
Pupillometry in Hearing Science: Original Article

Analyzing the Time Course of
Pupillometric Data

Jacolien van Rij1, Petra Hendriks1, Hedderik van Rijn1,
R. Harald Baayen2, and Simon N. Wood3

Abstract

This article provides a tutorial for analyzing pupillometric data. Pupil dilation has become increasingly popular in psychological

and psycholinguistic research as a measure to trace language processing. However, there is no general consensus about

procedures to analyze the data, with most studies analyzing extracted features from the pupil dilation data instead of

analyzing the pupil dilation trajectories directly. Recent studies have started to apply nonlinear regression and other methods

to analyze the pupil dilation trajectories directly, utilizing all available information in the continuously measured signal. This

article applies a nonlinear regression analysis, generalized additive mixed modeling, and illustrates how to analyze the full-time

course of the pupil dilation signal. The regression analysis is particularly suited for analyzing pupil dilation in the fields of

psychological and psycholinguistic research because generalized additive mixed models can include complex nonlinear inter-

actions for investigating the effects of properties of stimuli (e.g., formant frequency) or participants (e.g., working memory

score) on the pupil dilation signal. To account for the variation due to participants and items, nonlinear random effects can be

included. However, one of the challenges for analyzing time series data is dealing with the autocorrelation in the residuals,

which is rather extreme for the pupillary signal. On the basis of simulations, we explain potential causes of this extreme

autocorrelation, and on the basis of the experimental data, we show how to reduce their adverse effects, allowing a much

more coherent interpretation of pupillary data than possible with feature-based techniques.
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Introduction

Pupil dilation is a well-established and highly sensitive
measure of cognitive processing and resource allocation,
which has been used in many research areas, ranging
from cognitive psychology and psychophysics to lan-
guage and speech processing. Under constant luminance,
the pupil size is a relatively slow changing signal that is
generally assumed to peak around 1 s after stimulus
onset. However, the peak latency may vary considerably
between tasks. For example, Hoeks and Levelt (1993)
estimated the mean peak latency in a simple reaction
task on 930ms after the stimulus, whereas Just and
Carpenter (1993) report peak latencies around 1.3 s for
reading sentences (for reviews, see among others, Beatty
1982; Beatty & Lucero-Wagoner, 2000; Janisse, 1977;
Laeng, Sirois, & Gredebäck, 2012). The pupillary
response is most likely a combination of many different
underlying cognitive processes, as illustrated in Figure 1,

left, which may cause the larger latencies for more com-
plex tasks (e.g., Hoeks & Levelt, 1993; Wierda, van Rijn,
Taatgen, & Martens, 2012).

The sensitivity of the pupil dilation signal is also a
drawback of the measure: Even when keeping the lumi-
nance levels constant, in addition to the experimental
manipulation, the signal is likely to be influenced by
potentially confounding factors related to the mental
state of the participant, or properties of the stimuli and
the task (e.g., Beatty & Lucero-Wagoner, 2000;
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3University of Bristol, UK

Corresponding Author:

Jacolien van Rij, Department of Artificial Intelligence, University of

Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands.

Email: j.c.van.rij@rug.nl

Trends in Hearing

Volume 23: 1–22

! The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/2331216519832483

journals.sagepub.com/home/tia

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.

creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work

is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/2331216519832483
journals.sagepub.com/home/tia


Goldwater, 1972). Pupil dilation experiments require spe-
cific design considerations to avoid that such factors con-
found with conditions in the experiment. These
considerations are especially important when stimuli are
used that can differ in many dimensions such as pictures
of complex scenes (Goldwater, 1972) or linguistic stimuli,
which have many properties that could confound with
pupil dilation such as emotional valence, word length,
or frequency (e.g., Kuchinke, Võ, Hoffman, & Jakobs,
2007), prosodic information (e.g., Engelhardt, Ferreira,
& Patsenko, 2010), speech intelligibility (e.g., Zekveld,
Kramer, & Festen, 2011), discourse structure (e.g., van
Rij, 2012; Zellin, Pannekamp, Toepel, & van der Meer,
2011; Vogelzang, Hendriks, & van Rijn, 2016), grammat-
ical complexity (e.g., Just & Carpenter, 1993; Schluroff,
1982; Schluroff et al., 1986), and other linguistic factors
(e.g., Hyönä, Tommola, & Alaja. 1995; Scheepers &
Crocker, 2004). In this manuscript, we will introduce an
analysis method that allows for investigating potentially
nonlinear effects of properties of stimuli. We will focus on
pupillary data collected in a visual world paradigm experi-
ment (i.e., sentences presented auditorily together with a
visual context), but the presented techniques apply equally
well to any other experimental psychological paradigm.

The variability of the pupil dilation signal poses a
challenge for the analysis: The signal shows both large
within- and between-subject variation (Winn, Whitaker,
Elliot, & Phillips, 1994; see also Figure 1 bottom). When
the analyses do not take this variability into account,
then the conclusions are likely anticonservative (as the
observed effect might be due to the noise caused by the
large variability).

Generally, the pupil dilation signal is not analyzed
directly, but different features are extracted for
further analysis. The most often-used measures are the
peak dilation, the maximal dilation within a specified
time window (often labeled the analysis window), and
the peak latency, the time between a critical point in
time of the task (typically the onset of a stimulus) and
the peak dilation. However, other measures have also
been proposed, such as a mean dilation measured over
an analysis window, and the dilation slope, the steepness
of the increase in pupil dilation in a particular time
window.

Quantifying the pupil dilation data into a set of fea-
tures reduces the complexity of the analysis, but the large
amount of variation in the pupil dilation recordings
causes a problem for this type of analysis: Regularly,
trials do not show a peak in pupil dilation, and therefore
the peak amplitude and peak latency cannot be deter-
mined. This may happen more often in tasks where
trials do not have a clear start and end, such as when
detecting specific words in a continuous stream of
speech. Sometimes these trials are excluded from ana-
lysis, thereby reducing the size of the data. To avoid
the problem of determining the peak in trajectories with-
out a clear peak dilation, Verney, Granholm, and
Marshall (2004) proposed a principle components ana-
lysis (PCA) to reduce the time course into three meas-
ures. However, a disadvantage of the PCA analysis,
which also holds for the feature analysis, is that the inter-
pretation of the results may be more difficult when the
various features show different effects. Therefore, we
would like to argue that analyzing the pupillary response
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Figure 1. Properties of pupil dilation. Left: The effect of cognitive processing on pupil dilation, as described by the pupil dilation function

from (Hoeks & Levelt, 1993, p. 21). The pupillary response is scaled to 0.5 mm for comparison (cf. Beatty & Lucero-Wagoner, 2000). The

red vertical line T1 represents an event that triggers dilation (black solid line). The dashed line shows the adjusted dilation when a second

event T2 shortly follows the first event. Right: Example of two actual recorded pupil dilation time series, recorded from two different

participants (solid vs. dashed lines) in two different trials (red vs. black lines). The data are realigned on the onset of the pronoun. The

horizontal bars indicate the duration of the auditory stimuli (two spoken sentences) of the two trials.

2 Trends in Hearing



signal as it develops over time yields a much more coher-
ent interpretation of the data.

Different methods have been used to model the pupil
dilation time course, including growth curve analysis
(Mirman, Dixon, & Magnuson,2008), a mixed-effect
regression approach that represents the predictor Time
with orthogonal polynomials (see Kuchinsky et al., 2013;
Winn, Edwards, & Litovsky, 2015), functional data ana-
lysis (Ramsay & Silverman, 2002, 2005; see Jackson &
Sirois, 2009), generalized additive mixed modeling
(GAMMs; Hastie & Tibshirani, 1990; Wood, 2011,
2017a), a nonlinear mixed-effects regression method
(see Lõo, van Rij, Järvikivi, & Baayen, 2016; van Rij,
2012; Vogelzang et al., 2016), and a deconvolution
approach (Hoeks & Levelt, 1993; Wierda et al., 2012).
These analyses are more powerful than the traditional
approaches, which analyze features of the pupil dilation
signal separately. For example, they make it possible to
investigate differences in pupil size that do not result in
differences in peak dilation or peak latency. Another
important advantage of time course analyses is that
they allow for a systematic description of the data
rather than focusing solely on the statistical significance
of the differences between the experimental conditions.
For investigating cognitive processing, it may be more
informative at which moment in time the conditions start
to differ, and whether this difference is found in all par-
ticipants, and what the size is of the effect in comparison
with other factors that influence pupil dilation. With the
increase in computational speed and memory, this type
of analysis has become easier to apply and therefore
gains in popularity.

However, what many pupillometric studies fail to
mention is that the direct analysis of time series, such
as the pupil dilation signal, raises the problem of auto-
correlated errors (e.g., Baayen, van Rij, de Cat, & Wood,
2018).1 Autocorrelated errors increase the probability of
Type I errors (i.e., false positives, such as, finding a sig-
nificant difference which does not actually exists) and
lead to conclusions that cannot be replicated.

In this article, we use GAMM (Hastie & Tibshirani,
1990; Lin & Zhang, 1999; Wood, 2011, 2017a) to analyze
the pupil dilation time course directly. GAMMs offer
various features that are relevant for the analysis of
pupillometric data: The method can handle the variabil-
ity of the pupil dilation signal by means of nonlinear
random effects. Moreover, GAMMs provide the option
to include nonlinear interactions with two or more
numeric predictors. These nonlinear interaction surfaces
are particularly useful for studies in the domain of hear-
ing research, because they allow to explore the potential
nonlinear relations between the pupil dilation response
and continuous properties of the presented stimuli, such
as formant frequency (pitch), word length, or signal-to-
noise ratio in the case of language and speech

experiments. Finally, GAMMs offer the possibility to
include an autoregressive AR(1) error model for
Gaussian models to deal with autocorrelational structure
in the errors.

Aim of Current Article

This article provides a tutorial for analyzing the time
course of pupillometric data and explains the problems
that arise when analyzing the time course directly. We
also will discuss various options of how we could reduce
the effect of autocorrelation. Although the article uses
GAMMs to illustrate problem of autocorrelational
structure in the errors, the problem of autocorrelation
is not limited to this method but applies to other time
course analyses as well.

Generalized additive mixed modeling is implemented
in the R package ‘‘mgcv’’ (version 1.8-23; Wood, 2017a,
2017b). In addition, we use the R package ‘‘itsadug’’ (ver-
sion 2.3; van Rij, Wieling, Baayen, & van Rijn, 2017) for
interpretation and visualization of the statistical analyses.
The code and the data are available online as
Supplementary Materials.2

The article is organized as follows. In the remainder of
the introduction, we will present considerations for the
analysis of pupillometric data. These aspects are often
not (explicitly) taken into account in pupil dilation stu-
dies but might affect the studies’ validity. Then, we sum-
marize an experimental data set that we use as a case
study to introduce GAMMs. In the next section, we
will introduce GAMMs by presenting an analysis of
the experimental data. We assume the reader to be famil-
iar with the basic concepts of regression analysis. On the
basis of the presented GAMM analysis, we will explain
the issues that arise with a time course analysis of pupil-
lometric data and provide solutions for these issues. In
the discussion, we will compare the GAMM-based meth-
ods to currently existing analysis techniques.

Considerations

Typical video-based eye trackers report for each sample
the measured X and Y positions of the eye and the mea-
sured pupil size. However, there are a number of consid-
erations that have to be taken into account before the
measured pupil size can be reliably used.

Normalization. To reduce the influence of the factors
unrelated to the experimental design that may influence
pupil size, such as the luminance of the room, the mea-
sured pupil dilation is usually normalized with respect to
a baseline. Typically, the baseline is defined on a trial-by-
trial basis as the average pupil dilation during a short
time frame just before the presentation of the relevant
stimulus. For baselined pupil size, this baseline value is

van Rij et al. 3



simply subtracted from the measured pupil dilation,
because the changes in pupil size elicited by cognitive
processes have been found to be similar for a wide
range of baseline values (e.g., Bradshaw, 1970; Hoeks
& Levelt, 1993). This is illustrated in Figure 2 (bottom-
left panel). Alternatively, many studies report the pupil-
lary response value in units of percent dilation over the
baseline pupil size following the early studies of (Hess &
Polt, 1960, 1964): After subtracting the baseline value
from the measured pupil dilation, the resulting value is
divided by the baseline. This is called normalized pupil
size. It is good to realize that with this method, the same
pupil response will result in higher percentage of change
with smaller baseline values in comparison with larger
baseline values, as illustrated in Figure 2 (bottom-right
panel).

Mixed-effects modeling techniques such as GAMMs
do not necessarily require baseline correction or normal-
ization but allow for taking into account the effect of the
baseline on the evoked response as (nonlinear) covariate
(see Supplementary Materials for an example). This is an
alternative to baseline corrections, especially useful in
situations where a baseline correction is likely to intro-
duce artifacts. For example, because pupil size is sensi-
tive to factors as arousal and vigilance, the participant’s

pupil size before trial onset may affect the pupillary
response within the trial. A potential difficulty with this
approach is that for pupillometric data from language
and speech experiments, the pupil dilation response is
rather small in comparison with the baseline values and
the variation in baseline values. The statistical model will
reflect this uncertainty, which may mask differences in
the pupil dilation response. In this article, however, we
will follow the conventional approach and use baseline
corrected data.

Measurement scales. Although eye trackers report pupil
dilation expressed on an absolute scale, modern eye-
tracking systems, and especially the popular table-
mounted cameras, often do not report pupil size in
mm, but use different units. These values do not easily
translate to length units (SR Research Ltd., 2005–2010,
p. 98) and are dependent on the experimental setup, such
as the lens that is being used, or the distance between the
recorded eye(s) and the camera (e.g., Hayes & Petrov,
2016).3 Given the different units of measurement, some
have argued to express the measured pupil size in percent
change from baseline to be able to compare the results of
different studies. However, this derived measure has
other issues, as described in the earlier section.
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Figure 2. Baseline correction and normalization. Top: Three pupil dilation trials (simulated data) with Trials 1 and 3 differing in baseline,

but showing the exact same pupillary response. Trials 2 and 3 share the same baseline, but Trial 2 shows a higher peak amplitude. Left: The

same three trials after the baseline are subtracted. The baselined data for Trials 1 and 3 overlap. Right: The proportion pupil dilation change

with respect to the baseline for the same three trials. As the baseline of Trial 1 is much higher than of Trial 3, the pupil dilation change is

much lower for Trial 1 than for Trial 3, although the measured pupillary response was exactly the same.
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Effect of gaze location. Another aspect that influences the
measured pupil diameter is the gaze position. When the
eyes look directly at the camera, the pupil will be
observed as an (almost) perfect circle. However, if the
eyes move to bring more eccentric positions in focus, the
camera will not perceive the whole pupil, instead it will
perceive a smaller, squashed image. As the camera in
table-mounted setups is typically located below the
screen, the measured pupil size will increase when look-
ing to locations near the bottom of the screen, and
decrease when looking to higher locations. Similar effects
will be visible for movements on the horizontal axis.
Note that these effects are not limited to table-mounted
cameras, it is a physical constraint of recording a partial
surface on a rotating sphere with a fixed-position
camera. Recent studies have indeed shown that gaze pos-
ition systematically affects the measured pupil size
(Brisson et al., 2013; Gagl, Hawelka, & Hutzler, 2011;
Hayes & Petrov, 2016), with similarly sized effect sizes as
the typical evoked pupillary response. In addition, gaze
position may indirectly influence the measured diameter,
as recent findings suggest that saccade preparation may
also elicit a pupillary response before the actual change
of the gaze position (e.g., Jainta, et al., 2011; Mathôt,
et al., 2015).

The preferred way to solve this problem is to only
record pupillary data when information is presented at
a fixed location on the screen (e.g., van Rijn, Dalenberg,
Borst, & Sprenger, 2012), but in many paradigms, par-
ticipants needs to be able to shift their gaze during rec-
ording, for example, during sentence reading (e.g., Gagl
et al., 2011; Just & Carpenter, 1993) or in studies in which
relevant information is distributed over the screen (e.g.,
Cooper, 1974; Engelhardt et al., 2010; Scheepers &
Crocker, 2004; Tanenhaus, Spivey-Knowlton,
Eberhard, & Sedivy, 1995, and the study discussed in
this article). When gaze shifting cannot be prevented,
the observed pupillary response should be corrected for
gaze-dependent fluctuations. However, it is difficult to
correct for pupillary responses elicited by the preparation
of eye movements, because they cannot be linked to gaze
position directly.

Preprocessing data. Analyzing pupil dilation with a time
course analysis also has implications for preprocessing
of the pupil dilation data. An important step in the pre-
processing of pupillometric data consist of removing
artifacts, saccades, and blinks. Generally, blinks are
interpolated with a linear or polynomial function to
avoid missing data (e.g., Mathôt, 2013). In a mixed-
effects framework, this process becomes optional:
Mixed-effect approaches can handle missing data. Pupil
dilation data are often recorded with a higher sampling
rate than necessary for analyzing the relatively slowly
changing pupillary response. To reduce the autocorrel-
ation in the residuals downsampling to at most 50Hz is
recommended, as downsampling increases the distance
between consequent data points and reduces the auto-
correlation. An additional advantage of downsampling is
that it reduces the size of the data, which speeds up the
analyses. Before downsampling, the data are normally
filtered to avoid aliasing. Although this is a good prac-
tice, filtering also reduces the noise. Therefore, we rec-
ommend to be careful with filtering, and to apply
filtering only to avoid that aliasing would interfere with
the measured signal.

These different considerations, namely the measure-
ment scale, normalization, the effect of gaze location,
and data preprocessing should be taken into account in
the analysis.

Experimental Data

The pupillary data analyzed in this article were collected
in an experiment in which native Dutch participants were
looking at a picture depicting an action between two
agents, see Figure 3. While looking to the picture, two
short Dutch sentences were presented auditorily in which
the two agents were introduced, see Table 1. The first
sentence always introduced both agents (e.g., ‘‘Here
you see a penguin and a sheep.’’), and the second sen-
tence described an action (e.g., ‘‘The penguin is hitting
him with a pan.’’). The picture on the screen was either
congruent with the auditory presented second sentence or
incongruent (i.e., a picture of a penguin hitting himself,

Figure 3. Example visual materials (see sentences in Table 1): congruent with test sentence (left) and incongruent with test sentence

(right).
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rather than the sheep). Participants had to indicate
whether the picture and the last sentence were in agree-
ment. In addition to the picture or sentence congruency,
a second manipulated factor was the order of introduc-
tion of both agents. The introduction sentence could first
introduce the actor (as in the example earlier), or first
introduce the nonacting agent (i.e., ‘‘Here you see a
sheep and a penguin’’). Thus, the experiment followed
a classical 2� 2 factorial design, with picture-sentence
congruency (henceforth Congruency) and introduction
order (henceforth Introduction Order) as manipulations.
The predictor Condition describes the four conditions of
the 2� 2 design.

The experiment was aimed to investigate the effects of
linguistic and visual context on the processing of the
third-person singular masculine pronoun (him in
English) in object position. More details of the experi-
mental design are reported in (van Rij, 2012, Chapter 6).

Pupil dilation was measured with an EyeLink 1000
(SR research) eye tracker at 250Hz. Before analysis, arti-
facts were automatically removed from the pupil dilation
signal in R (R Core Team, 2017). Blinks and saccades
were detected automatically by using a velocity threshold
(cf. Mathôt, 2013). Artifacts were removed, without
interpolation (with 100ms and 20ms padding for
blinks and other artifacts, respectively). Visual inspection
of the data followed the automatic artifact rejection.
Trials with more than 25% missing data were removed.
The data were downsampled to 50Hz by taking the
median per time in. The baseline was calculated as the
average pupil dilation in the time window of 250ms at
the beginning of each trial, more precisely 250 to 500ms
after the picture appeared on the screen and immediately
before the auditory stimuli started (i.e., 500ms after pic-
ture onset). The baseline was calculated per trial and
subtracted from the pupil dilation measures, but the
pupil dilation was not divided by the baseline, to avoid
changing the dilation pattern. As the experiment inves-
tigated the processing of the pronoun (him), the data
were aligned to the onset of the pronoun.

Figure 1 right shows the data of two items recorded in
two participants, after aligning the data on the onset of
the pronoun. Figure 4 shows the grand averages of the
data for each of the four conditions in the 2� 2 design.
Although the individual pupillary responses show con-
siderable variation, the average curves show two clear
peaks (left panel): around 2000ms before pronoun
onset, which is after the introduction of the first agent,
and around 1000ms after pronoun onset. The pupil dila-
tion between 500ms before pronoun onset and 2500ms
after pronoun onset was analyzed.
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Figure 4. Left: Example of two pupil dilation time series, recorded from two different participants (solid vs. dashed lines) in two different

trials (red vs. black lines). The data are aligned on the onset of the pronoun. The horizontal bars indicate the duration of the auditory

stimuli of the two trials, which consisted of two sentences. The baseline for the averages in this graph was calculated from a 250-ms time

window before sound onset. Right: The grand averages for the four conditions. In contrast with the plot earlier, the baseline window of this

analysis data was at the pronoun onset, indicated with the vertical line.

Table 1. Example Sentence Materials (in Dutch, with their

English translations given later).

Introduction sentence:

A1: actor first Hier zie je een pinguı̈n en een schaap.

‘‘Here you see a penguin and a sheep’’

A2: actor second Hier zie je een schaap en een pinguı̈n.

‘‘Here you see a sheep and a penguin’’

Test sentence:

De pinguı̈n slaat hem met een pan.

‘‘The penguin is hitting him with a pan’’
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Introduction GAMMs

In this article, we propose the use of GAMM (Lin &
Zhang, 1999; Wood, 2006, 2011) for the analysis of
pupillary data. generalized additive mixed modeling is
an extension of typical regression methods as it esti-
mates the relation between a dependent variable and
a number of given predictors. Instead of forcing the
relation between dependent variable and predictor to
be linear, as is the case in typical linear regression,
this relation is modeled as a smooth function, which
can, but does not need to be linear. A discussion of
the technical aspects of smooth functions is beyond
the scope of this article (see Wood, 2017a); or
(Baayen, Vasishth, Kliegl, & Bates, 2017; van Rij,
Vaci, Wurm, & Feldman, in press; Wieling, 2018, for
an introduction), but in the context of this work, it can
be thought of as a continuous, potentially wiggly but
not abruptly changing line that is expressed over time.
GAMM approximates smooth functions as a weighted
sum of a set of base functions that each has a different
shape but that together form a smooth function that fits
the (nonlinear) pattern of the data. It is possible to set
these base functions to polynomials, but by default they
are set to thin plate regression splines for one-dimen-
sional smooth functions as these have more optimal
properties for fitting unknown functions (for more
information, see Wood, 2017a, Chapters 4 and 5).
GAMM obtains the maximum likelihood (ML) esti-
mates of the smooths using penalized regression meth-
ods (based on penalized iteratively re-weighted least
squares). When multiple predictors are entered in the
regression, GAMM will estimate the smoothing param-
eters for each smooth function using cross-validation
(for details, see Wood, 2006, Chapters 3 and 4). The
estimation procedures determining the smooth functions
and parameters are designed to avoid overgeneralization
and overfitting of the data. GAMMs have been applied
before to pupil dilation data (Lõo et al., 2016; van Rij,
2012; Vogelzang et al., 2016), and to other measures in
psychology, such as for the analysis of ERPs (event-
related potentials measured by electroencephalography
[EEG] ) (e.g., Boehm, van Maanen, Forstmann, & van
Rijn, 2014; Hendrix, Bolger, & Baayen, 2016; Nixon,van
Rij, Li, & Chen, 2015; Tremblay & Newman, 2015), gaze
data (e.g., Nixon, van Rij, Mok, Baayen, & Chen, 2016;
van Rij, Hollebrandse, & Hendriks, 2016), articulogra-
phy (e.g., Tomaschek, Tucker, Fasiolo & Baayen, 2018;
Wieling, 2018), reaction times (e.g., Baayen, 2010;
Baayen et al., 2017; Milin, Feldman, Ramscar,
Hendrix, & Baayen, 2017), or F0 contours (Kösling,
Kunter, Baayen, & Plag, 2013). We refer to these articles
for a general overview of using GAMM for analyzing
time course data (see, especially, van Rij et al., in press;
Wieling, 2018).

We will first present an initial example of a GAMM
that predicts pupil dilation as a function of time in trial
by condition and gaze position. To account for variation
in participants and items, we include random effects for
participants and items over time and gaze position.
Although this model looks sensible at first, we will
show that this model does not meet the assumptions of
a regression model. As a result, the model provides antic-
onservative estimates, detecting effects that are actually
not there. To clarify the structure of the models, we pro-
vide both a formal description and the R code to run the
model.

Initial GAMM

We start with a relatively simple model that estimates the
effects of Introduction Order and Congruency on the
pupil dilation trajectory. The model includes an inter-
action between the covariate Time, representing the
time in the trial aligned with the onset of the pronoun
(i.e., the word determining whether the sentence was con-
gruent or incongruent with the picture), and the categor-
ical predictor Condition, which is a four-level predictor
that implements the interaction between the two manipu-
lations in the 2� 2 experimental design. This model will
estimate four regression lines over time, one for each
level of Condition.

Linear regression model. In a linear regression framework,
we could formalize such a model as follows: pi ¼ �þ
�cðiÞ þ �cðiÞti þ �i, where �i � Nð0, �2Þ. In the model for-
malization, � represents the intercept estimation, the
baseline condition. The subscript c(i) reflects the level
of the categorical predictor Condition at observation i.
The coefficient �cðiÞ represents the intercept adjustment
for the four levels of predictor Condition. ti is the value
of the continuous predictor time of observation i, and
�cðiÞ reflects the slopes for the four levels of Condition. In
R, the following code is used for representing the linear
model: Pupil � Condition*Time.

Nonlinear regression model. However, we know that pupil-
lometric data do not show a linear trajectory over time.
GAMM allows fitting of nonlinear regression curves.
The coefficients in a linear regression function that char-
acterize the slope of the linear regression lines will be
replaced with a smooth function f which now has to be
estimated as part of the model fitting: pi ¼ �þ �cðiÞþ
fcðiÞ tið Þ þ �i, where �i � N 0, �2

� �
. The term fcðiÞðtiÞ indi-

cates that for each level of Condition, a different non-
linear regression line is fitted over Time.

Nonlinear interaction. To account for sudden drops and
increases in pupil dilation due to changes in pupil pos-
ition (e.g., Brisson et al., 2013; Gagl et al., 2011; Hayes &
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Petrov, 2016), we included a nonlinear interaction
between X and Y coordinates of the gaze positions, the
predictors Xgaze and Ygaze at observation i: pi ¼ �þ
�cðiÞ þ fcðiÞ tið Þ þ f2 xi, yið Þ þ �i, where �i � N 0, �2

� �
.

Implementation in R. The package mgcv implements
GAMMs using the function bam(). The R code for this
first preliminary statistical model, model1, is presented in
R Screen 1. As first argument, it takes the formula spe-
cifying the mathematical model. The function s() is used
for fitting a one-dimensional nonlinear regression line,
and the argument indicates that for each of the levels of
Condition, a nonlinear regression line has to be estimated.
The shape of the nonlinear regression lines is not deter-
mined by the user, but estimated from the data using
penalized regression methods. The argument k provides
an upper bound to the order of base functions used to fit
the regression lines. This argument is set to 10 by default,
but here increased to 20 to allow to fit more wiggly pat-
terns. The function te() normally fits a tensor product
interaction to estimate a nonlinear interaction surface.
However, as the X and Y position of the gaze are mea-
sured on the same scale, the function s() can be used to
implement the nonlinear interaction that accounts for the
changes in pupil size caused by gaze position.

R Screen 1: Initial GAMM. For presentation purposes,
only the fixed effects are included here. R Screen 2 shows
the full model.

Interpretation. The top four panels of Figure 5 show the
estimated regression lines for each of the four conditions,
as modeled with the smooth s(Time). The x axis of these
graphs represents the time from the onset of the pro-
noun. The y axis shows the pupil size estimations.
However, the range of y values is rather different than
the data, see the bottom panel of Figure 4. These plots
only reflects the partial effect of the smooth over Time
and do not include the intercept or estimates for the
other predictors in the model. The sum of the parametric
effects (i.e., the intercept and intercept adjustment of
Condition) that adjust the regression lines up or down-
ward are specified on the right side of the plot. The con-
dition ‘‘A1.congruent’’ (top-left panel) shows the
smallest peak amplitude in the regression line and also
the smallest intercept adjustment (1.8).

The estimated effect of the X and Y gaze positions on
the pupil size are presented in the contour plot on the
third row. The x axis represents the X gaze position, the

y axis the Y position. This graph reads like a map, with
the contour lines and colors indicating the height of the
pupil dilation. The screen areas without observations are
empty (white). The contour plot indicates that the looks
to the center values are represented by the average pupil
size, because a value around zero needs to be added to
the regression lines. When the gaze position moves to the
right-top side of the screen (i.e., right-bottom side of the
plot, as (0,0) represents the top-left corner of the screen),
the pupil size measured is smaller, as indicated by the
negative values of the contour lines and color coding.
When looking more to the left-bottom side of the
screen (i.e., left-top side of the plot), the pupil size mea-
sured is larger, as indicated by the positive values of the
contour lines and color coding.

This initial GAMM illustrates the advantage of
including nonlinear regression lines and interactions:
Instead of dichotomizing over continuous experimental
factors such as frequency, working memory scores, or
age, we include them as continuous predictors. This fea-
ture of GAMMs is especially useful for modeling pupil-
lary response data. Control variables, such as gaze
position, can be included as nonlinear smooths and inter-
actions to take care of potential confounds. As such,
GAMMs provide a good alternative for preprocessing
procedures, such as corrections for baseline and gaze
positions (e.g., Brisson et al., 2013; Gagl et al., 2011).
The smooth functions in GAMM are driven by the
data and do not pose a priori assumptions on the
shape and size of these effects.

Random effects. In the GAMM presented in R Screen 1,
we did not account for variation in participants and
items. The pupillary response can vary significantly
between participants, and it is particularly sensitive to
factors that can differ between participants, such as fati-
gue, age, and medication, but also to learning, and fluc-
tuations in attention (e.g., Beatty & Lucero-Wagoner,
2000; Watson & Yellott, 2012; Winn et al., 1994). In
addition, items could modulate the pupillary response
because of perceptual differences (e.g., louder speech
signal, visual image with darker colors) or other stimulus
properties, such as the linguistic content (e.g., high vs.
low frequency nouns, differences in grammatical com-
plexity, etc). Regression models need to account for
this variation, because otherwise the model residuals
(i.e., the error or unexplained part of the data) will
also reflect systematic patterns, thereby violating the
assumption of independent observations.

In a mixed-modeling framework, this type of vari-
ation could be modeled as random variation around a
population mean (Pinheiro & Bates, 2000). A random
intercept for Subject would estimate a normal distribu-
tion with the variance based on the variation between
participants. For each participant, a value is selected
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from the distribution that models the difference between
the mean pupil dilation and the participant’s pupil dila-
tion. Participants with extreme high or low pupil size
measures are assigned values that are less extreme and
closer to the mean, because these values are drawn from
a normal distribution (shrinkage of the mean; e.g.,
Baayen, Davidson, & Bates, 2008; Pinheiro & Bates,
2000, for introductions in random effects for linear
regression mixed modeling). Because random effects
only estimate the variance of the distribution, they use
fewer parameters than fixed effects, and they allow for
generalizing over participants and making new predic-
tions (based on the fixed effects) for other people from
the same population.

In GAMMs, three types of random effects could be
specified: (a) random intercepts, which adjust the inter-
cept of a (nonlinear) regression line or interaction sur-
face; (b) random slopes, which adjust the slope of a
(nonlinear) regression line or interaction surface; and
(c) factor smooths, which adjust the shape of the regres-
sion line or interaction surface with a potentially non-
linear trend (see Figure 6). The parametric random
effects, the random intercepts and random slopes are
also available in linear mixed-effects models. As the
factor smooths may also include adjustment of the inter-
cept and slope of the regression line, these are generally
not combined with random intercepts and slopes for the
same predictors.
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To capture the participant and item variation in pupil
dilation trends, the initial GAMM model1 was extended
with random smooths for participants and items. We
could formalize this GAMM with the following descrip-
tion of the pupil size piab at observation i, of participant a
and with item b: piab ¼ �þ �cðiÞþ fcðiÞ tið Þ þ f2 xi, yið Þþ

fsðaÞ tið Þ þ fiðbÞ tið Þ þ �i, where �i � N 0, �2
� �

.

R Screen 2: Initial GAMM model with nonlinear
random effects.

The complete code for the first preliminary statistical
model, model1, is presented in R Screen 2. The package
mgcv specifies factor smooths with the basis bs¼’fs’.

Because we also included general smooths of Time, the
random smooths of Time are actually random adjust-
ments from these general smooths. Figure 7 shows the
random adjustments for Subjects and Items estimated by
model, model1.

Testing for Significance

When using GAMMs, there are various ways to determine
whether the experimental manipulations influenced the
pupil size. Here we will use (a) visual inspection of the
model’s estimates of the differences between the conditions,
(b) a model-comparison procedure, and (c) inspection of
the model summary statistics to determine the differences
between conditions. These methods are complementary,
because they provide different types of information.

Visual inspection. The output of a GAMM does not pre-
sent a description of the nonlinear regression lines,
because the smooth functions often cannot be captured
by few coefficients. Instead the summary provides

Random intercept
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+

Figure 6. Schematic illustration of the three types of random effects. The y axis represents the measurement scale. The black thick line

outlines the fixed effect estimate, whereas the dashed red lines illustrate how the random effects modulate the fixed effects. The bottom

right panel separates the fixed effects from the random effects.
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information on the wiggliness of the regression line, and
whether the line is (somewhere) significantly different
from zero. Visualization is necessary for interpreting
the nonlinear terms. Figures 5 and 8 show the estimated
regression lines in two different ways. As described ear-
lier, Figure 5 shows the partial effects, which are the
estimated smooth functions. Each plot represents one
term in the model summary. In contrast, Figure 8 (left
panel) shows the summed effects (or fitted effects), which
include the intercept and a value for every other pre-
dictor as well. The predictors that are not visualized
are set to their median value or reference level. The
summed effects in Figure 8 (left panel) reveal that the
pupil size is reduced when the sentence is congruent
with the picture and the actor is introduced first (i.e.,
condition ‘‘A1.congruent,’’ the solid thin black line) in
comparison with the other conditions.

Figure 8 (right panel) shows the differences in congru-
ency for the two types of introduction. The positive differ-
ences suggest that the sentences that are incongruent with

the pictures elicit more pupil dilation than the sentences
that are congruent with the pictures. However, the differ-
ence is modulated by the introduction order: The differ-
ence is considerably larger when the actor is introduced
first (i.e., introduction order ‘‘A1,’’ black solid line) than
when the actor is introduced as second referent (i.e., ‘‘A2,’’
red dashed line). In addition, when the actor is introduced
first (‘‘A1’’), the congruent and incongruent sentences elicit
a difference in pupil size immediately at the onset of the
pronoun, but when the actor is introduced second (‘‘A2’’),
the difference in pupil size arises only around 500ms after
pronoun onset. This pattern suggests an interaction
between Introduction Order and Congruency (as imple-
mented in the four-level factor Condition) in the pupil
size trajectories, rather than two separate main effects of
Introduction Order and Congruency.

Visualizing the summed effects and the estimated dif-
ferences between conditions provide a fast way to inspect
the model’s predictions, as they do not require running
alternative models. However, these difference estimates
may provide a misleading picture when the model does
not fit the data well, for example, when the model fails to
account for all the structure in the data. When model
validation signals problems with the model fit, one
should be careful with the interpretation of the estimated
differences. We will work this out further in the following
sections on model criticism.

Model-comparison procedure. A model-comparison pro-
cedure is a second method to assess whether the inter-
action between Introduction Order and Congruency is
indeed contributing significantly to the model. We
could compare a model that includes the interaction
between these two predictors with a model that does
not include the interaction between these predictors.
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The models could be compared using a generalized like-
lihood ratio test or with an Akaike information criter-
ion comparison. By default, the smoothing parameter
selection score is set to fREML (fast restricted max-
imum likelihood) when using bam(). However,
(f)REML scores are not comparable between models
with a different fixed effects structure. Instead, the selec-
tion method should be set to ML when comparing fixed
effects (e.g., Wood 2017a, Chapter 2). Therefore, we
refitted model, model1, with method ML and compared
it with model, model2, as presented in R screen 3. This
model captures the main pupil dilation trend with two
regression lines, one for congruent items and one for
incongruent items. The main effect of Introduction
Order is captured by a binary predictor IsA1, which
takes the value 1 when the actor is introduced first
and the value 0 when the actor is introduced second.
The regression line modeled by the smooth term
s(Time, by¼IsA1), hence fits the difference between
the two types of introduction sentences.4

R Screen 3: GAMM model with separate terms for
Congruency and Introduction Order.

Comparisons between model1 and model2 confirm
that model1 which implements the interaction between
Introduction Order and Congruency is preferred
(�2ð3Þ ¼ 54:08, p5 :001; �AIC ¼ 112:50) over a model
that separates the effects Introduction Order and
Congruency.

A disadvantage of a model-comparison procedure is
that multiple statistical models have to be estimated. As
pupillometric data sets often consist of a large amount of
measurements, this may take a long time. In addition,
the ML estimation required for comparing fixed effects
takes much more time than running a model with
fREML. An efficient strategy is to start with the evalu-
ation and optimization of the initial model based on
visual inspection and the summary statistics and to
verify the conclusions with a backward fitting model-
comparison procedure.

Summary statistics. The summary of the smooth terms
(nonlinear components of the GAMM) shows for each
nonlinear regression line whether this line is significantly

different from zero and how wiggly the regression line is
(i.e., by reporting the edf, the effective degrees of free-
dom). However, the summary does not show whether
the regression lines for each of the levels of the predictor
Condition are different from each other. Only when we
explicitly model the differences between conditions, the
summary reports whether these difference curves are sig-
nificantly different from zero. In model3, we have
replaced the four regression lines for each of the four con-
ditions of model1 by a reference curve and three binary
difference curves implementing the effects of Introduction
Order, Congruency, and their interaction, see R screen 4.
The summary statistics indicate that the three difference
curves are significantly different from zero: IsCongr,
F(4.69, 71628.77)¼ 10.38; p< .001, which implements
the difference between congruent and incongruent items,
and the effect of IsA1, F(7.71, 71628.77)¼ 9.19; p< .001,
which implements the difference between the actor-first
introduction and the actor-second introduction, and
IsA1Congruent, F(7.48, 71628.77)¼ 15.35; p< .001,
which implements the interaction effect that is needed to
model the difference between the conditions
‘‘A1.congruent’’ and ‘‘A1.incongruent’’ (in addition to
the main effects of IsA1 and IsCongruent).

Although the summary statistics are very useful
for reducing the number of statistical models to run,
they have their own limitations. For complex inter-
actions (more than four conditions), binary curves are
difficult to interpret. A second limitation is that the
summary statistics do not tell where the difference
curves are different from zero, nor the amplitude of the
difference. Visualization is needed for interpreting the
results. And similar to the other methods, the statistics
should be treated with caution when the model does not
fit the data well, as we will explain in the following
section.

R Screen 4: GAMM model with a set of binary pre-
dictors modeling the four experimental conditions.
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Model Criticism

To evaluate the model fit, we generally look at the resi-
duals because they are the deviation between the
observed values in the data and the estimated values of
the model. Figure 9 shows different aspects of the resi-
duals. The left panel shows an autocorrelation function
(ACF) plot, which visualizes the correlation between the
residuals and the lagged residuals, that is, the residuals of
earlier measurements. Correlations between temporally
adjacent residuals indicate that there is structure in the
residuals that is not captured by the model. The center
panel shows a QQ (quantile-quantile) plot, which com-
pares the residuals with a normal distribution (indicated
by the straight line). And the right panel plots the resi-
duals against the fitted values. The plots in Figure 9
reveal some problems with the fit of our initial
GAMM: (a) The residuals are heavily autocorrelated
(the left panel shows high values for Lag 1 and following
lags); (b) the residuals are heavier tailed than the normal
distribution (the center panel shows that the residuals
deviate from the straight line); and (c) the residuals of
the model are quite large in comparison with the effect
sizes (the right panel shows a larger y range than x
range). In addition, the right panel confirms the high
autocorrelation, because the residuals show clearly
detectable time series: The residuals look like threads,
instead of a cloud of random dots.

In the next section, we present a series of simulations
to investigate the problems that we need to address when
analyzing the time course of pupil dilation. We then pre-
sent new analyses of the real pupil dilation data set that
address these concerns.

Autocorrelation in Residuals

Autocorrelation of errors violates the assumption of
regression analyses that the errors are independent.

Violating this assumption may underestimate the stand-
ard errors, and hence reduce the reliability of our
GAMM analysis. To understand the potential source
of the high autocorrelation in our pupil dilation data,
we ran simulations of autocorrelated data.

In each simulation, 250 randomly sine waves were
generated with randomly modified amplitudes: y ¼ a�
sin xð Þ þ u; a � N 1, :25ð Þ; u � N 0, :25ð Þ. Parameter a is
the amplitude modification, parameter u is the random
(independent!) noise added to the signal.

The first simulated data set consisted of 250 simulated
trials without noise added (u¼ 0). A simple GAMM was
fitted to estimate the mean trend over x : y � s xð Þ.
Although no noise was added, the residuals of the
model are highly correlated (see right panel of
Figure 10), because the model does not capture the dif-
ferences in amplitude between simulated trials.

When independent noise was added to the same simu-
lation data (u � Nð0, :25Þ), the autocorrelation was
reduced in a GAMM with exactly the same model spe-
cification. A similar GAMM was fitted to estimate the
mean trend over x : y � sðxÞ. When a new data set is
created with less variation in amplitudes between the
individual trials (a � Nð1, :10Þ), but the same noise dis-
tribution (u � Nð0, :25Þ), the smaller variation in ampli-
tudes further reduces the autocorrelation (see
Supplementary Materials).

These example simulations show that autocorrelation
may reflect differences between the trials for which
GAMM is fitting a mean trend. The residuals of the
GAMMs are determined by the differences between
each individual trial and the estimated trend over time.
The residuals are autocorrelated, because the differences
between a measurement of the trial and the estimated
trend unfold relatively gradually over time. These differ-
ences are particularly clear when the amount of noise on
the signal is relatively small, an inherent property of slow
changing signals such as pupil dilation data.

Figure 9. Residuals of the initial GAMM, model1.

ACF¼ autocorrelation function; QQ¼ quantile-quantile.
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Measurements that contain a large amount of noise and
change rapidly over time are less likely to elicit autocor-
relation, because these two factors reduce the correlation
between the residuals.

Autocorrelation in the residuals will arise if a general
nonlinear trend is fitted to data with a large variation in
individual trends and a small measurement noise. The
most intuitive solution would be to include a random
wiggly curve for each individual trial of each individual
participant in the model as random effect, in addition to
the smooth functions for the different experimental

conditions as fixed or random effects. However, even
including all these individual time series as random
effects often does not remove the autocorrelation com-
pletely, because the fitted curves are smoothed and allow
for differences with the general nonlinear trend, which
are a source of autocorrelation.

Correcting for Autocorrelation by Improving Model Fit

We applied this method to our pupillometry data using
the model as specified in R Screen 5: Instead of random
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Figure 10. Autocorrelation in simulation data (n¼ 250). For each simulation (Simulation 1 in the top row, Simulation 2 in the center row,

and Simulation 3 in the bottom row), the same three plots are provided. Left: 10 randomly selected modified sine waves (of the 250 in

total), and the model fit for the sine waves (red thick solid line); Center: residuals of the model for the same 10 sine waves; Right:

autocorrelation of the model’s residuals for each lag (x axis).

ACF¼ autocorrelation function.
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smooths of Time for Subjects and Items, we included a
random smooth of Time for each individual time series
Event (unique combination of Subject and Item). The
random smooths for each time series inform the model
that the measurements within a time series are not inde-
pendent. As a result, the confidence intervals around
the model’s estimates have increased in comparison
with the estimate of our earlier model. Model compari-
sons and the statistical information from the summary
both confirm that the interaction between Time and
Condition should be included in the model, but not all
levels are significantly different from each other any-
more. There is still a significant difference between the
two conditions with an actor-first (‘‘A1’’) introduction
order, but the difference between the two conditions
with an actor-second (‘‘A2’’) introduction order has
disappeared.

R Screen 5: GAMM model with nonlinear random
effects for individual time series.

Inspection of the residuals indicates that the model fit
has drastically improved in comparison with the first
model. The fitted values (Figure 11, center panel, thick
red lines) follow roughly the same trajectory as the

measured pupil dilation (Figure 11, center panel, black
lines). This conclusion is supported by the very high cor-
relation of .996 (only .49 for the first model). The resi-
duals are still highly autocorrelated, but the shape of the
average autocorrelation graph is different (positive cor-
relations for lower lags and negative correlations for
longer lags). More importantly, the residuals are smaller
(median absolute residuals¼ 4.68) than the residuals of
the first model (median absolute residuals¼ 43.34, com-
pare also the ACF plots of Figures 9 and 11). With
smaller residuals, that is, a better fit of the data, the
correlation in the residuals is less likely to affect the con-
fidence of the model.

However, the proposed analysis with random factor
smooth for each individual time series (currently) only
works for relatively small experiments. The predictor
Event codes the unique time series as a combination of
participants and items. In our experiment, we analyzed
the data of 17 participants and at most 32 items, result-
ing in only 507 unique time series. However, many psy-
cholinguistic experiments will result in more than 1,000
time series. Estimating random factor smooths for all
these time series is computationally very demanding,
and (currently) only possible with a powerful server
(even when setting the argument discrete to true, for
more efficient storage and processing).

When including a random factor smooth for each
unique time series is not possible, a sensible compromise
is to include a random intercept and a random slope for
each time series in addition to random factor smooths
for Subjects and Items. This allows random variation in
the intercept and slope of each time series separately,
whereas the random smooths for Subject and Item spe-
cify random adjustments in the shape of the smooth (see
the Supplementary Materials for the effect of different

Figure 11. Improvement in model fit by adding random smooths for unique time series. Left: Data (black thick lines) and the model fit of

the initial GAMM (thick red lines) for three random three events in the experiment. Center: Data (black thick lines) and the model fit of

the improved GAMM (thick red lines) for the same three time series. Right: ACF for the improved GAMM, model4. (The ACF of model1 is

presented in Figure 9).

ACF¼ autocorrelation function.
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random effects structures in nonlinear regression
models). R Screen 6 shows the model with random inter-
cepts and slopes included.

R Screen 6: GAMM model with random intercept and
slope for individual time series.

The model’s fit of each time series is less precise than
that of the model with random effects smooths for each
time series, which is visible in the slightly lower correl-
ation of .9. However, the model’s fit is still somewhat
better than the fit of the first model that only included
random smooths for Subjects and Items (i.e., .49). The
residuals also show that the current model is a com-
promise between the two previous models: The median
absolute residuals of 24.42 are smaller than the resi-
duals of the first model (43.34) but larger than that of
the model with random factor smooths for each time
series (4.68).

Correcting for Autocorrelation by Including AR1 Model

An alternative way to account for autocorrelation in the
residuals is to include an AR1 model within a GAMM.

Our simulations suggested that the autocorrelation in the
errors is caused by the large variation in individual time
series and the high signal-to-noise ratio in the pupil dila-
tion data. However, we cannot exclude the possibility
that autocorrelation is (partly) due to an AR process in
the data that is not captured by the model. Note that
GAMMs cannot distinguish between these sources of
autocorrelation. To remove autocorrelation effects that
are potentially caused by AR processes, we included an
AR1 error model for the residuals in GAMM (Wood,
2017a; Wood, Goude, & Shaw, 2014). An AR1 model is
a linear model that estimates influence of the immedi-
ately preceding measurement on the current measure-
ment in a time series: Xt ¼ �Xt�1 þ �t, � � N 0, �Xð Þ.
Wood (2017a) recommends to find the optimal value of
� by comparing the fREML scores of the models that
include different values of �. Figure 12 (left panel) shows
the fREML scores for a range of � values in our pupil
size data. For the initial model (i.e., model1), with only
random factors smooths for participants and items there
does not seem to be an optimal value for �, as the
fREML scores keep improving with higher values.
However, when Event is included as random effect, the
improvement in fREML scores seem to decrease for
higher values of �. The ACF Lag 1 score of the models
(indicated with a dot in the plot) seems to be a reason-
able estimate for the value of �.

Figure 12 (right panel) shows the correlation between
the data and the model fit for the same range of � values.
This plot highlights the fact that including an AR1
model generally does not improve the model fit but
mainly increases the uncertainty over the estimates. As
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the residuals in model1 are much larger than in the
models, model 4 and model 5 (as the model does not
explain the data very well), high values of � affect the
model fit much more as it does affect the other two
models. The estimates for models with a poor fit could
dramatically change when including an AR1 model,
leading to different conclusions.

R Screen 7: GAMM model including AR1 model.

We set � to a very high value of 0.87 (based on the
ACF Lag 1 score of model, model4, but we also used a
model-comparison procedure to verify the optimal
value).

Including an AR1 model increases the uncertainty in
the predictions of a GAMM. The correction for auto-
correlation takes place within the fitting of the model and
influences the estimations of the predictors. The differ-
ences between the conditions may become stronger,
although the confidence intervals increase, but we have
also seen examples where the correction for autocorrel-
ation reduced all effects. In the current data, only the
difference between the congruent and incongruent items
with an actor-first introduction sentence (‘‘A1’’) is found
to be significant but not with an actor-second introduc-
tion sentence (‘‘A2’’).

Although this method reduces the effect of the auto-
correlation in the residuals, it also has some limitations.
In the current version of the statistical software (mgcv
1.8-23), a single AR1 process is applied to all trials by
setting a single value for �, the AR1 correlation param-
eter. However, inspection of the residuals of separate
participants shows large differences in correlation struc-
ture. Therefore, this method does not completely remove
the autocorrelation in the residuals and for trials
with little autocorrelation, it may artificially induce auto-
correlational structure (Baayen et al., 2018). Further,
only first-order AR processes are currently implemented.
Higher level autocorrelation structure cannot be
removed.

Thus, we have explained that autocorrelation in resi-
duals will arise in time course analysis of pupil size
data when the model does not fit the data well.
Therefore, improving the model fit is the most

important solution, for example, by including a
random effects structure that captures each time
series. However, if improving the model fit is (compu-
tationally) not possible, including an AR1 model may
provide an alternative solution.

Besides the autocorrelation in the residuals, our initial
model also did not show normally distributed residuals,
which is assumed when running a regression model for
Gaussian data. Although this issue is not likely to affect
the model’s estimates as severely as autocorrelation in
the residuals, nevertheless the model’s estimates are less
reliable when the assumptions are not met. The following
section addresses the issue of not normally distributed
residuals.

Distribution of Residuals

Generalized regression methods allow for modeling data
that are not normally distributed. For example, logistic
regression models are frequently used in our field to
model binomial data such as answer accuracy (correct
or incorrect). Figure 13 visualizes the distribution of
the pupil size data (after baseline subtraction) with a
QQ-plot and a density plot. The plots clearly show that
the measurements are not normally distributed: The
lower extreme values are much lower than would be
expected with a normal distribution, and the higher
extreme values are much higher than would be expected
with a normal distribution (i.e., the distribution has hea-
vier tails). It is difficult to correct this symmetrical pat-
tern using transformations, such as the log or an
exponential function. Instead, the package ‘‘mgcv’’
allows to model this type of data as a scaled t distribu-
tion for heavy tailed response variables (Wood, Pya, &
Saefken, 2016).

We rerun our best-fitting model with the scaled t dis-
tribution specified. On the basis of this new model, we
determined a new value for the � parameter in the AR1
model. The code for our final model, with
family¼"scat" and rho¼0.92 and random factor
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Figure 13. Distribution of the data.

QQ¼ quantile-quantile.
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smooths for each time series (specified by the predictor
Event), is presented in R Screen 8.

R Screen 8: Scaled-t GAMM model.

Figure 14 evaluates our final model. The top row
shows the model’s estimates for the four conditions
and for the differences between the incongruent and con-
gruent items for each Introduction Order. Interestingly,
the model’s estimates have not changed much in com-
parison with model5: with an actor-first introduction
sentence (‘‘A1’’; center panel), there is a significant dif-
ference between the incongruent and congruent items
from 500 to 1000ms after pronoun onset. The pupil
dilation is lower for the congruent items than for the
incongruent items. This difference is not found for the
actor-second introduction sentence (‘‘A2’’; right panel).
Actually, only the condition ‘‘A1.congruent’’ shows a

significantly lower peak dilation than the three other
conditions (left panel).

The bottom row visualizes the residuals, which look
rather different from the residuals of our initial GAMM
(see Figure 9). The autocorrelation is reduced by includ-
ing the individual time series as random effects, and by
including an AR1 model (� ¼ :92) to account for the
remaining AR processes in the data (left panel). To
check whether the scaled t distribution did capture the
distribution of the data, the central panel shows a QQ-
plot of the residuals. Note that for a generalized regres-
sion model, it is preferred to plot the standardized resi-
duals, because the raw residuals of a generalized model
do not behave like normally distributed residuals (Wood,
2017a, Chapter 3). Although the standardized residuals
do not completely fit the expected distribution, their dis-
tribution has improved considerably.

Discussion

In this article, we have analyzed a pupil dilation experi-
ment (van Rij, 2012) that investigated the effects of visual
context and the introduction order (i.e., the order in
which the two characters are introduced) on object

Figure 14. Evaluation of the scaled t Model 6. Top row: Estimated effects (left panel) and estimated differences with pointwise 95%

confidence intervals (center and right panels). Bottom row: Residuals of model6.

ACF¼ autocorrelation function; QQ¼ quantile-quantile.
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pronoun processing in Dutch. Instead of analyzing vari-
ous features that describe the pupil dilation trajectory,
such as the peak amplitude and peak latency, we have
examined the time course directly using GAMMs
(Wood, 2017a). This nonlinear regression method is inter-
esting for analyzing pupil dilation data in hearing
research, for several reasons: (a) GAMMs allow us to
quantify differences in the time course of pupil dilation
directly, without the need to make any assumptions with
respect to the shape of the trajectory on beforehand; (b)
GAMMs can model complex nonlinear interactions, such
as the effect of gaze position on the pupil dilation curve.
(c) GAMMs can include nonlinear random effects. Using
nonlinear random effects, the regression models can
account for the large variation in pupil dilation time series.

An important advantage of time course analyses over
traditional methods is that time course analyses allow for
asking different questions, such as at which moment in
time conditions start to differ and whether this difference
changes over time. Another major advantage of
GAMMs over traditional methods is the combination
of (nonlinear) random effects and complex nonlinear
interactions. This combination provides new possibilities
for experimental designs, because dichotomization or
discretization of a numeric predictor into a factor with
two or more levels is not necessary anymore. The possi-
bility to estimate complex nonlinear interaction surfaces
provides a system for correcting for the effects of inter-
fering factors as gaze position and baseline within the
statistical analysis (in contrast to a separate correction
on the data, e.g., Gagl et al., 2011), but could also be
used for modeling nonlinear properties of items and par-
ticipants. Especially in hearing research, many continu-
ous covariates are collected that describe participants’
hearing abilities and cognitive abilities, such as working
memory scores, and covariates that describe the signal
properties, such as the frequency of the first formant, the
pitch height, or the signal-to-noise ratio. GAMMs allow
for including these covariates and their potentially non-
linear interactions as continuous covariates.

A comparison between different time course methods is
outside the scope of this article, but it is worth noting that
GAMMs can actually implement growth curve analysis
and functional data analysis (see e.g., Wood, 2017a).

The second aim of this article was to explain the issues
that arise with all time course analyses and to show
potential solutions. A very important aspect of all time
course analyses is a thorough evaluation of the model fit.
Visualizing the residuals is a good starting point for
detecting problems with the model fit, such as autocor-
relation in residuals and residuals that do not follow a
normal distribution. Autocorrelation increases the prob-
ability for Type I errors (detecting an effect that is not
really there) and may yield conclusions that are not rep-
licable. Therefore, when using time course analyses, it is

extremely important to apply model criticism procedures
and to report about the model evaluation.

On the basis of our simulations, we argue that two
major sources of autocorrelation are (a) differences
between the model fit and the data and (b) the nature
of the pupil dilation signal, which is a slow signal with a
relatively small amount of noise.

The most important method to avoid anticonservative
conclusions is to improve the model fit. A better model
fit implies smaller residuals, and potential autocorrel-
ation of smaller residuals is less likely to affect the
model than autocorrelation of large residuals. In linear
mixed-effects modeling, a maximum random effects
structure would include random intercepts and random
slopes for the design predictors for participants and item.
However, in time series data, each event (a particular
trial for a particular participant) consists of a series of
observations with a nonlinear structure. Therefore, we
cannot assume that the combined effects of participants
and items together define each time series. Rather, in
time course analyses, a maximum random effects struc-
ture for time series data would include a random smooth
for each individual time series. This is currently compu-
tationally not always possible for larger data sets. When
including a random smooth for each time series is not
possible, it is not immediately clear what would then be
the next best alternative. We propose to include a
random intercept and a random slope for each unique
time series on top of random smooths for participants
and items to provide more flexibility for the model to fit
the unique time series.

When improving the model fit is not sufficient to elim-
inate the presence of AR processes in the data, GAMMs
offer the option to include an AR1 model to account for
the autocorrelation in the residuals and adjust the esti-
mates and confidence accordingly. However, including
an AR1 model may not prevent Type I errors when the
model accounts for only a small proportion of the vari-
ance in the pupil dilation data.

Note that autocorrelation in residuals is not a particu-
lar property of pupil dilation analyses but also applies to
other time course measures such as EEG, pitch contours,
or articulography. However, in measurements with a
lower signal-to-noise ratio (i.e., comparing the noise
amplitude with the signal amplitude of the signal) such
as EEG, the autocorrelation is less severe than in pupil
dilation. Our simulations show that noise interrupts and
reduces the autocorrelation in the residuals that arise
when the model does not provide a good fit for the indi-
vidual time series.

In conclusion, pupil dilation is a sensitive measure of
cognitive processing, but the measure is easily con-
founded with other factors eliciting pupil dilation.
Careful experimental design and analysis are necessary
to be able to interpret pupil dilation results. GAMMs are
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particularly suited for analyzing pupil dilation, because
they allow to investigate the time course of pupil dilation
directly and to correct for factors such as gaze position
and participant differences. Although time course ana-
lyses require a thorough evaluation to avoid anticonser-
vative conclusions, they provide a more complete
description of the data than traditional analyses of
pupil dilation.
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Notes

1. This issue seems to be unknown to many researchers analyz-
ing pupillometric data, because the majority of aforemen-

tioned studies that applied one of the time series analyses to
their pupillometric data (i.e., Jackson & Sirois 2009;
Kuchinsky et al., 2013; van Rij, 2012; Vogelzang et al.,

2016; Winn et al., 2015) did not report whether this problem
did play a role in their analysis and how they corrected their
analyses. Therefore, this tutorial is particularly relevant for

this field.
2. The Supplementary Materials are available at https://git.

lwp.rug.nl/p251653/analyzing-time-course-pupil-data.

3. If an eye tracker that is not head mounted reports pupil size
in mm, these results should be interpreted with caution until
these results are calibrated offline.

4. Binary curves do not need an additional parametric inter-

cept adjustment, as they fit only one regression line. See
Supplementary Materials for more information.
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Lõo, K., van Rij, J., Järvikivi, J., & Baayen, R. H. (2016).

Individual differences in pupil dilation during naming

task. In A. Papafragou, D. Grodner, D. Mirman, &
J. Trueswell (Eds.), Proceedings of the 38th Annual
Conference of the Cognitive Science Society (pp. 550–555).

Austin, TX: Cognitive Science Society.
Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry:
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