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We performed a systematic review of data from nine clinical trials of WT1 peptide
vaccination in patients with myelodysplastic syndromes and/or acute myeloid leukemia
(MDS/AML), published between 2004 and 2012. A total of 51 patients were eligible
for analysis. Vaccination with WT1 peptides proved safe and feasible in patients with
MDS/AML, in studies from different institutions. Additionally, clinical responses and clinical
benefit were observed, with some patients achieving and maintaining remission long-term
(more than 8 years). A significant correlation between induction of WT1-specificT cells and
normalization/reduction of WT1 mRNA levels and progression-free survival was noted in a
number of studies. However, larger studies are warranted to confirm these results. Inter-
estingly, the majority of trials reported the presence of WT1-specific T cells with limited or
absent functionality prior to vaccination, which increased in frequency and function after
vaccination. In conclusion, WT1 peptide vaccination strategies were safe in this hetero-
geneous group of patients with MDS/AML. Larger and more homogeneous studies or
randomized clinical trials are needed to quantify the contribution of WT1 peptide vaccines
to clinical responses and long-term survival.
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INTRODUCTION
Allogeneic hematopoietic stem cell transplantation (HSCT)
remains the unique curative option for patients with myelodys-
plastic syndromes (MDS) and/or acute myeloid leukemia (AML)
at high risk of relapse (1).

However, considering HSCT-related morbidity and mortality
risks it is a suitable therapeutic option only for younger patients
(generally up to 70 years of age) without significant comorbidities
(2, 3). Hypomethylating agents are now the first-line treatment for
patients with higher-risk MDS not eligible for HSCT and are being
used for older patients with AML (4), however, since the prognosis
of patients who lose response or progress while on hypomethylat-
ing agents is extremely poor (2) alternative strategies are needed.
One approach can consist in boosting immunity toward tumor
associated antigens (TAAs) by the mean of peptide vaccination.
Vaccination would allow the induction of humoral and cellular
adaptive immune responses to specific antigens, and an optimal
cancer vaccine should prompt the activation of antigen-specific
CD3+CD4+ and CD3+CD8+ T-lymphocytes.

An ideal leukemia TAA to be employed in anti-cancer vacci-
nation strategies should be expressed on leukemic progenitors,
be intrinsic to leukemic survival so that tumor escape by down-
regulation of the antigen cannot occur, and induce a strong
cytotoxic response. Over-expressed/aberrantly expressed cellular

proteins, such as proteinase-3 PR1 peptide (PR1) (5), Wilms’
Tumor-1 (WT1) (5–14), or receptor for hyaluronan-mediated
motility (RHAMM) (15), and the altered cell surface glycoprotein
Mucin-1 (MUC1) (5) have been evaluated in phase I/II clinical
trials of active immunotherapy, either alone or in combination as
possible target antigens, with promising results.

The WT1 gene located on chromosome 11p13 (16) encodes
a zinc finger transcription factor that plays an important role in
cell growth and differentiation (17). Expression of the WT1 pro-
tein is restricted to a limited set of tissues, including the gonads,
uterus, kidney, and mesothelium, and to progenitor cells in var-
ious types of tissues (18). WT1 knock-out mice were found to
have defects in the urogenital system and died on ED 13.5, prob-
ably due to heart failure (19). The WT1 gene is highly expressed
by the majority of AML and acute lymphoid leukemia (20). Fur-
thermore, in chronic myeloid leukemia (21) and MDS (22), WT1
mRNA expression levels were shown to increase with disease
progression. Although originally defined as a tumor suppressor
gene (23, 24), accumulating evidence suggests that WT1 has an
oncogenic role in leukemogenesis and tumorigenesis (25), as inhi-
bition of WT1 gene expression resulted in suppression of leukemia
growth in vitro, whereas its forced expression resulted in leukemia
induction in mice (26, 27). Perhaps most relevant to the clinical
setting, immunization of mice with WT1 peptides was shown to
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induce anti-tumor activity without inhibiting engraftment of nor-
mal CD34+ hematopoietic progenitor cells (28). The selectivity of
WT1-specific human T cells as effectors against WT1 expressing
targets has also been shown in vitro (29) and several epitopes,
including helper T cell epitopes, have entered clinical trials (30).

Most TAAs are aberrantly expressed self-proteins, and T cells
directed against these antigens typically express low-affinity T
cell receptors as a consequence of the negative selection in the
thymus. In contrast, when stimulated with low doses of foreign
antigens in combination with noxious substances (adjuvants), the
immune system is activated, leading to the generation of effector
and memory T cells (31).

The success of a particular peptide vaccine to elicit an immune
response is influenced by many parameters, including the presence
of helper T cell epitopes, processing and presentation by pro-
fessional antigen presenting cells (APCs), bio-distribution, influ-
ence of adjuvants, peptide length, peptide affinity, and mode of
administration (Table 1).

This review, we will summarize the immunologic and clin-
ical results of WT1 peptide vaccination approaches in patients
with myelodysplastic syndromes and/or acute myeloid leukemia
(MDS/AML) (31).

CLINICAL STUDIES OF WT1 PEPTIDE VACCINES IN MDS/AML
A detailed report of the clinical studies reviewed in this article is
presented in Table 2 (5–14).

In order to analyze survival outcomes after vaccination, we
combined the results from seven reports published between 2004
and 2012 (5, 7, 9, 10, 12–14). Unduplicated observations were
available for 55 out of 67 patients with MDS/AML: 4 patients
were not evaluable for response, and therefore the final number
of evaluable patients in our analysis was 51. A summary of the
patients and their responses is detailed in Table 2. The majority of

Table 1 | Strategies to improve the efficacy of anti-tumor vaccination.

Improve

co-stimulation

1) Presence of appropriate cytokines

2) Use of T-helper epitopes or DC agonists (TNF, TLR,

and PADRE)

3) Slow release vaccines

4) Draining to local activated lymph nodes

5) Avoid continuous or repeated administration, which

can induce T-regulatory cells

6) Peptide elongation

Prevent systemic

spread

1) Attachment of lipid tails to peptides

2) Linking APC activating compounds and antigen

3) Adoption of linkers between cytotoxic and

helper sequences

Reduce toxicity 1) Avoid quick and widespread bio-distribution

(cytokine storm)

2) Avoid high doses or repeated administration

3) Identify bio-markers to predict and monitor toxicity

TNF, tumor necrosis factor; TLR, toll like receptor; PADRE, T cell Pan DR epitope;

APC, antigen presenting cells.

treated patients received also granulocyte monocyte colony stim-
ulating factor injections, and the majority were vaccinated against
an epitope recognized in the context of human leukocyte anti-
gen HLA-A02-01; however, some studies employed HLA-A24-02
(36–39), and in one study peptide recognized in the context of
HLA-A02-01 were administered together with peptide recognized
in the context of HLA-DRB1 (41).

We first evaluated if vaccination with WT1 peptide was reported
to induce expansion of WT1-specific T cells. By analyzing the
results published in four trials (23 patients) where WT1-specific
T cells were estimated by tetramer analysis or ELIspot assay with-
out ex vivo expansion (6, 8, 11, 14), we were able to estimate that
WT1 vaccination resulted in an overall median fold expansion in
WT1-specific T cell frequencies of 2.4, as compared with baseline.
The tetramer positive T cells increased from a median of 0.14%
(range 0–0.98%) pre vaccination to 0.41% (range 0–6.6%) post-
vaccination. Rezvani et al. (11) reported that the absolute number
of CD3+CD8+ WT1 tumor T cells increased from a median value
of 95 per mL pre vaccination, (range 20–423 cells/mL), to 398 per
mL after vaccination (range 98–4570 cells/mL).

Keilholz et al. (7) reported a significant increase in the median
frequency of WT1 tetramer positive T cells in the bone mar-
row from 0.18% (week 0) to 0.41%, at week 18 after vaccination
(P = 0.04). In the peripheral blood, WT1 tetramer positive cells
were present at 0.12% at baseline, increasing to 0.28% at week 10,
and persisting at stable levels (0.25%) at week 18, although these
values did not reach statistically significance. The authors reported
that only patients with low blast count in the bone marrow at base-
line (<40% blasts, n = 9) had a statistically significant expansion
in the peripheral blood of WT1 tetramer positive T cells after
vaccination, as compared with patients with a high blast count
(>50% blasts, n = 9); the median frequencies at week 0, 10, and
18 were 0.11, 0.30, and 0.46% (P < 0.01) vs. 0.12, 0.27, and 0.23%,
in the two groups, respectively. Interestingly, four patients in the
low blast group had a functional WT1 T cell response [gamma-
interferon (IFN)-gamma production] compared with only one
patient in the high blast group. In all the evaluable patients from
these studies, although WT1-specific T cells were present in vivo at
low frequencies prior to vaccination, the functional response after
WT1 peptide stimulation measured as IFN-gamma production
was limited or absent, increasing only after vaccination.

In the study by Maslak et al. (13), a combination of WT1
peptides comprising of one short peptide with a mutated R126Y
(heteroclitic) epitope (to elicit CD3+CD8+ T cells), two long pep-
tides (to elicit CD3+CD4+ T cells), and one long peptide with the
heteroclitic sequence (to elicit both CD3+CD4+ and CD3+CD8+

T cells) were tested. Ex vivo experiments with CD3+CD4+ T
cells isolated from vaccinated patients showed that WT1-specific
functional responses were stronger against the CD4 epitopes,
although one patient showed a strong response toward the
CD3+CD8+ heteroclitic-WT1126–134 peptide. Interestingly, long
peptides elicited the strongest immunological responses in vitro,
and an IFN-gamma ELIspot assay performed after two rounds
of in vitro stimulation showed that both native and heteroclitic
peptides could elicit strong functional responses against WT1.
Although the HLA-DR heteroclitic peptide was more efficient
than its native counterpart, both elicited responses against both
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Table 2 | Summary of reviewed clinical trials.

Diagnosis (N ) Disease status/

[previous tx]

Epitope Vax#

(range); [adjuvant]

(N )Toxicity

grade III-IV

Anti WT1

responses

Clinical responses [Follow-up]/

[response duration]

Reference

AML (1) 1PR [chemo] WT1126–134 15; [KLH] None Yes Yes (1) Morphological/

molecular CR

[46 weeks]/[30 weeks] (6)

AML (17)

MDS (2)

13 PD WT1126–134 11(4–27 ); [KLH] None N/A Yes (1) CR, (13) SD, (4) PD,

(1) Major neutrophil

response

[NA]/[CR: 16 months;

PFS SD 155D (101–571)]

(7)

6 PR

2 EB [chemo]

AML (12) MDS

(2) other (12)

8 CR Natural WT1235–243 vs.

modified

3; [mISA51] None Yes Yes (5) Molecular CR (2) PR,

(1) SD, (2) PD, (4) NE

[NA] (8)

4MRD

2 EB [NA]

AML (3) 3 MRD [chemo] Natural WT1235–243 vs.

modified

Several; [mISA51] None Yes Yes (3) CR for >8 years [90 months

(90–94)]/[NA]

(9)

AML (5) MDS

(2) other (1)

4CR [chemo] PR1169–177 and WT1126–134 6; [mISA51] None Yes Yes (3) CCR, (2) SD, (2)

relapse

[NA]/[SD: 180D

(105–523)]

(11)

1 RA

1 RARS [EPO/GCSF]

AML (6)

MDS (2)

6 CR [5 chemo,

1 allo-HSCT]

PR1169–177 and WT1126–134 6; [mISA51] None N/A Yes (2) CCR, (1) SD, (1) PD,

(4) relapse

[NA]/[SD: 832D., CCR:

683D (587–779), TTR:

112D. (14–352)]

(10)

1 RA

1 RARS [EPO/GCSF]

AML (1)

MDS (1)

1 AD [chemo] WT1235–243 20; [mISA51] None N/A Yes (1) Morphological CR,

(1) molecular CR

[NA]/[CR > 3 years] (12)

1 MRD [NA]

AML (9) 9 MRD [chemo] WT1126–134
A1# and

WT1427–445/331–352/122–140
A1#

9 (6–12); [mISA51] None Yes Yes (5) CCR, (4) relapse [NA]/[DFS 31 months

(10–121), mPFS not

reached]

(13)

AML (4)

other (5)

3 AD [NA] WT1126–134 and PR3169–177

with PADRE/MUC1helper

epitope

6; [CPG7909/mISA51] (4) Erythema, (1)

dyspnea, (2) fever

None Yes (2) SD, (2) PD [84D]/[NA] (5)

N, number; tx, treatment; vax, vaccine; WT1, Wilms’ tumor-1; AML, acute myeloid leukemia; PR, partial response; KLH, keyhole limpet hemocyanin; chemo, chemotherapy; (C)CR; (continuous) complete remission;

MDS, myelodysplastic syndromes; PD, progressive disease; EB, excess blasts; NA, not available; (D)PFS, (disease) progression-free survival; SD, stable disease; MRD, molecular residual disease; mISA51, montanide

ISA51; RA(RS), refractory anemia (ringed sideroblasts); EPO, erythropoietin; GSCF, granulocyte colony stimulating factor; allo-HSCT, allogeneic hematopoietic stem cell transplantation; TTR, time to relapse; AD,

active disease; A1#, mutated amino acid R126Y; PR3, proteinase-3; PADRE; T cell Pan DR epitope; MUC1, Mucin-1; CPG 7909, immunostimulatory toll like receptor 9 (TLR9) agonist oligodeoxynucleotide.
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the HLA-A02-01 and the HLA-DRB1 epitopes, indicating effi-
cient processing and presentation of the HLA-A02-01 epitope
embedded within the long peptide to CD8+ T cells.

Clinical responses and clinical benefit were observed in these
studies, as reported in detail in Table 2, with some patients achiev-
ing and maintaining remission long-term (more than 8 years) (9).
Of note, one patient had a complete response after the percentage
of bone marrow blasts had reached 30% (7).

We also assessed whether correlation between WT1 responses
and prognosis was reported in any of these studies. Some of the
reviewed studies found a significant correlation between the detec-
tion of WT1-specific T cells and normalization/reduction of WT1
mRNA level [P < 0.01 (7, 11); P = 0.0397 (8)], whereas the loss
of WT1-specific T cells was associated with reappearance of the
WT1 transcript (11). A significant correlation was also reported
between WT1 mRNA level and progression-free survival (P = 01),
in one study (7).

Interestingly, in one study relapse was associated with the dis-
appearance of T cell receptor clone restricted for Vbeta11 chain
from the bone marrow (32), and a bias toward Vbeta11 usage of
the WT1-specific T cells was further observed in four patients (33).
In one patient, down-regulation of WT1 mRNA and loss of WT1
expression was observed at the moment of leukemia progression.
However, additional immune-evasion mechanisms, such as WT1
mutation or loss of HLA expression on the surface of leukemic
cells were not observed (34). Addressing other possible mecha-
nisms resulting in loss of response to vaccination, Rezvani et al.
(10) reported that repeated vaccinations eventually led to selec-
tive deletion of high avidity PR1- and WT1-specific CD3+CD8+

T cells and was not associated with significant reduction in WT1
expression.

Additional boosting failed to increase vaccine-induced
WT1+CD8+T cell frequencies further and in all patients the
response was lost before the sixth vaccine dose. Furthermore,
the authors of another report suggested a negative impact of
using the immunostimulatory toll like receptor 9 (TLR9) ago-
nist oligodeoxynucleotide (CPG7909), and Montanide ISA51
(mISA51) as adjuvants for the vaccination (5).

Finally, in all the analyzed studies, vaccination with WT1 was
found to be safe and well tolerated, with only 8% of patients (7 out
of 88 total patients with any diagnosis) experiencing grade III-IV
toxicity.

CONCLUSION
Around 50% of patients undergoing allogeneic HSCT for
MDS/AML experience long-term disease-free survival (2, 3),
unfortunately, a significant proportion of patients will succumb
to disease relapse (2). Alternative strategies are therefore urgently
needed to improve outcomes, while also lowering treatment
related mortalities and morbidities. The encouraging results to
date from immunotherapeutic approaches, such as vaccination
strategies, suggest that this option may offer a promising strategy
to reduce the risk of disease relapse.

From the reports analyzed in our review, it is evident that vacci-
nation with WT1 epitopes was safe, feasible, and potentially able to
mediate sustained immune responses in patient with MDS/AML.
Although these preliminary findings are encouraging, limitations

of this review include the low number of patients in some of the
analyzed clinical trials, and a heterogeneous group of patients with
two different diseases diagnosis.

Although antigen-specific T cells for example against WT1 (35)
and PR1 (36) are present in the blood of healthy donors and
transferred to the patient after allogeneic HSCT or donor lympho-
cyte infusion, their persistence and expansion are transient, which
may be explained by activation-induced apoptosis after exposure
to high antigenic burden (37), or terminally differentiated effec-
tor memory phenotype (38). Therefore, vaccination approaches
can potentially enhance anti-TAA immune responses. However,
a comprehensive understanding of the mechanisms underlying
a successful vaccine-induced immune response and of the fac-
tors predictive of response would allow the design of optimal
immunotherapeutic strategies for the treatment of patients with
MDS/AML.

Administration of large or repeated doses of foreign antigens
in order to enhance effectiveness of the vaccine proved not ben-
eficial in our experience (10), as it led to induction of immune
tolerance, potentially via T cell deletion, anergy, or expansion of
antigen-specific regulatory T cells (31).

An alternative approach to counteract immune-evasion mech-
anisms, such as down-regulation of TAA expression, would be to
combine different epitopes of the antigen of interest. Two reports
summarized here, including one from our own group, explored
the feasibility of vaccinating patients with epitopes derived from
two different TAAs, however larger or randomized clinical trials
are needed to demonstrate the superiority of this approach (5, 10).

Two strategies to help circumvent the need for T-helper cells
with resulting more sustained anti-cancer T cell immunity have
been investigated with success in murine models (39, 40): (i) the
adoption of synthetic long-sequence peptides, and (ii) the use of
adjuvants to stimulate APCs.

Synthetic long-sequence peptides are preferentially processed
by professional APCs in the lymph node draining area, circum-
venting some of the tolerance mechanisms. In the study of Maslak
et al. (13), long peptides with capacity to elicit both a CD3+CD8+

and a CD3+CD4+ T cell response, resulted in stronger immuno-
logical responses in vitro, but whether this strategy would prove
effective in vivo is yet to be established.

Although agonistic anti-CD40 antibodies induced maturation
of APCs preventing tolerance induction and circumventing the
need for CD4+ T cell help in the early phase of T cell response, it did
not prevent the long-term induction of tolerance, likely because
once the anti-CD40 antibody had been cleared, peptides were pre-
sented to CD8+ T cells by tolerogenic APCs (41). One possible
strategy to sustain antigen exposure with APCs in the draining
lymph node would be to combine the peptide with lipid tails (31),
and this approach has been investigated with encouraging results
using FDA approved biodegradable polylactic-co-glycolic acid
microparticles, which shuttle antigens to the lymph nodes (42). To
note, the replacement of mineral oils with novel delivery systems
or the direct injection of peptides into lymph nodes (43) would
also help in overcoming the long-term side effect of granuloma
formation at the injection site observed with mISA51 (31).

Since persistence of antigen-specific T cells is required for
successful immunotherapy, an optimal cytokine milieu (44, 45)
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or exogenous administration of cytokines (46) may result in
preferential expansion of long-lived antigen-specific central mem-
ory T cells.

Priming donor T-lymphocytes in vitro to increase the fre-
quency of tumor-specific precursors prior to adoptive transfer has
been tested in murine models of leukemia (47), and has proven
feasible in patients with multiple myeloma (48), and lymphoid
neoplasms albeit without demonstration of clinical benefit in the
latter population (49).

Additionally, in order to reduce the risk of inducing on-target
off-tumor effects (50), the adoption of tumor-specific antigens,
such as for example minor histocompatibility antigens selec-
tively expressed by hematopoietic cells or exclusively expressed
on hematopoietic progenitor cells, holds promise (51).

Finally, WT1 peptide vaccination strategies proved safe in this
heterogeneous group of patient with MDS/AML. Although results
from the reviewed studies suggest immunological and clinical ben-
efit, with some patients experiencing long lived (more than 8 years)
remissions of disease, more homogeneous and larger studies and
randomized clinical trials are needed to quantify the contribution
of WT1 peptide vaccines to clinical responses and disease-free
survival.
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