose to divide the ECoG signal into consecu-
tive 1-s segments, whereby each segment overlaps the previous
segment by 0.5 s (Kramer et al., 2008; Dauwels et al., 2009;
Antony et al., 2013). The correlation was calculated within
each 1-s segment. By averaging over all 1-s segments of a 1-
h ECoG signal, we obtain average values of the functional
connectivity for the 1-h ECoG signal. Note that all values of
the correlation matrix are bounded between �1 and + 1.
Negative correlation values implying long range inhibitions
were set to zero, as within our modelling framework and in
line with previous studies (Benjamin et al., 2012; Petkov et al.,

2014), we do not consider the contribution of long range
direct inhibitory connections to the simulation of the epilepto-
genic effect.

The location of surgical resection (our ground truth for what
was actually resected) was determined for the iEEG data after
analysing the clinical reports for locating seizure focus and
seizure spread using prolonged video-ECoG monitoring, sur-
gery reports detailing resection procedures, pathology reports
of resected cortical tissues, and imaging data (wherever avail-
able) showing the precise location of ECoG electrodes. Based
on these reports, the electrodes contained within the site of
resection were independently analysed by three of the authors
(N.S., Y.W., P.T.) before arriving at a consensus. For the
MGH data, the surgical resection site was determined by clin-
icians at MGH, independently of this study. These electrodes
are shaded in black for each patient in Fig. 4 and
Supplementary Fig. 1.

Mathematical model

To investigate how the patterns of functional interactions de-
termine the dynamics of seizure initiation, we incorporated the
functional network into a dynamical model. The model dy-
namics are based on the hypothesis that the change in the
brain state causes seizure onset and this change is driven by
noise in a bi-stable system (Lopes da Silva et al., 2003;
Suffczynski et al., 2006; Kalitzin et al., 2010; Benjamin
et al., 2012; Taylor et al., 2014b). Building on the aforemen-
tioned, and the methods of Terry et al. (2013), who suggested
the use of such a model in the context of generalized epilepsy,
we use a similar approach for focal seizures and surgery local-
ization. Our objective is to study the role of network structure
in transitions between non-seizure and seizure states.
Therefore, in this modelling framework, we consider the cor-
tical region under each ECoG electrode as a network node.
Individually each node, in a bi-stable setting of the model par-
ameters, produces a simulated time series with a resting state
and episodes of pathological high amplitude oscillations. These
oscillations are identified with ictal (seizure) dynamics, whereas
the resting state is identified with interictal (non-seizure) dy-
namics. The individual node dynamics are governed by the
stochastic complex differential equation:

dz

dt
¼ ajzj4 þ bjzj2 þ �þ i!
� �

zþ �ðtÞ; ð1Þ

where ! is the parameter that controls the frequency of oscil-
lations; � determines the possible attractors of the system;
(a, b) are real constant coefficients. The stochastic process
�(t) denotes the complex noise input to the model
[mean = 0.0003 and standard deviation (SD) = �0.05], incor-
porating white noise to imitate state transitions driven by ex-
ternal or endogenous factors.

Individual nodes are connected with bidirectional functional
connectivity (C) to form a network. Therefore, the stochastic
dynamics at the node level can be expanded to the network
level having N nodes:

dzk

dt
¼ ajzkj

4 þ bjzkj
2 þ �þ i!

� �
zk þ b

XN

j¼1

Ckjzk þ �ðtÞ; ð2Þ

where, b is a scaling factor and C is the patient-specific func-
tional connectivity representing functional interactions between
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different brain regions. Analytical treatment of this model and
its implementation in the context of comparing clinical popu-
lations with controls can be found in previous studies (Kalitzin
et al., 2010; Benjamin et al., 2012; Petkov et al., 2014). In
accordance with these studies, the model dynamics under dif-
ferent scenarios have been illustrated in Fig. 1.

It is apparent from the deterministic dynamics (without
noise) in Fig. 1A that different initial conditions result in a
resting (fixed-point) state or an oscillating state. The two
states are separated by an unstable oscillation (sepratrix)
(Fig. 1A). The model parameters are chosen such that all
nodes in the model are placed in the bi-stable regime.
Introducing the noise term causes the nodes to exhibit occa-
sional transitions between the two states. This is illustrated by
the two disconnected nodes A and B in Fig. 1B, whereby both
nodes exhibit their independent dynamics without influencing
each other. The subtleties of the model dynamics can be intui-
tively grasped in this simple case when the two nodes are
connected to form a network. When node B is connected to
node A (i.e. A!B), the dynamics of node B are influenced by
A but not vice-versa. The dynamics evolve in an even more
complex manner when B is also connected to A and hence
influences its dynamics.

In our implementation of this model, patient-specific func-
tional connectivity was combined with the model dynamics.
The simulations exhibit transitions with focal onsets as

shown in Fig. 1D. To simulate surgery, the static connectivity
matrix was altered (connections to the resection site set to
zero) and the model was resimulated to study the resulting
change in dynamics to the remaining nodes due to the altered
connectivity. This led us to make patient-specific, clinically
relevant predictions which are explained in the subsequent sec-
tions. Model solutions were computed numerically using a
fixed step Euler-Maruyama solver in MATLAB (The
MathWorks, Natick, MA) with a step size of 0.05.

Measure of seizure likelihood

The dynamics leading to seizure onset can be quantified using
escape time of individual nodes. In our model simulations,
initially all the nodes are placed in the resting state. The
escape time is the time taken by a node to leave the basin of
attraction in the resting state and cross over to the basin of
attraction of the seizure state (Benjamin et al., 2012). As the
model is stochastic, the escape time �i of each node is calcu-
lated for many different realizations of noise (i.e. �1, �2 . . . �M).
The mean escape time of each node is computed by averaging
the escape time across different noise realizations.
Consequently, the likelihood of a node to go into seizure is
inversely related to escape time (Petkov et al., 2014). In other
words, a node with higher seizure likelihood has a lower
escape time and therefore, also has a higher propensity to

Figure 1 Illustration of model dynamics. (A) Deterministic dynamics of a single node representing the bi-stability of the model. (B)

Stochastic dynamics in a two node network. The two nodes are initially disconnected having independent dynamics. Depending on the strength

and direction of connections, the dynamics of each node is influenced by the other. (C and D) Patient-specific connectivity matrix is obtained from

intracranial, interictal ECoG recording, which is incorporated as a model parameter to simulate the model dynamics.
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seize and vice versa. We term these simulated escape time of

the network nodes presurgery as tprior.
Figure 2 illustrates the computation of escape time and seiz-

ure likelihood using the method described above. Patient-spe-

cific functional connectivity estimated from the patient’s ECoG

data was incorporated as the model connectivity parameter C
and the model was simulated with different noise realizations.

Since the dynamics evolve differently for different noise real-

izations, the mean escape time was computed over a large
number of iterations (in this case, m = 1000). Figure 2B

shows the seizure likelihood for each node. Next, we deli-
neated the set of nodes having significantly higher seizure like-

lihoods. We applied the non-parametric Wilcoxon rank sum

test between the escape time vector of the node having the
highest seizure likelihood and all other nodes. For instance,

node 10 in Fig. 2 has the highest seizure likelihood, therefore,

the non-parametric Wilcoxon rank sum test was applied be-
tween �10;�i

ji ¼ 1;2; . . . m
� �

and �j;�i
ji ¼ 1;2; . . . m

� �
, where

j ¼ 1;2; . . . ;N. The Benjamini and Hochberg false discovery
rate (FDR) correction was then applied at a significance level

of 5% to determine the nodes having significantly higher seiz-

ure likelihoods. These nodes are shown in Fig. 2B and were
found to be correlated with the clinically determined seizure

onset region denoted on the brain schematic.

Outcome prediction criteria

Surgical intervention can be simulated in our modelling frame-
work by altering the connectivity matrix C. In the model, any

cortical region can be resected by setting the connectivity par-

ameter strength to and from that region to zero. This isolates
that cortical region, excluding it from contributing in the over-

all dynamics of the remaining network topology. The dynam-

ical consequences of these in silico interventions on the

remaining network can be quantified by re-simulating the
model with the new connectivity matrix and comparing

the changes in escape time or seizure likelihood.
We propose the following computational approach to make

predictions about the efficacy of a surgical resection on seizure

control and surgical outcomes. First, we need to gauge the
effect of actual resection on seizure reduction in terms of

model dynamics. Therefore, we alter the original connectivity

matrix by removing the same network nodes as those resected
clinically. With this altered connectivity we resimulate the

model and note the increased values of escape time (i.e. reduc-

tion of seizure likelihood) for all the remaining nodes. We term

this ‘simulated actual resection’, tactual.
Next, we posed the question: how much seizure control

could have been achieved due to a resection of the same size

Figure 2 Illustration of seizure likelihood computation. (A) Electrodes in seizure onset zone (4, 5, 6, 10, 11, 12, 16, 17, 18) are shown in

red on the brain schematic. The connectivity matrix inferred from the ECoG recordings is coupled with the model and the model dynamics is

simulated with 1000 different noise realizations (B) The bar graph represents the seizure likelihood for each node and the error bars represent

the standard error. Note that the nodes with significantly higher seizure likelihood (indicated by an asterisk) are correlated with the seizure onset

zone shown in red in A and B.
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(amount of tissue or number of network nodes) in random
locations, rather than the site of actual clinical resection? To
explore this, we preserved the nodes at the site of clinical re-
section and selected the same number of nodes randomly from
the remaining set for removal from the network. The model
was resimulated with this altered network and the change in
escape time was noted. The same procedure was repeated and
an ensemble average of the resulting escape time was taken
over 100 instances to estimate the net effect on seizure reduc-
tion upon random resection. We term this ‘simulated random
resection’, trand.

Finally, we explored the ability of our method to predict
surgical outcomes through the application of receiver operat-
ing characteristic (ROC) analysis and using the optimal point
on the ROC curve as the threshold for classification. In order
to compare the change in escape time upon removal of nodes
resected clinically versus random removal of nodes, we con-
sidered the following two features: (i) difference between
escape time tactual � trandÞð ; and (ii) Cohen’s d-score, dactual:rand

to test how big the differences are in escape times. We com-
puted Cohen’s d-score between two distributions X and Y as
dX:Y ¼

X�Y
�XY

, where standard deviation �XY ¼ mean �X; �Yð Þ.
The outcomes are predicted to be good if the increase in the
mean escape time due to removal of clinically delineated nodes
is substantially higher than that of the random resections i.e.
tactual4t rand. Conversely, if the above condition was not satis-
fied, we predict that the surgery does not reduce the frequency
of the seizures.

Statistical analysis

We applied the non-parametric Wilcoxon rank sum test for
comparison of escape time and seizure likelihood between
the nodes. Results are declared significant for P50.05. We
further applied Benjamini-Hochberg false discovery rate cor-
rection at a significance level of 5% (Benjamini and Hochberg,
1995). Cohen’s d measures the standardized difference be-
tween two means (Cohen, 1988). Therefore, we computed
Cohen’s d-score to measure the effect size of the variations
in escape time upon resimulation of the model with altered
connectivity.

Results
The results are organized into three main sections. First we

attempt to identify pathological brain areas inferred from

the model. Second, we reproduce the surgical procedure in

the model, predict the surgical outcome, and compare the

prediction to the actual outcome. Third, we predict the

outcomes of alternative resections. The overall procedure

is illustrated in Fig. 3. For brevity we study two represen-

tative patients; results for all 16 patients can be found in

the Supplementary material.

Pathological node identification

Clinically, the ictogenic regions of the brain are delineated

mostly by visual inspection of prolonged electroencephalo-

graphic recordings. Informed by presurgical diagnostics,

such as imaging and cortical mapping assessments, the

tissue to be resected is circumscribed. Figure 4 shows two

cases of intractable epilepsy, in which the patients were

evaluated as candidates for resective surgery based on pre-

operative assessments. For the patient in Fig. 4A, the right

temporal lobe and for patient in Fig. 4B, the left parietal

cortex were diagnosed as pathological and responsible for

ictogenesis. The areas clinically identified for resection are

shown in black.

Surgical resection was performed clinically to remove the

cortical tissues under the black shaded electrodes. The pa-

tient in Fig. 4A had improvement after surgery (ILAE class

II), while the patient shown in Fig. 4B had a poor surgical

outcome (ILAE class IV) with no worthwhile improvement

in seizure frequency following surgery. Supplementary Fig.

1 shows seven additional cases in which the patients had

good post-surgical outcomes, and seven cases in which the

patients had poor outcomes after surgery. In the following

we classify surgical outcome ILAE class I and II as good

outcome, as both indicate a substantial and significant re-

duction in seizure frequency and surgical outcome ILAE

class III and above as bad outcome. This way of classifica-

tion is also useful when applied to the model output, as we

demonstrate below.

The spatial distribution of simulated seizure likelihood in

the model for different regions is coded by colour in Fig. 4.

Warmer colours represent a higher propensity for seizures

in the model in those brain areas. It is evident from Fig. 4A

that there is a substantial overlap between the regions with

high seizure likelihood and clinically delineated ictogenic

regions. However, for the patient shown in Fig. 4B, our

simulations predicted that the left anterior temporal

cortex had higher seizure likelihood. This is in contrast to

the clinically circumscribed region in the left parietal

cortex. Thus, the model predictions are sometimes, but

not always, in agreement with the clinically identified seiz-

ure focus. This is also the case for the other subjects studied

(Supplementary Fig. 1). The result is consistent for different

samples taken days apart (Supplementary Fig. 2A) and

robust for specific frequency bands (Supplementary Fig.

2B). Finally, we also investigated the possible drivers

behind the simulated seizure likelihood using graph-theor-

etic measures on the functional networks (Supplementary

material and Supplementary Fig. 10). It appears that the

node strength and clustering coefficient of the functional

networks best explain the simulated seizure likelihood in

our model.

Prediction of surgical outcomes

We proceed to demonstrate a simple yet promising compu-

tational diagnostic technique to examine the consequence

of resecting a region on seizure reduction. Figure 5 shows

the impact of removing brain areas on the resulting dy-

namics of the model for the two exemplary subjects. Due

to variations between runs of the model we plot the distri-

bution of average escape times of nodes across repeated

simulations. Following the removal of brain areas in the
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Figure 3 Overall procedure. (A–C) The computation of functional connectivity by averaging the windowed correlation matrices estimated

from the segmented interictal ECoG signals. We coupled the model with the modified connectivity matrix from step D to compute the seizure

likelihood upon actual resection (as shown in step H). Similarly, we computed seizure likelihood upon random resection (illustrated in step I) by

coupling the modified connectivity matrix from step E with the model. From the steps H and I, we made predictions about surgical outcome by

comparing their efficacy on seizure reduction in the model.

Figure 4 Correlation between clinical resection, post-surgical outcome and seizure likelihood. Cortical areas under electrode

channels which were surgically resected have been shaded in black. Post-surgery, Patient P1 shown in A had a good surgical outcome (ILAE class

II); while Patient P2 in B had a poor surgical outcome (ILAE class IV). The colour plot on which the electrodes are overlaid shows the distribution

of simulated seizure likelihood values of different brain regions.
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model the escape time increases, even for randomly selected

nodes. Ultimately the goal is to increase the escape time

(equivalently, decrease seizure likelihood) as much as pos-

sible. The model enables us to explore the following ques-

tion: does the removal of a particular set of nodes decrease

the seizure likelihood more often than by chance selection

of other randomly selected nodes? If so, we predict that the

resection of these nodes will lead to a positive surgical out-

come in the patient.

For Patient P1 (Fig. 5, left), removal of the same brain

areas as those removed clinically leads to a significant in-

crease (tactual4trand and prand:actual ¼ 1:25� 10�20) in

escape time above chance removal of the same number of

randomly selected nodes. Therefore, the prediction for this

patient is a good outcome and agrees with empirical obser-

vations in the patient.

However, for Patient P2 (Fig. 5, right) increase in escape

time due to the resection of the clinically diagnosed epilep-

tic focus is significantly lower than chance selection of areas

(tactual5trand and prand:actual ¼ 2:8� 10�26). The prediction

for this patient is therefore a poor outcome and also agrees

with empirical observation. Similar observations were made

in other patients (Supplementary Fig. 4).

Surgical outcomes predicted retrospectively for 16 pa-

tients by applying ROC analysis is summarized in Tables

1 and 2. The ROC curves are shown in Supplementary Fig.

5 along with the area under the curve (AUC). The classifi-

cation threshold was chosen such that classifier operates at

the optimal point which is indicated on the ROC curve.

Note that for the majority of patients (81.3%), the pre-

dicted outcome was found to be the same as the actual

surgical outcome (accuracy) with 87.5% sensitivity and

75% specificity.

Prediction for alternative resection
strategies

For patients with poor predicted outcomes a key question

still remains. Which areas should be removed, if any, to

result in a better chance of a positive outcome?

We investigated this by delineating the set of nodes

having significantly higher seizure likelihood compared

to the rest of the network. We refer to the ‘Measure of

seizure likelihood’ section for more details on finding the

nodes with highest seizure likelihood. These nodes are

shown in red in the bar plots of Fig. 6. The spatial loca-

tions of these nodes on the brain schematic are indicated

in black. Next, we verify whether the removal of this set

of nodes minimizes seizure likelihood or maximizes escape

time.

This has been demonstrated empirically in the box plots

shown in Fig. 6. Note that when no nodes were removed

from the model brain, the mean escape times for the pa-

tient in Fig. 6A and B were found to be tprior ¼ 127:11

and tprior ¼ 417:21, respectively. The mean escape times

increased significantly (P50.0005) to tsim ¼ 304:19 and

tsim ¼ 493:89 in Fig. 6A and B, respectively, upon the re-

moval of nodes shaded in black. To determine if these set

of nodes were a more favourable set delineated to minimize

the overall seizures in the model, 100 sets of same order

were randomly chosen. The nodes therein were removed

from the model brain and in every instance the escape

time was calculated. The mean escape time averaged

over 100 instances is shown in Fig. 6. It is evident that

for both patients, the increase in escape time due to the

removal of nodes at random is significantly lower

(P = 1.24� 10�20 for Patient P1, and P = 4.9� 10�15 for

Figure 5 Node removal to predict surgical outcome.

Resected cortical tissues are coloured in red. Nodes within the

resected tissue are removed from the model. The resulting increase

in escape time is shown in the box plot (in red), which is compared

against the increase in escape time due to removal of the same

number of randomly selected nodes, averaged over 100 instances

(in blue). *P = 0.005–0.05; **P = 0.0005–0.005; ***P50.0005 com-

puted using the non-parametric Wilcoxon rank sum test.

Table 2 Confusion matrix indicating performance of algorithm in predicting surgical outcomes using tactual:rand

Actual surgical outcome

Seizure free = 8 Not seizure free = 8

Predicted outcome Seizure free = 9 True positive = 7 False positive = 2 (type I error)

Not seizure free = 7 False negative = 1 (type II error) True negative = 6

Accuracy = 0.813 True positive rate, or sensitivity = 0.875 False positive rate, or fall-out = 0.25

False negative rate, or miss rate = 0.125 True negative rate, or specificity = 0.75
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Patient P2) than the removal of nodes shaded in black

(t rand ¼ 208:96 for Patient P1, and t rand ¼ 467:5 for

Patient P2).

We similarly investigated 16 cases (Supplementary Fig. 6)

and predicted an alternative set, or subset of nodes for each

patient which was corroborated with our empirical results.

For each case, tprior5trand5tsim indicating that removal of

the nodes with highest seizure likelihood would delay all

the remaining nodes to transit into the seizure state, conse-

quently reducing the overall seizure likelihood and would

therefore be potentially useful for use as surgical targets.

Hence, we suggest that these nodes predicted in silico

should be considered for further investigation in vivo

during preoperative assessments. Even in cases where our

prediction overlaps substantially with the clinically diag-

nosed epileptic focus, our prediction often leads to a

much smaller subset of these nodes, the resection of

which may lead to fewer side effects.

Discussion
In this study, we simulated the epileptogenicity of different

brain regions in a mathematical model using interictal net-

works derived from ECoG recordings. We observe that re-

gions with high epileptogenicity arise in the dynamical

model, which often correspond to the surgically resected re-

gions in patients who achieved seizure freedom. Indeed, we

show that using the model as a predictor of surgical out-

come, a sensitivity of 87.5% and a specificity of 75%

(81.3% accuracy) can be achieved. In the cases where we

predicted true negatives, we were further able to suggest

alternative sites for resection based on the model. The meth-

ods presented here may enable clinicians to better incorpor-

ate interictal epochs of EEG in presurgical evaluation.

Moreover, we have suggested a procedure for in silico re-

section, which may be helpful to locate alternative resection

regions, if the seizure focus is found to be in eloquent cortex.

Hence, we suggest that the epileptogenicity model can be a

useful tool for measuring properties of brain connectivity

networks, with easier interpretability than many traditional

graph theoretic measures in the context of epilepsy.

The patient-specific functional network gives rise to the

behaviour of the model and determines the epileptogenicity

of each node. Consequently, the structure of this network

that contains information about the underlying processes

eventually produce seizures in patients. Previous literature

also supports the notion that some degree of information

about the epileptogenic regions are contained in these rest-

ing state functional networks (Petkov et al., 2014; Schmidt

et al., 2014; also see van Mierlo et al., 2014 for review).

The mechanism underlying this phenomenon is not fully

understood, although the high gamma range has been indi-

cated to be most informative (Wilke et al., 2011). A recent

study highlights that structural (axonal) connectivity be-

tween regions is required for functional connections espe-

cially in the gamma band (Chu et al., 2015). Taken

together these studies suggest a possible structural under-

pinning of the functional networks found in those studies

and ours.

Several earlier studies aim to predict the outcomes of

epilepsy surgeries (Jehi et al., 2015, see Thom et al.,

2010 for a review). Most existing studies focus on temporal

lobe epilepsy (Schulz et al., 2000; Aull-Watschinger et al.,

2008; Feis et al., 2013; Munsell et al., 2015; Coan et al.,

2016). A few studies reported a more heterogeneous cohort

(Armon et al., 1996; Asano et al., 2009; Negishi et al.,

2011). Usually, regression analysis on routinely acquired

pre- and postoperative information is performed, and

Figure 6 Illustrating in silico approach for exploring surgical options. The seizure likelihood for each ECoG channel is shown in the bar

plot. Higher seizure likelihood indicates more propensity to seize. Nodes with significantly higher seizure likelihood after FDR correction are

indicated in red in the bar plot and their spatial locations are mapped on the electrode grids in black. Nodes are removed in the model brain to

simulate surgical resection. The box plots show escape time for (i) original network (in green); (ii) resection of nodes with the highest seizure

likelihood (in red); and (iii) resection of same number of random nodes, averaged over 100 instances (in blue). ***P50.0005.
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significant predictors of surgical outcome are reported.

Some studies additionally provide information on their pre-

diction. Munsell et al. (2015) developed a predictor based

on the structural connectivity of patients with temporal

lobe epilepsy and report 70% accuracy. Based on MRI-

derived brain morphology, Feis et al. (2013) present a pre-

dictor of 96% accuracy in males and 94% accuracy in

females. Finally, using functional fMRI (Coan et al., 2016)

show a prediction sensitivity of 81% and specificity of 79%

in patients with temporal lobe epilepsy. Compared to these

results, our accuracy (81.3%), sensitivity (87.5%), and spe-

cificity (75%) are in a similar range. However, in case of

predicting unfavourable surgical outcomes, our method was

additionally able to indicate alternative areas for removal,

which could result in an improved outcome. Hence, our

approach goes beyond that of a simple predictor of surgical

outcome, and can additionally be viewed as a complemen-

tary tool for localization in presurgical evaluation. Indeed,

this is one of the key novelties of our work.

The improvement of surgical outcome has been of long

standing interest in the epilepsy community. So far, it re-

mains mostly unclear why surgery fails in some patients.

Certain factors (e.g. generalized EEG abnormalities, non-

lesional MRI, incomplete removal of the seizure onset

zone, and secondarily generalized seizures) predispose sub-

jects to a negative surgical outcome (Janszky et al., 2000;

Schulz et al., 2000; Spencer et al., 2005; Jeha et al., 2007;

Asano et al., 2009; Tellez-Zenteno et al., 2010). These fac-

tors are associated with a complex, possibly wide-spread

epileptogenic network. Additionally, an overall more excit-

able surrounding cortex might also be present in some

cases (Wang et al., 2014), further facilitating wide-spread

networks to generate seizures. This notion of excitable sur-

rounding tissue leads to the suggestion of varying degrees

of ‘healthy’, or ‘unhealthy’ tissue, rather than strict binary

classifications. These conditions might lead to a more com-

plex correlation pattern on the ECoG different from that of

a classical focal seizure, which is spatially constrained and

would hence show a corresponding spatially well localized

correlation pattern on ECoG. This may explain the false

alarm rate of 25% associated with our proposed method.

In case of these complex wide-spread epileptogenic net-

works, additional measures of cortical excitability; e.g.

using stimulus response (Valentin et al., 2005) might be

required to support the prediction of surgical outcome.

A further factor that might influence our results is the

spatial coverage and locations of the recording electrodes.

It has been reported that the number of electrodes substan-

tially influences the inference of functional networks

(Hassan et al., 2014). Particularly when using ECoG (as

opposed to high density EEG or MEG), parts of the

brain might not be covered that are also involved in the

epileptogenic network, and hence not detected. This scen-

ario would cause our classifier to predict false positive re-

sults. A potential way around this may be to use source

localization techniques in conjunction with high density

EEG or MEG recordings such as the study by Englot

et al. (2015). A so far unexplored issue is the spatial reso-

lution of the recording. New high resolution recording

modalities (Schevon et al., 2008; Viventi et al., 2011)

might provide new insights for constructing more inform-

ative functional networks.

Traditionally, imaging information, as well as ictal

ECoG, and some ECoG markers (e.g. interictal spikes)

are relied upon during surgical evaluation (Rosenow and

Lüders, 2001). Recently, high frequency oscillations

(HFOs) have also been proposed as a marker for the epi-

leptogenic zone to be removed at surgery (Jacobs et al.,

2009, 2010). Interestingly, a computational modelling

study demonstrated recently that both interictal spikes

and HFOs might be caused by common mechanisms,

related to shifts in the balance of excitation and inhibition

toward hyperexcitation (Demont-Guignard et al., 2012).

However, in the model, whether interictal spikes or HFOs

occur depends on other factors, such as the number and

spatial distribution of hyperexcitable cells. Hence, both

interictal spikes and HFOs might be understood as markers

of brain regions capable of occasionally generating hyper-

excitable activity. As such, these areas are related, but not

necessarily specific, to the seizure generating zone. In the

framework of dynamic mechanisms of focal seizures (Wang

et al., 2014), interictal spikes and HFOs might be markers

of the establishment of enabling surrounding cortex, which

can support seizure activity but does not necessarily trigger

or induce seizure activity. In the traditional words of pre-

surgical evaluation, interictal spikes and HFOs would mark

the irritative zone (Rosenow and Lüders, 2001), which in

periods of increased excitability react with such interictal

events.

In contrast, our methods here might capture a comple-

mentary signal that can be used in the presurgical evalu-

ation. The measure of epileptogenicity we apply here is

derived from minutes to hours of interictal activity. As dis-

cussed above our measure might reflect a more persistent

(possibly structural) abnormality of the brain network. It is

interesting to note that the modelling predictions correlate

highly with predictions using the local clustering coefficient

of the network nodes, and node strength (Supplementary

material and Supplementary Fig. 10) suggesting localized

hyperconnectivity may lead to seizure genesis in our

model. Indeed, computational modelling studies have also

demonstrated how local network changes can enhance or

constrain spreading of activity from a focal area (Kaiser

et al., 2007). Hence, the significance of these model-derived

and graph-theoretic measures deserve further exploration in

clinical and experimental studies to fully assess its interpret-

ation and value in presurgical evaluation.

In this study we have focused our attention on only one

computational model. There is a plethora of other dynam-

ical computational models that describe many different

types of epileptic seizures (Breakspear et al., 2006; Baier

et al., 2012; Kramer et al., 2012; Taylor et al., 2013;

Proix et al., 2014; Suffczynski et al., 2004) or synchrony

(Kuramoto, 1975). Indeed, the choice of model may
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influence the prediction outcome. In this study we simu-

lated one of the simplest possible dynamical models of a

bistability between a fixed point and a limit cycle. The

choice of this model is based partly on the success of pre-

vious studies using it in conjunction with resting state elec-

trographic data (Benjamin et al., 2012) and partly because

of the existence of a well-defined measure of seizure likeli-

hood (Petkov et al., 2014). Nonetheless, other mechanisms

for defining seizure likelihood may be important and so

future studies may benefit from the use of alternative mech-

anisms other than bistability. Indeed, it may be that differ-

ent patients have different onset mechanisms and so

multiple alternative models may capture this better (Wang

et al., 2014).

Our study should be considered in the context of our

sample size and data. On one hand, obtaining large data-

sets with sufficient and accurate follow-up data is difficult

and time consuming. On the other hand, obtaining multi-

modal, complementary imaging data (e.g. diffusion MRI,

EEG, ECoG, MEG, microelectrodes etc.) is expensive.

However, there have been suggestions that all of these tech-

niques may be useful in understanding the mechanisms

involved in focal seizure onset (Bonilha et al., 2012;

Laufs, 2012; Schevon et al., 2012). While our computer

model provides a framework to investigate how recordings

may relate to epileptogenicity and to predict outcomes, a

next step is to incorporate multimodal data for enhanced

predictive value (Hutchings et al., 2015). This requires ex-

tensive data collection, annotation and analysis. We have

demonstrated the potential of this approach and suggest

that a larger study of model-based prediction of surgical

intervention may prove useful.

A key benefit of our approach is to predict alternative

resection strategies. To our knowledge our use of a dynam-

ical model based approach to do this is entirely novel.

Indeed, this would be highly beneficial not only when the

prediction is of a poor outcome for the suggested site, but

also when the suggested site is located in eloquent cortex

(e.g. motor/language areas). Another benefit of our ap-

proach is that we incorporate interictal segments of rou-

tinely collected clinical data. Usually patients are implanted

in order for the clinician to observe seizures on the elec-

trodes to decide which areas the seizure originates from.

This can lead to long hospitalization times since it can be

highly unpredictable when the seizures will occur. The use

of interictal data is therefore potentially beneficial and com-

plementary to imaging through the use of ictal data and

MRI. The incorporation of our patient-specific model

output into the clinical decision making process, in the

future, may lead to improved surgical success and mechan-

istic insight into the pathophysiology of seizures.
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