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This review aimed to elucidate protein biomarkers in body fluids, such as blood and cerebrospinal fluid (CSF), to identify those that may be used 
for early diagnosis of multiple sclerosis (MS), prediction of disease activity, and monitoring of treatment response among MS patients. The po-
tential biomarkers elucidated in this review include neurofilament proteins (NFs), glial fibrillary acidic protein (GFAP), leptin, brain-derived neuro-
trophic factor (BDNF), chitinase-3-like protein 1 (CHI3L1), C-X-C motif chemokine 13 (CXCL13), and osteopontin (OPN), with each biomarker 
playing a different role in MS. GFAP, leptin, and CHI3L1 levels were increased in MS patient groups compared to the control group. NFs are the 
most studied proteins in the MS field, and significant correlations with disease activity, future progression, and treatment outcomes are evi-
dent. GFAP CSF level shows a different pattern by MS subtype. Increased concentration of CHI3L1 in the blood/CSF of clinically isolated syn-
drome (CIS) is an independent predictive factor of conversion to definite MS. BDNF may be affected by chronic progression of MS. CHI3L1 has 
potential as a biomarker for early diagnosis of MS and prediction of disability progression, while CXCL13 has potential as a biomarker of prog-
nosis of CIS and reflects MS disease activity. OPN was an indicator of disease severity. A periodic detailed patient evaluation should be per-
formed for MS patients, and broadly and easily accessible biomarkers with higher sensitivity and specificity in clinical settings should be identi-
fied. 
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Introduction 
Multiple sclerosis (MS) is a common autoimmune demyelin-

ating disease that can affect the entire central nervous system. 

Most patients develop a ‘relapsing’ form, while some develop 

a ‘secondary relapsing progressive form,’ wherein the overall 

neurological function steadily deteriorates with repeated re-

lapses [1,2]. Because the burden of acute phase treatment due 

to relapse and functional impairment due to progressive neu-

rodegeneration are social/medical economic burdens, in-

cluding a long-term decline in quality of life, early diagnosis 

and treatment of MS have been consistently studied [3,4]. Ac-

cording to long-term pathophysiology studies, an autoim-

mune-mediated inflammatory response involving B cells and 

T cells is the main pathological phenomenon of MS [5,6]. 
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Hence, various therapeutics have been introduced, from in-

terferon-beta (IFN-β) injections over the past several decades 

to recent high-efficacy drugs (e.g., cladribine, alemtuzumab, 

and natalizumab) [7]. Moreover, many published study results 

elucidated the need to identify high-risk MS patient groups at 

an early stage of disease onset and to actively start treatment 

to avoid long-term progression. In fact, the McDonald’s diag-

nostic criteria, which are widely used internationally, are be-

ing revised to increase the efficiency of early diagnosis [8]. Ac-

cordingly, although studies on biomarkers that can be used 

for ‘early diagnosis/prediction of disease activity/monitoring 

of treatment response’ are limited, there have been recent at-

tempts to maximize the efficiency of the process from diagno-

sis to treatment. Therefore, this review focuses on protein bio-

markers in body fluids, including blood and cerebrospinal 

encephalitisjournal.org

Copyright © 2023 by The Korean Encephalitis and Neuroinflammation Society

This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licens-
es/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

encephalitis |Vol. 3, No. 2| April 4, 202354

http://crossmark.crossref.org/dialog/?doi=10.47936/encephalitis.2022.00101&domain=pdf&date_stamp=2023-04-10


fluid (CSF), among the recently published results of biomark-

er studies. 

Main Subjects 
Neurofilament proteins 
Neurofilament proteins (NFs) are responsible for maintaining 

cytoskeletal integrity throughout the nervous system and are 

composed of neurofilament light chain (NfL), neurofilament 

medium chain, neurofilament heavy chain, and alpha-in-

ternexin [9]. NF levels can increase in pathophysiological sit-

uations, leading to axonal nerve injury, and they are the most 

extensively studied biomarker candidates in a wide variety of 

neurological diseases, including MS. Among the various NFs, 

NfL has shown the highest efficacy as a biomarker, as NfLs are 

released into the CSF either by damage to the cell membrane 

or by active secretion through multivesicular bodies [10]. 

Then, some NfLs enter the blood through the glymphatic sys-

tem or periarterial drainage [11]. The NfL levels in the blood 

and CSF had a significant correlation regardless of measure-

ment platform [12]. Physiologically, neurodegeneration oc-

curs with aging, and as the blood-brain barrier integrity is dis-

rupted, lower-than-normal concentrations of NfL can be de-

tected in normal body fluids [13]. However, in various patho-

logical conditions, including MS, its level is more likely to in-

crease. Since NfL is the most studied substance as a biomark-

er of MS, we aim to describe it in terms of its role in diagnosis, 

disease activity, and therapeutic monitoring (Table 1 [14-37]). 

Diagnosis 
Since NfL levels have been shown to increase not only in MS 

but also in other inflammatory nervous diseases, it would not 

be appropriate to use only NfL for diagnosis of MS [38,39]. 

However, in MS research, efforts are being made to shorten 

the time from onset of symptoms to diagnosis of MS. Hence, 

studies have been conducted on the use of NfL for the pur-

pose of early discovery of patients who transition from clini-

cally isolated syndrome (CIS) or radiologically isolated syn-

drome (RIS) to clinically definite MS (CDMS). 

Recently, when CSF NfL levels were measured in RIS patients, 

patients who later converted to CDMS showed higher levels 

than those who did not [14]. A prospective study in adult and 

pediatric CIS patients in a Dutch cohort also showed that the 

higher the CSF NfL level, the higher the risk of later conver-

sion to relapsing-remitting MS (RRMS) [15]. Moreover, a 15-

year longitudinal follow-up study predicted future transition 

to secondary progressive MS (SPMS) with a very high level of 

accuracy (93.3% sensitivity, 46.1% specificity) depending on 

the baseline serum NfL level ( >  7.62 pg/mL) [19]. Various 

studies have reported that increase in CSF or serum NfL levels 

helps predict later conversion to MS in patients at a first de-

myelinating event. 

Disease activity 
Evaluating disease activity reflects the severity of an acute at-

tack at a certain point in time; however, it is also useful to pre-

dict long-term prognosis and changes in advance during fol-

low-up. When evaluating disease activity in terms of relapse 

activity, which is the most commonly used clinical indicator, a 

high baseline serum NfL level was associated not only with 

past relapse activity [20] but also with future relapse [21]. 

Studies showed that the direction of dynamic change is criti-

cal, in addition to the concentration measured unilaterally. 

There was a case report wherein, after measuring baseline 

CSF NfL levels in RRMS patients, follow-up measurements 

were performed after 6 and 28 weeks; the patient experienced 

clinical relapse at 15 weeks, and the CSF NfL level measured 

at 6 weeks was three times higher than baseline [40]. In addi-

tion, a study elucidated that some relapsed patients with 

highly active MS treated with alemtuzumab showed serum 

NfL level increase at 5 months before clinical onset [34]. Re-

ferring to the above findings, from the perspective of “predict-

ing” long-term disease activity, regular follow-up evaluation 

of NfL levels is essential. 

Many associations with findings related to brain magnetic 

resonance imaging (MRI) have been studied and are used as 

indicators to evaluate the activity of important diseases in 

clinical practice and clinical trials. Exploring T1-enhancing 

lesions, CSF NfL assessment showed that high baseline NfL 

level was associated with many baseline T1-enhancing le-

sions [22] and high possibility of future T1-enhancing lesions 

[17]. Similarly, a close correlation between baseline serum 

NfL levels and baseline T1-enhancing lesions/future T1-en-

hancing lesions has been reported [23,26], and an increase in 

serum NfL levels (not baseline serum levels) was associated 

with new T1-enhancing lesions [24,34]. Similar results have 

been reported for T2 lesions. Baseline NfL CSF and serum lev-

els can predict the overall T2 lesion burden and the occur-

rence of new T2 lesions in the future [25,26]. However, some 

studies have shown that serum NfL levels are unrelated to 

T1-enhancing lesions or T2 lesion burden [24,41]. In inter-

preting this result, it is necessary to consider the limited pos-

sibility of conventional MRI because high NfL levels are sig-

nificantly associated with decreased fractional anisotropy and 
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Table 1 Summary of representative studies with NfL chain as a biomarker of MS

Subtype (No.) Body  
fluid

Assay  
method Finding Reference

Diagnostic marker
 RIS (75) CSF ELISA High NfL levels (cut-off value, 619 ng/L) were associated with a significantly shorter time to MS 

(p =  0.017)
[14]

 CIS (adults, 88; children, 65) CSF ELISA Increased NfL levels were associated with a shorter time to CDMS diagnosis (pediatric: HR, 3.7; 
p =  0.007 / adult: HR, 2.1; p =  0.032)

[15]

 CIS (222) Serum ECL Converters to MS showed higher NfL baseline levels compared to non-converters (median,  
30.2 pg/mL vs. 9.7 pg/mL; p <  0.001)

[16]

 CIS (32) CSF ELISA Converters to MS showed higher NfL baseline levels compared to non-converters (median, 
812.5 pg/mL vs. 329.5 pg/mL; p =  0.002)

[17]

 MS (MS, 60; control, 60) Serum Simoa NfL levels of MS patients were higher compared with matched controls in samples drawn a  
median of 6 years before clinical onset (median, 16.7 pg/mL vs. 15.2 pg/mL; p =  0.04), and a 
within-person increase was associated with higher MS risk (rate ratio ≥  5 pg/mL increase, 
7.50; 95% CI, 1.72–32.80; p =  0.007)

[18]

 MS (67) Serum Simoa Those with baseline NfL levels less than 7.62 pg/mL were 4.3 times less likely to develop an 
EDSS score ≥  4 (p =  0.001)

[19]

Disease activity
 Past relapse (RRMS, 47) CSF ELISA Baseline NfL levels correlated with the number of relapses occurring in the previous six  

(R =  0.565, p <  0.001) and 12 months (R =  0.758, p <  0.001)
[20]

 Future relapse (RRMS, 607) Serum Simoa High baseline NfL levels (above the 80th percentile) could predict relapse in the short-term  
(60 days) (OR, 1.98; 95% CI, 1.12–3.37; p =  0.015) and long-term (1 year) (OR, 1.67; 95% CI, 
1.27–2.18; p <  0.001)

[21]

  T1-enhancing lesion on 
brain MRI (RRMS, 34)

CSF ELISA NfL levels were higher in patients with T1-enhancing lesions in brain MRI compared to those 
without lesions (median, 3,970.5 pg/mL vs. 1,530.0 pg/mL; p <  0.001)

[22]

  T1-enhancing lesion on 
brain MRI (RRMS, 85)

Serum Simoa Patients with T1-enhancing lesions had significantly higher serum NfL levels than patients  
without MRI disease activity (mean difference, 12.6 pg/mL; p <  0.01)

[23]

  T1-enhancing lesion on 
brain MRI (RRMS, 42)

Serum ELISA 10-fold higher NfL baseline levels were associated with 2.9-fold more frequent enhancing  
lesions over time (95% CI, 2.2–3.8; p <  0.001). A 10-fold increase in NfL over time was  
associated with a 4.7-fold increase in number of new enhancing lesions (95% CI, 3.3–6.9;  
p <  0.001)

[24]

  T2-weighted lesions on brain 
MRI (RRMS, 52)

CSF Simoa Patients with CSF NfL above the cut-off (807.5 pg/mL) 1 year after treatment had a relative risk 
of 5.0 for relapse and/or new T2-weighted lesions on MRI (p <  0.001) during the first year of 
treatment

[25]

  T2-weighted lesions on brain 
MRI (RRMS, 142)

Serum ELISA Serum NfL levels were associated with number of contrast-enhancing and T2 lesions on brain 
MRI (beta coefficient =  3.00 and 0.75, respectively; both p <  0.001)

[26]

Therapeutics monitoring
  Glatiramer acetate (RRMS, 

20) & INF-β (RRMS, 12)
Serum Simoa NfL levels remained high in nonresponders with clinical relapse, whereas NfL decreased  

significantly during follow-up (24 months) in patients with a relapse-free course
[27]

  DMF (RRMS, 52; HC, 23; 
placebo, 52)

CSF Simoa RRMS patients had higher NfL levels at baseline compared to HC (mean, 2,368 pg/mL vs. 417 
pg/mL; p <  0.001), and 72% of samples showed a reduction to levels comparable to HCs after 
1 year of treatment

[25]

 DMF (DMF, 27; placebo, 27) CSF ELISA Mean change in CSF NfL level did not differ between groups (mean difference, 99 ng/L; 95%  
CI, –292 to 491; p =  0.61)

[28]

 Fingolimod (RRMS, 36) CSF ELISA Fingolimod proved effective in decreasing NfL levels in RRMS (–326 pg/mL, 83.3% with  
reduction, p =  0.002), and the NfL levels one year after treatment were higher in patients with 
relapse during the study vs. those without (mean, 1,448 pg/mL vs. 384 pg/mL; p =  0.014)

[29]

 Natalizumab (RRMS, 96) Serum Simoa In the second year after natalizumab treatment, patients who later developed PML had  
significantly higher NfL levels than non-developers (mean, 10.1 vs. 7.1 pg/mL; p =  0.03)

[30]

 Natalizumab (RRMS, 92) CSF ELISA Significant decrease in NfL levels after 12 months of Tx (3-fold reduction: from a mean value of 
1,300–400 ng/L; p <  0.001)

[31]

 Natalizumab (SPMS, 748) Serum Simoa NfL concentrations at weeks 48 and 96 were significantly lower in natalizumab versus placebo 
participants (ratio, 0.84; 95% CI, 0.79–0.89; p <  0.001 and ratio, 0.80; 95% CI, 0.7–0.85;  
p <  0.001, respectively)

[32]

 Alemtuzumab (RRMS, 354) Serum Simoa Alemtuzumab reduced serum NfL levels significantly (baseline, 31.7 pg/mL; year 2,  
13.2 pg/mL), which was sustained at long-term follow-up (year 7, 12.7 pg/mL)

[33]

 Alemtuzumab (RRMS, 15) Serum Simoa Low NfL levels (<  8 pg/mL) correlated with stable disease status, whereas increased NfL levels 
(>  20 fold) showed an association with T2 lesion progression and development of new  
T1-enhancing lesions

[34]

  Cladribine (progressive MS, 2) CSF ELISA NfL levels were significantly reduced 1 year after treatment (73% and 80%) [35]
 Siponimod (SPMS, 525) Serum Simoa SPMS patients revealed decreased (–5.7%) NfL levels 21 months after treatment, while the 

placebo group showed increased NfL levels (+9.2%)
[36]

 Ofatumumab (RRMS, 936) Serum Simoa In ASCLEPIOS I, NfL levels were lower in the ofatumumab group than in the teriflunomide group 
by 27% at month 12 and by 23% at month 24. In ASCLEPIOS II, the corresponding differences 
were 26% and 24%

[37]

NfL, neurofilament light chain; MS, multiple sclerosis; RIS, radiologically isolated syndrome; CSF, cerebrospinal fluid; ELISA, enzyme-linked immunosorbent assay; CIS, 
clinically isolated syndrome; CDMS, clinically definite multiple sclerosis; HR, hazard ratio; ECL, electrochemiluminescence immunoassay; EDSS, Expanded Disability Sta-
tus Scale; RRMS, relapsing-remitting multiple sclerosis; OR, odds ratio; MRI, magnetic resonance imaging; INF, interferon; HC, healthy control; DMF, dimethyl fumarate; 
Tx, treatment; SPMS, secondary progressive multiple sclerosis.
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increased diffusivity (for the entire normal-appearing white 

matter [NAWM]; ρ =  –0.49, p =  0.005) when measuring the 

diffusion tensor index in NAWM in 79 MS patients [42]. Al-

though there is no routine T1 or T2 lesion, a study [42] showed 

the possibility of determining the progress of overall diffuse 

white matter damage through NfL level measurement. 

Therapeutic response monitoring 
As various MS therapeutics are developed and utilized clini-

cally, one of the most critical issues is appropriately verifying 

the effectiveness of therapeutics. A practically used method is 

to assess whether a patient has a clinical relapse or to follow 

up with MRI annually to monitor the presence of newly devel-

oped lesions. However, the medical cost may not be the only 

dilemma, as disease activity may not necessarily be revealed 

as a change in the image. Accordingly, there has been an ex-

pectation that NfL measurement can be used as an auxiliary 

indicator to reflect subclinical disease activity, and studies on 

this have been conducted recently. 

Exploring drugs that are usually selected as first-line agents in 

Korea, in 32 RRMS patients treated with glatiramer acetate or 

IFN-β, NfL levels were decreased in those who responded to 

treatment, whereas those with increased levels showed le-

sions on MRI and frequent clinical relapses [27]. With dimeth-

yl fumarate, baseline NfL levels in both the CSF and serum 

were high in treatment-naïve RRMS patients; however, after 1 

year of treatment, these levels in treatment-naïve RRMS pa-

tients were the same as those of the healthy control group, 

and CSF NfL levels were more sensitive in reflecting clinical 

relapse or MRI activity than were blood NfL levels [25]. How-

ever, when the same drug was used to analyze CSF NfL levels 

in primary progressive MS (PPMS) patients, no significant dif-

ference was found in the levels at baseline or after follow-up 

compared with those of the placebo group [28]. 

After administration of fingolimod, CSF NfL level in RRMS 

patients decreased and was correlated with the relapse rate 

[29]. Interestingly, CSF NfL level was significantly decreased 

when using fingolimod as first-line treatment [43] but was un-

changed when treatment was switched to fingolimod after us-

ing natalizumab [44]. This finding demonstrates the use of 

NfL to provide information on the efficacy of therapeutic 

agents and to simply monitor the treatment response. 

Natalizumab is one of the most frequently prescribed high-ef-

ficiency drugs, and CSF NfL level decreased significantly after 

12 months of administration in RRMS patients [45]. The CSF 

NfL level was stable when the disease activity was stable, but 

it increased rapidly upon relapse [46]. When prescribing na-

talizumab in clinical practice, one of the critical consider-

ations is the risk of progressive multifocal leukoencephalopa-

thy (PML). When following up with patients prescribed natal-

izumab, serum NfL levels decreased with stabilization of the 

disease after initial administration, and results obtained in 

the second year showed higher serum NfL levels in the group 

of patients who developed PML than in the group of patients 

who did not develop PML [30]. This is a valuable finding be-

cause serum NfL levels can be used as an adjuvant to deter-

mine the risk of PML in John Cunningham virus (+) patients 

and when deciding to stop natalizumab treatment. 

An alemtuzumab-related study identified significantly lower 

serum NfL levels after administration in RRMS patients after 2 

years, and this effect was maintained until the 7th year [33]. In 

addition, when using alemtuzumab in highly active MS pa-

tients (n =  15), there was no sign of relapse or new lesion on 

brain imaging in a small cohort of patients with low serum 

NfL levels after administration, whereas increase in serum 

NfL levels was associated with increase in T2 lesion burden 

and occurrence of new T1-enhancing lesions on brain MRI 

[34]. In a study comparing alemtuzumab with dimethyl fuma-

rate, fingolimod, natalizumab, teriflunomide, and rituximab, 

treatment with alemtuzumab showed the lowest plasma NfL 

levels and the most significant decrease in NfL levels com-

pared to baseline [47], and NfL levels are believed to reflect 

clinical drug efficacy. 

In addition, cladribine [35], which was recently introduced in 

Korea, and siponimod [36] and ofatumumab [37], which have 

not yet been introduced, decreased CSF or serum NfL levels 

according to RRMS or progressive MS types, indicating NfL 

levels as a possible indicator reflecting treatment response in 

progressive MS. 

Others 
As MS progresses, overall brain atrophy progresses, which in-

dicates overall deterioration of the patient’s long-term neuro-

logical function. Hence, studies to predict future brain atro-

phy are being conducted. Several studies have shown a cor-

relation between higher CSF NfL levels and severe brain atro-

phy [48], some have shown an association with gray matter 

(GM) atrophy [49], and another showed correlation with thal-

amus and nucleus accumbens volumes rather than overall 

brain volume [50]. In addition, a study showed that the base-

line level of serum NfL and the degree of increase during fol-

low-up could predict future brain volume changes [24]. 
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In diagnosing and treating patients with MS, interest in sys-

temic symptoms that can affect the quality of life of patients, 

as well as clinical relapse in the form of actual focal neurolog-

ical deficit, is increasing. In the case of fatigue, the most repre-

sentative MS symptom, a study of CIS and RRMS patients (n 

=  38) showed no significant association between serum NfL 

levels and fatigue [51]. However, since another study showed 

a correlation between baseline serum NfL levels and baseline 

quality of life measured using the Multiple Sclerosis Quality of 

Life-54 questionnaire [52], further studies are needed. 

Glial fibrillary acidic protein 
Glial fibrillary acidic protein (GFAP) is a type III intermediate 

filament protein expressed in the GFAP gene located on chro-

mosome 17 and is found in large amount in the cytoplasm of 

mature astrocytes in the central nervous system. Although it 

plays various roles, the most important is to maintain the cy-

toskeleton of astrocytes and provide mechanical tension [53]. 

CSF GFAP level was increased in conjunction with astrocyto-

sis that occurs in brain trauma, toxic damage, and various ge-

netic diseases. Similarly, CSF GFAP level was increased in MS 

patients compared with healthy controls. According to the 

most recently published meta-analysis [54], a mean difference 

of 0.62 (95% confidence interval [CI], 0.56–0.88; p <  0.001) in 

CSF GFAP level was reported between the RRMS patient 

group and healthy control group, and a very large mean dif-

ference of 103.83 (95% CI, 68.09–139.57; p <  0.001) was re-

ported between the remission and relapse periods within the 

RRMS group. Although CSF GFAP level was significantly lower 

in the progressive MS patient group than in the RRMS patient 

group, no difference was noted between the SPMS and PPMS 

groups. Additionally, CSF GFAP level has been positively cor-

related with duration of disease (ρ =  0.3, p =  0.014), reflecting 

the phenomenon of astrogliosis alongside disease progression 

[55].  

Few studies have measured GFAP level in the blood compared 

with CSF. Patients with PPMS showed higher blood but not 

CSF GFAP level than patients with RRMS (p <  0.05), and 

blood GFAP level was correlated with disease severity (ρ =  0.5, 

p <  0.001) [56]. However, since the literature on this topic is 

limited, follow-up studies with a larger cohort are needed to 

clarify the role of blood GFAP level. 

In summary, the pattern of GFAP CSF level differs by MS sub-

type, which is expected to aid in early classification of PPMS 

and RRMS. In particular, it may be a helpful biomarker for de-

termining disease severity and progression. 

Leptin 
Leptin is a protein consisting of 167 amino acids expressed by 

the ob gene and is mainly produced in adipocytes, entero-

cytes, T-lymphocytes, and bone marrow cells. It has been 

shown to have a wide range of effects on angiogenesis, wound 

healing, energy balance, and fat storage by acting through 

type I cytokine receptors [57]. In addition to its role in im-

mune system regulation, leptin is gaining attention in the field 

of autoimmune diseases, including MS. Mechanisms acting 

on the immune system have been reported to promote the 

proliferation of autoreactive T cells, inhibit the proliferation of 

T-reg cells, and promote the secretion of proinflammatory cy-

tokines [58,59]. Some studies have shown conflicting results 

for circulating leptin level in MS patients. However, the largest 

recently published meta-analysis (including 645 MS patients 

and 586 controls from nine studies) showed that MS patients 

had significantly higher blood leptin level than individuals in 

the control group (standardized mean difference [SMD], 0.70; 

95% CI, 0.24–1.15) [60]. A follow-up study showing that over-

weight young adults (20 years old) had a greater than two-fold 

higher risk of developing MS supports this finding [61]; how-

ever, some studies have reported contradictory results de-

pending on sex/age. For example, in a Swedish bio-

bank-based study, the higher the blood leptin level in men, 

the higher the MS risk (odds ratio [OR], 1.4; 95% CI, 1.0–2.0; p 

=  0.04), but the higher was the leptin level in women in their 

30s, the lower was the risk of MS (OR, 0.74; 95% CI, 0.54–1.0; p 

=  0.05) [62]. A study in Kuwait, where the prevalence of obesi-

ty is high, reported that leptin level was significantly lower in 

MS patients than in individuals in the control group [63]. 

The diverse study results may be attributed to limitations such 

as small sample sizes, a heterogeneous mixture of factors 

known to affect leptin level (age, sex, smoking status, body 

mass index, and treatment status including steroids), and in-

consistent sampling timing (fasting vs. non-fasting). The use 

of leptin as a valuable biomarker in MS depends on the results 

of subsequent studies controlling the various confounding 

factors. 

Brain-derived neurotrophic factor 
Brain-derived neurotrophic factor (BDNF) is a member of the 

neurotrophin family, with splicing pattern depending on the 

type of stimulation, and approximately 30 types of messenger 

RNA transcripts are produced. BDNF is widely expressed in 

the central nervous system and plays a vital role in neuronal 

development and long-term potentiation of synapses by regu-

lating survival, growth, differentiation, and death of neurons 
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and various types of cells through the receptors TrkB and p75 

[64,65]. BDNF in MS has been associated with the single-nu-

cleotide polymorphism (SNP) rs6265, with alteration in some 

domain structures of BDNF by substituting methionine for 

valine at codon 66 (Val66Met). This change attenuated BDNF 

release and receptor binding [66]. Controversial results have 

been reported regarding the association between this genetic 

variation and MS. While studies have reported that the Val-

66Met polymorphism results in more severe GM atrophy in 

the brain than that of Val/Val carriers (mean GM volume, 

812.92 mL vs. 846.42 mL; p =  0.005) [67], some studies have 

shown low BDNF expression in Val66Met carriers, with a pro-

tective effect on cognitive decline (p =  0.027) [68]. These dif-

fering results led to the hypothesis that the polymorphism it-

self is not essential compared to the direction of “epigenetic 

regulation” (i.e., the methylation status of the BDNF gene). 

This hypothesis was supported by a recently reported study in 

an Italian cohort [69]. According to that study, disease severity 

and presence of the rs6265 SNP were unrelated, and the lower 

the methylation ratio of the BDNF gene, the higher the severi-

ty of the disease and the faster the progression. This is proba-

bly because the more active is the disease and the stronger 

the inflammation, the greater the demethylation of BDNF as a 

defense mechanism and the greater BDNF translation, maxi-

mally suppressing inflammation. The expression of BDNF 

and its receptors in or near MS plaques is increased in the 

brain pathology tissues of patients with MS, but it decreases 

in older chronic plaques [70]. 

Regarding studies of BDNF level at various stages of MS, some 

studies showed slightly elevated BDNF level in the serum of 

patients with relapse [71]. However, compared with that of the 

control group, BDNF level was decreased in MS patients 

(mean, 60.7 ng/mL vs. 23.9 ng/mL; p =  0.013) [72]. This sug-

gests a possible effect of chronic progression of MS by reduc-

ing the overall capacity of the nerve repair mechanism due to 

decreased levels of neurotrophic factors, such as BDNF, in the 

long-lasting chronic inflammatory phase. 

Chitinase-3-like protein 1 
Chitinase-3-like protein 1 (CHI3L1) is a glycoprotein secreted 

from various types of cells, including macrophages, astro-

cytes, smooth muscle cells, and chondrocytes, and plays an 

essential role in various inflammatory responses, tissue dam-

age, fibrosis, and extracellular tissue remodeling [73]. In the 

central nervous system, most CHI3L1 is secreted by astro-

cytes, activated microglia, and macrophages at sites of inflam-

matory lesions and reactive gliosis [74]. Many studies have 

measured the concentration of CHI3L1 in the CSF and blood 

in patients with MS, with similar results. A recent meta-analy-

sis of 486 patients with MS and 228 healthy controls identified 

significantly higher CHI3L1 level in the CSF of MS patients 

compared to a healthy control group (SMD, 0.964; 95% CI, 

0.795–1.133; p <  0.001) [75]. Furthermore, CIS patients had 

higher CHI3L1 level than the healthy control group, and in-

creased concentration of CHI3L1 in the blood/CSF of CIS pa-

tients was an independent predictive factor of conversion to 

definite MS (hazard ratio, 1.6; p =  3.7 ×  10–6) and rapid dis-

ability development (p =  1.8 ×  10–10) [76]. In another study, 

the higher the CHI3L1 level, the higher the number of T2 and 

Gd+ contrast-enhancing lesions on brain MRI [77]. Further-

more, CSF CHI3L1 level was reduced when natalizumab or 

fingolimod was administered in patients with RRMS [44,78] 

and in those who responded to treatment with IFN-β (p =  

0.013) [79]. 

Although no significant difference was observed among MS 

subtypes, CHI3L1 showed potential as a biomarker for early 

diagnosis of MS and prediction of disability progression. This 

conclusion requires validation in a larger sample size includ-

ing patients with homogeneous disease phenotypes. 

C-X-C motif chemokine 13 
C-X-C motif chemokine 13 (CXCL13) is a chemokine and the 

most potent B-cell chemoattractant, which is a ligand protein 

of the B-cell receptor CXCR5 [80]. It is responsible for organi-

zation of B cells in the lymphoid follicle and is involved in for-

mation of ectopic meningeal B-cell follicles in the central ner-

vous system, which is very important for forming intrathecal 

autoimmunity in MS [81]. Since B-lymphocytes are one of the 

most critical factors in development and progression of MS, 

CXCL13 has received attention as a candidate early biomarker 

for MS. 

The CSF CXCL13 level has been reported to be associated 

with CSF pleocytosis and immunoglobulin G (IgG) oligoclo-

nal band (OCB)-positive findings in CIS patients, and high 

CXCL13 level increased the risk of conversion to CDMS [82]. 

In RRMS patients, IgG index, CSF white blood cell count, and 

degree of cerebral cortical atrophy were significantly correlat-

ed with CSF CXCL13 level [83] and with disease activity and 

levels of other biomarkers (NfL and CHI3L1) in progressive 

MS [84,85]. In addition, when the CXCL13 index ([CSFCXCL13 / 

serumCXCL13)] / [CSFalb / serumalb]) was introduced, it showed 

better accuracy than OCB in predicting future disease activity 

(CXCL13 index: sensitivity/specificity, 91%/64%; OCB: sensi-

tivity/specificity, 81%/30%) [86].  
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Among patients on high-efficacy disease-modifying therapies, 

CSF CXCL13 level was increased in some of those who were 

stable without clinical/imaging relapse (RRMS, 39%; progres-

sive MS, 50%) [87]. This finding suggests that CXCL13 can be 

used to assess disease activity more sensitively than can clini-

cal indicators or MRI. 

Studies have also reported CXCL13 as a marker of response to 

MS treatment, with levels of both CXCL13 and CCL19 chemo-

kines being significantly reduced in the CSF after rituximab 

administration and after natalizumab or methylprednisolone 

treatment [88,89]. It was also reported that baseline serum 

CXCL13 level before administration of fingolimod was signifi-

cantly lower in the group that responded to fingolimod than 

in the group that did not (mean level of responders vs. nonre-

sponders, 58.25 pg/mL vs. 127.2 pg/mL; p =  0.009). This sug-

gests that serum CXCL13 level indicates treatment response 

to fingolimod [90]. 

In summary, CXCL13 has potential as a biomarker of progno-

sis of CIS and reflects disease activity in MS. Furthermore, af-

ter validation in larger cohorts, CXCL13 is expected to be used 

as a biomarker related to treatment response (particularly for 

B-cell-depleting agents). 

Osteopontin 
Osteopontin (OPN) is an extracellular matrix glycoprotein, a 

substance secreted by many cell types in different tissues. It is 

involved in various physiological functions, such as bone re-

modeling, wound healing, and immune cell activation. In the 

immune response, it promotes interleukin (IL)-1b, IL-12, and 

IL-17 production and inhibits IL-10 expression, contributing 

to transformation of the overall cytokine balance into a proin-

flammatory state [91]. Because OPN is widely expressed in 

both the neurons and glia of the brain, it has attracted atten-

tion in neuroinflammatory diseases, including MS. 

A recent meta-analysis (including 27 previous studies) 

showed that, regardless of MS subtype, OPN level in MS pa-

tients was significantly increased in both the CSF (SMD, 0.65; 

95% CI, 0.28–1.01; p <  0.01) and blood (SMD, 0.61; 95% CI, 

0.34–0.87; p <  0.01) compared with that in the control group. 

In addition, RRMS had the highest level among MS subtypes, 

followed by PPMS, CIS, and SPMS in that order [92]. Another 

study has shown that CSF OPN level increased during the 

acute phase of the disease and decreased after the acute 

phase, indicating it may as an indicator of disease activity [93]. 

However, in the meta-analysis, no significant difference was 

noted in CSF OPN level between MS patients and other in-

flammatory nervous system disease groups (p =  0.079), hin-

dering clinical use as a diagnostic marker of MS. Nevertheless, 

decrease of an indicator reflecting disease severity or CSF 

OPN level after natalizumab administration in progressive MS 

(–65 ng/mL; 95% CI, –34 to –96; p <  0.001) [89] indicates the 

possibility of its use as a marker to evaluate the effect of treat-

ment. 

Conclusion 
With the development of various therapeutic agents for MS 

within the past 20 years, the relapse rate has significantly de-

creased compared with that of the past, and it has become 

possible to reduce damage caused by MS to the nervous sys-

tem. However, since MS has a heterogeneous phenotype and 

complex pathophysiology, it requires ‘treatment and control’ 

for the remaining lifetime. A periodic detailed patient evalua-

tion should be performed, and it is essential to have a system 

to detect subclinical disease activity and respond in advance. 

In addition to the biomarker proteins mentioned in this re-

view article, there is need for broadly and easily accessible 

biomarkers with higher sensitivity and specificity. Further-

more, valuable study results are expected in the future, not 

only in the field of proteins but also for genomic markers, in-

cluding microRNAs. 
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