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Inhibitory control is an important component of executive function that allows organisms

to abort emerging behavioral plans or ongoing actions on the fly as new sensory

information becomes available. Current models treat inhibitory control as a race between

a Go- and a Stop process that may be mediated by partially distinct neural substrates,

i.e., the direct and the hyper-direct pathway of the basal ganglia. The fact that finishing

times of the Stop process (Stop-Signal Reaction Time, SSRT) cannot be observed

directly has precluded a precise comparison of the functional properties that govern

the initiation (GoRT) and inhibition (SSRT) of a motor response. To solve this problem,

we modified an existing inhibitory paradigm and developed a non-parametric framework

to measure the trial-by-trial variability of SSRT. A series of simulations verified that the

non-parametric approach is on par with a parametric approach and yields accurate

estimates of the entire SSRT distribution from as few as ∼750 trials. Our results show

that in identical settings, the distribution of SSRT is very similar to the distribution of

GoRT albeit somewhat shorter, wider and significantly less right-skewed. The ability to

measure the precise shapes of SSRT distributions opens new avenues for research into

the functional properties of the hyper-direct pathway that is believed to mediate inhibitory

control.

Keywords: cognitive control, stop signal task, SSRT distribution, motor sequence, race model

Introduction

Inhibitory control is an important component of executive function that allows us to stop
a planned or ongoing thought and action on the fly as new information becomes available
(Logan, 1994; Williams et al., 1999; Boucher et al., 2007; Verbruggen and Logan, 2008). In the
early 80s, Logan and colleagues paved the way for a quantitative study of inhibitory control
by introducing the concept of an unobservable, inhibitory Stop process (Logan, 1981). In the
standard “countermanding” stop signal paradigm (Logan, 1981; Logan et al., 1984) subjects
are required to respond as quickly as possible to a Go signal, i.e., to press the right button
in response to rightward arrow, or a left button-press for a leftward arrow. On a fraction of
the trials, a Stop signal, presented at a random time after the Go signal, instructs subjects
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to withhold the response. Subjects are worse at inhibiting the
pre-potent motor response as the Stop signal is presented closer
in time to movement initiation. The horse-race model originally
formulated by Logan and Cowan conceptualizes the ability to
inhibit the response as a race between a Go- and a Stop process
that are triggered by the presentation of the Go and Stop-signal,
respectively (Logan, 1981, 1982; Logan et al., 1984; Logan and
Cowan, 1984; Stuphorn et al., 2000; Band et al., 2003; Verbruggen
and Logan, 2008). If the Go process finishes first, the response will
be executed. If the Stop process finishes first, the response will be
inhibited.

The success of the model depends on its ability to estimate the
duration of the Go and Stop process. The Stop-signal reaction
time (SSRT) refers to the duration of the stop-process, i.e.,
the time at which the Stop-process terminates relative to the
presentation of the Stop signal. This time is unobservable because
no response is emitted on successfully inhibited Stop trials.
Current mechanistic implementations of the horse-race model
such as the Hanes-Carpenter model (Hanes and Carpenter,
1999), the independent race model (Boucher et al., 2007; Schall
and Boucher, 2007) or the special race model (Logan et al.,
2014) conceptualize the Stop process as a linear or noisy
rise to threshold very similar to models that have successfully
been used to model the finishing time of the Go process,
i.e., GoRT. Other models of inhibitory control such as the
interactive race model (Boucher et al., 2007) provide more
realistic neural implementations, and allow the Go process and
the Stop process to interact. However, for the purposes of the
current manuscript, we make the same simplifying assumptions
of independence that underlie the original horse-race model
(Logan, 1981).

In contrast to the finishing times of the Go process, the
finishing times of the Stop process cannot be observed directly
and need to be inferred through the absence of a response.
Based on the assumption of independence between the Go and
Stop-process, the horse-race model enables the estimation of
the mean and variance of the SSRT distribution, independent
of its precise shape (Logan and Cowan, 1984). So far, however,
it has been very challenging to estimate the precise shape of
the SSRT distribution. This constitutes a significant limitation
because SSRT distributions may provide important insight into
underlying mechanisms of inhibitory control in the same way
as RT distributions have been used to infer and restrict neural
mechanisms of decision-making. In particular, precise estimates
of SSRT distributions might distinguish subtle functional
differences between response initiation and response inhibition
that are thought to be mediated by distinct neural substrates, i.e.,
the direct and hyper-direct cortico-striatal pathway (Aron and
Poldrack, 2006; Aron et al., 2007).

In 1990, two labs presented a theoretical method to derive
SSRT distributions from empirical hazard functions of observed
GoRT on failed inhibition trials (Colonius, 1990; de Jong et al.,
1990). However, hazard functions are notoriously noisy (Luce,
1986) and the required number of stop-signal trials per stop
signal delay was estimated at a prohibitively large value of 250,000
(Matzke et al., 2013). More recent approaches have circumvented
this problem by parametrizing the SSRT distribution (Colonius

et al., 2001; Matzke et al., 2013; Logan et al., 2014). This reduces
the number of trials that are needed to estimate the distribution,
albeit at the cost of restricting the possible shapes that can be
recovered.

Here we present an alternative approach to this problem
by using a different type of inhibitory task that conveys more
information about SSRT on each trial. We based our task on
the complex movement inhibition task by Logan (1982). In
his task professional typists were asked to type a word or a
sentence until a stop-signal instructed them to stop typing.
Interestingly, Logan concluded that subjects were equally likely
to stop the complex motor sequence at any point in time during
the word or sentence and that SSRT was independent of whether
or not the stop-signal appeared before or after typing began.
This suggests that such typing tasks measure the same concept
of stop-signal reaction time measured in the countermanding
task. However, in contrast to the countermanding task, the
complex movement inhibition task has the potential to provide
more information about the occurrence of the stop-signal on
a trial-by-trial basis. In particular, it provides a hard lower
estimate (the stop process must have finished after last key
was typed), and it provides a soft upper estimate (the stop-
process must have finished before the next key press would
usually have occurred). If the interval between key-presses is
short and predictable, each trial can provide a rather narrow
window for SSRT. However, even for the skilled typists in Logan’s
study, the interval between key-presses was on average 200ms
thus leaving a relatively large window that does not provide
a substantial increase in the amount of information per trial.
Based on these considerations we modified Logan’s complex
movement inhibition task. To increase the rate of button presses
we asked subjects to press any sequence of their choosing on
the keyboard as fast as possible. Using this instruction even
subjects without special training in typing achieved mean inter-
button press interevals around 30ms. This value is small enough
to provide a substantial increase in information that can be
gained on each trial. We refer to this task as the Motor-Sequence
Inhibition task (SeqIn).

The current study focuses the novel theoretical framework
and analysis technique that we developed to extract information
about the speed of inhibitory control from the SeqIn task
or similar tasks that require subjects to stop an ongoing
motor sequence with discrete behavioral output such as typing.
In particular, the study highlights the feasibility of a novel
deconvolution method to extract non-parametric estimates of
entire SSRT distributions. The study also provides a detailed
description of the subjects’ behavior in the SeqIn task to
understand and rule out potential confounds.

Methods

Ethics Statement
All participants provided written signed informed consent
after explanation of study procedures. Experiments and study
protocol were approved by the Institutional Review Boards
of Columbia University and New York State Psychiatric
Institute.
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SeqIn Task
We developed a novel SSRT task to facilitate the parameter-free
estimation of SSRT distributions with a reasonable number of
trials. In this new task subjects perform an unconstrained, self-
ordered motor sequence (button-pressing on a keyboard at a rate
of ∼30 per second) until a stop-signal instructs them to stop.
The task is referred to as the Motor-Sequence Inhibition task
(SeqIn). The time of the last button press relative to the stop-
signal can be measured on each trial. Under the assumption
of independence of the Go and Stop process, the distribution
of the observed last button presses can be understood as the
convolution of the distribution of SSRT with a distribution X that
can be estimated from the data (see below). In the classical stop-
signal or countermanding task, a single go and stop process race
against each other. Here, the task can be thought of as a sequence
of go processes (one for each key press) terminated by a single
stop process.

Behavioral Task
In the SeqIn task subjects placed the fingers of their left and
right hands on a keyboard as they would for typing. Each
finger was assigned one particular key (left pinky: “a”; left ring
finger: “s”; left middle finger: “d”; left index finger: “f”; right
index finger “j,” right middle finger: “k,” right ring finger: “l,”
right pinky: “;”). A pure tone auditory cue (880Hz) instructed
the subject to immediately start pressing as many buttons as
possible using any sequence of finger-movements. Subjects were
discouraged from pressing multiple buttons at the same time,
or holding down a button for a prolonged period of time.
Otherwise, subjects were free to use any sequence of their
choosing. In the current study we did not record the identity
of the button presses. Hence, we cannot quantify the type of
sequences the subjects chose. However, from observation and
own experience, the subjects chose regular repeating patterns of
finger-movements. After a random interval (see below) during
which the subjects continued pressing buttons, the same auditory
cue instructed them to stop as fast as possible. Hence, the
same stimulus served as the “go-signal” during transition to the
response period as well as the “stop-signal” during transition
to the no-response period. An additional visual cue reminded
subjects of the current state of the task. This cue was green
during the response period and red during the no-response
period.

A trial was defined as a single go-period followed by a single
stop-period. One run consisted of a series of 25 go and 25 stop
periods that were presented in immediate succession with no
time between them (Figure 1A). The minimum duration of each
go and stop period was 1.5 s. In addition to the 1.5 s baseline,
we added a random interval that was drawn from a truncated
exponential distribution with a maximum value of 3.5 s and a
time constant of 0.572 s. The total duration of each period varied
between 1.5 and 5 s.

Training
The current study aimed to explore the possibilities of the
SeqIn task in the best possible circumstances. Hence, particular
care was taken to recruit subjects that had already performed

other experiments and were known to be reliable psychophysical
subjects. All subjects performed at least 3 runs of 25 trials
of the SeqIn task on a day prior to the start of the main
experiment.

Setup
The experiments were performed on MacBook Pro Laptop
computers. The task was programmed and executed with
Matlab2009a using routines from Psychtoolbox-3 (Kleiner et al.,
2007). Auditory go- and stop-signals were presented through
a pair of commercial headphones (Bose) plugged into the
3.5mm stereo jack. Experiments were conducted in a dark
experimental room. Viewing distance was 24 inches. The two
experimental computers had 13 and 17-inch screens, giving rise
to slightly different viewing angles. Individual subjects were
tested consistently in one of the two setups. Screen resolution was
set to 1280 by 800 pixels.

Subjects
The participants were 6 experienced human psychophysics
subjects (2 female) of age 22–42, including the first author. All
participants provided written informed consent after explanation
of study procedures.

The Deconvolution Algorithm
The horse-racemodel treats response inhibition as a race between
a Go- and a Stop process. If the Go process finishes first,
the response is executed. If the Stop process finishes first,
the response is successfully inhibited. We have expanded this
framework to include multiple Go processes to account for the
multiple button presses in the SeqIn task. Figure 1B visualizes
one particular mechanistic implementation of this expanded
framework. It is based on the assumption that each go signal
triggers a Go process that activates a pattern generator. The
pattern generator sends out individual Go-processes that trigger
a response as soon as they reach a fixed threshold. The stop-
signal triggers the initiation of a Stop process that inhibits the
execution of additional button presses as soon as it reaches
threshold. The considerations outlined below are non-parametric
and independent of this particular implementation. If the last
button press was observed at time t, then the stop signal must
have finished at some unknown later point in time t+x. In the
following we will derive a method to estimate the distribution
of x.

Let Ti i = 1, 2, 3, . . . be a series of random variables that
represent the time of the ith button press. By default we report
Ti relative to the time of the stop signal (Figure 1C). However, the
Ti’s can also be reported relative to the time of the go signal. GoRT
can be defined as the time of the first button press T1 relative to
the go signal. Let N be an integer-valued random variable that
represents the number of the last executed button press before
the Stop process finishes and prevents further responses. Hence,
TN represents the time of the last button press. Let 1i be a set
of random variables that describes the time between two adjacent
button presses:

1i = Ti − Ti−1 ∀1 < i ≤ N (1)
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FIGURE 1 | The motor-sequence inhibition paradigm (SeqIn). (A) In the

SeqIn paradigm subjects place all fingers of their left and right hand (except the

two thumbs) on a computer keyboard as they would for typing. During the

response period they are instructed to press as many buttons as possible

using whichever sequence of finger-movements they choose. Subjects are

discouraged from pressing multiple buttons at the same time, or holding down

a button for a prolonged period of time. After an exponentially distributed

waiting period, a 880Hz tone instructed them to start button pressing as

quickly as possible. After another exponentially distributed response period,

the same tone instructed subjects to stop the motor sequence as soon as

possible. The color of the fixation spot was green in the Go- and red in the

Stop-period. (B) One potential theoretical framework for the SeqIn paradigm:

the multi-process race model. Following the Go signal, a Go processes starts

developing toward a threshold that activates a pattern generator

thatgeneratessequencesofmotorcommands.A response isassumedtooccur

(Continued)
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FIGURE 1 | Continued

whenever a motor command reaches the response threshold (Ti ). GoRT

was defined as the time of the first button press after the presentation of

the Go-signal (T1). The total number of observed button presses is

defined as N. Hence, the time of the last button press relative to the

Stop-Signal is TN. The Stop signal triggers the emergence of a Stop

process that also develops toward the response threshold. Once the

Stop process reaches the threshold at time S, all upcoming planned

button presses (N+ 1,N+ 2, . . . ) will be inhibited. The stop signal

reaction time can be determined as the sum of the last button press TN
and an estimate of X, the difference between TN and S. The estimate of

X uses the distribution of observed button-press intervals to predict the

distribution of TN+1 (see Methods). (C) Example data set with times of

button presses aligned to the Go signal (left panel) and the Stop signal

(right panel). Each trial starts with the presentation of the go-signal, lasts

throughout the go-period as well as the subsequent stop-period. Trial

number was sorted according to the time of the first button press after

the Stop signal (orange points in right panel). (D) The distribution of last

button presses TN can be viewed as the convolution of the distribution of

X and the unobservable density of the Stop process S. Since the

distributions of X and TN can be either be directly measured or inferred

from the data, the SSRT distribution can be estimated via deconvolution.

For simplicity we assume that all 1i are independent and have
the same distribution:

F1i = F1 ∀i ∈ N (2)

Let S be a random variable that represents the time at which
the Stop process finishes. Then X = S − TN represents the
time between the last button press and the termination of the
Stop process. Conversely, we can define S as the sum of TN

and X. Under the assumption that TN and X are independent,
the distribution of S corresponds to the convolution of the
distributions of TN and X.

S = TN ∗ X (3)

Based on Equation (3) we can estimate the unobservable
distribution of S by deconvolving X from TN . The distribution
of X can be estimated in two different ways. Both approaches are
based on the assumption that S and Ti are independent. The first
approach is more intuitive and starts with the trivial observation
that X cannot be measured explicitly because S is not observable.
However, based on the existing trial data we can simulate trials in
a scenario where S is know. To that aim define a suitable variable
S′ as the simulated time at which the stop-process terminates. For
this simulated time-point S′ we can now pretend that all button
presses after S′ did not occur, as would have been the case if S′

had been the actual time at which the stop signal terminated. In
the simplest case, we can define S′ = 0ms for all trials, i.e., pretend
that the stop-process terminates instantaneously at the exact time
the stop signal is presented. In analogy to our definition of N
as the number of the last button press before the termination of
the actual stop-process, we can now define M as the number of
the last button press before the termination of the simulated stop
process. In this scenario it is possible to explicitly calculate X′ as
the difference between S′ and TM . As long as both S and S′ are
independent of Ti,the distribution of X′ will be identical to the
unobservable distribution of X. Note that the definition of M is
useful only if S′ is smaller than S. Otherwise, we can’t be sure that
M was actually the last button press before S′: the termination
of the actual stop process at time S might have inhibited later
button presses that could have occurred before S′. In practice this
is an easy requirement to meet by only using S′ values before the
presentation of the stop signal, i.e., S’= 0. Of course it is similarly
important to chose S′ such that S′ > T1. To give subjects time
to establish a steady pressing routine, we use an even stricter

criterion and ensure that S′ is always at least 500ms larger than
T1. For each value of S′, we get one estimate of X′ for each
recorded trial. Given the large number of trials recorded and the
large range of possible values for S′ it is easy to estimate X′ and
hence X with great precision.

The second approach is based on the density of inter-button
press intervals f1. To that aim we first assume that 1N+1 is
known and equal to a fixed value u. Due to the independence of
S and Ti, S is equally likely to have terminated at any point after
TN and before TN+u. Hence, X is uniformly distributed over the
interval from 0 to u, with a density equal to 1/u. This is true for
any value of u. We can now integrate across all possible values u
weighted by the likelihood that 1N+1 is equal to u:

FX (t) = P (X ≤ t)

=
∫ ∞

0

(

min(t,u)
u

)

f1du

=
∫ t
0 f1 (u) du+

∫ ∞

t
t
u f1du

= F1 (t) + t
∫ ∞

t
1
u f1du

(4)

We can solve and differentiate Equation (4) numerically to obtain
an estimate of the density of X. Due to the large number of
observed inter-button press intervals, the distribution of X can
be estimated very accurately.

We confirmed that both methods yield numerically highly
similar estimates of the distribution of X. The first approach
provides a simple intuition and can be interpreted as the
distribution of last button presses under the assumption of an
instantaneous stop signal. The second approach is appealing
because of its more stringent mathematical derivation.

After estimating the density of X, we can use it to recover S
by deconvolving X from TN (Figure 1D). Convolutions cannot
always be inverted, in particular when the convolution kernel has
no power in a frequency band that the original signal does. This
was not a concern in the current case, as the convolution kernel X
has a broad power spectrum (note the sharp edge in Figure 1D,
left panel). To further stabilize the deconvolution process, the
distribution of TN was smoothed with a Gaussian kernel with
a standard deviation of 16ms. This reduced the noise in the
estimate of the distribution ofTN . In the noise-free case, the result
of the deconvolution should recover the SSRT density function S
smoothed with the same 16ms Gaussian kernel. However, in the
noisy case, the result of the deconvolution needs to be processed
further to ensure that the outcome fulfills the requirements of a
density function. In particular, the imaginary component of the
deconvolution was set to zero. We then integrated the resulting
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raw density over time to recover a raw distribution function. The
lower time bound was defined as the latest time at which the
raw distribution function was negative. Negative raw distribution
values occurred due to small ripples of the raw density function
that tended to be present at the left tail of the raw density
function. All density values below or equal to the lower bound
time were set to zero. Any residual negative density values above
the lower bound time were also set to zero. Independent of the
above operations, density values below 90ms and above 550ms
were set to zero. Finally, the resulting function was normalized
to a sum of one. Neither of these operations changed the overall
shape of the distribution but were necessary in order to calculate
expected value, variance, and skew.

In addition to the model-free non-parametric deconvolution
algorithm outlined above, it is also possible to use a parametric
approach. Here we convolved an exponentially modified
Gaussian distribution (ex-Gauss) with the distribution of X, and
then adjusted the parameters of the ex-Gauss such that the result
matched the observed times of the last button press, TN . Similarly
we adjusted the parameters of the ex-Gauss to match the time
of the first button press, T1, or GoRT. In both cases, the fitting
process used a maximum likelihood estimation technique. To
avoid infinite log-likelihood values during the fitting process we
added a lapse rate of 1% evenly spread over all time-bins. The
parametric approach has the advantage that it does not depend
on the smoothing with the 16ms Gaussian kernel and hence
recovers the parameters of the actual SSRT andGoRT distribution
rather than their smoothed version. This comes at the cost of
restricting the possible range of shapes that can be recovered.

To verify the deconvolution approach, we used the same
method to recover the known GoRT distribution (T1). To
that aim, we first convolved the GoRT distribution with the
distribution of X. This was done empirically: for each trial n
we drew a random sample x(n) from the distribution of X. This
sample was subtracted from the GoRT of this trial:

CRT (n) = GoRT (n) − x (n)

CRT (Convolved Reaction Time) provides an estimate of
how the RT distribution would look like if it could not be
measured explicitly, but rather if it would have to be inferred
in the same way as SSRT, i.e., by the absence of some other
discrete event. Most importantly, the distribution of CRT is
an empirical convolution of GoRT and X. Hence, we can
use the deconvolution method to recover the original GoRT
distribution. This comparison provides a test for the accuracy of
the deconvolution approach.

All computations were performed with the statistical
software-package R (R Development Core Team, 2009).
Densities were represented in 300 four-millisecond bins ranging
from −400 to +800ms. Trials with extreme GoRT or TN values
were excluded from the analysis. However, rejection criteria were
very liberal such that for 5330 trials in the seven data sets only
15 trials were rejected. Trials were rejected if their GoRT was
below 90ms or if the time of the last button press TN happened
before the stop signal. The upper bounds for GoRT and TN

were defined as their median plus eight times the standard

deviation. The same criteria were used for the simulated data
sets.

Analysis of Mean SSRT Independent of
Deconvolution Approach
In addition to the deconvolution approach described above, it
is possible to estimate the mean SSRT from the data using a
simpler method that does not rely on the deconvolution method.
This simpler method does not provide an estimate of the entire
distribution, but provides reliable estimates of mean SSRT from
as little as 75 trials. The method relies on the definition X =

S − TN , which can be reformulated to S = TN + X. Hence,
E[S] = E[TN] + E[X]. We can estimate E[TN] as the mean
of the observed TN , and E[X] from the distribution of X that
was derived in Equation (4). The distribution of X depends on
the inter-button press intervals which remained rather constant
throughout the experiment. Hence, to a first approximation
E[X] is a constant and E[S] is equal to the mean of TN plus a
constant.

Analysis of Recovered Densities
The deconvolution algorithm provides estimates of SSRT and
GoRT density. To visualize the shape of the distributions
independent of inter-subject differences in mean and variance we
subtracted out the mean and normalized the standard deviation
to one. The normalization was performed on the labels of the
time-bins: Let t be the sequence of values that denotes the
center of each density bin. We then re-assigned the labels for
each time bin by subtracting the mean and dividing by the
standard deviation: t′ = (t-E[t])/sqrt(V[t]). We then used linear
interpolation to estimate density values on a regular grid ranging
from −8 to 8 standard deviations and a step size of 0.1. The
identical approach was used to normalize the time-axes of the
distribution functions.

For visualization purposes we estimated the average
normalized density over all subjects. To that aim we averaged
the individual normalized density functions for each bin across
all subjects. This approach was aimed at extracting the shape
of the distribution while removing potential differences in
mean and width. The normalized distribution functions were
averaged using Vincent averaging. To that aim we picked a
sequence of probabilities ranging from 0.001 to 0.999 in steps
of 0.001. For each of these values we used linear interpolation
to estimate the corresponding quantile. The mean of these
quantile values defined the average distribution function. The
resulting distribution function was defined on an irregular grid
of time-values. We then used linear interpolation to estimate the
distribution function on the regular default grid described above
(from -8 to 8 with a step size of 0.1).

The averaging process described above was aimed at removing
differences in mean and standard deviation to highlight potential
differences in shape. We took another step to re-introduce
the information regarding mean and standard deviation while
maintaining the information about the shape of the distributions.
To that aimwe first re-scaled the default time-axis with the square
root of the mean of the individual variances. Then we then added
the mean of the individual means to the rescaled time-axis. The
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entire transformation allowed us to give a precise estimate of the
average shape as well as their width and position.

Results

We developed a novel theoretical framework and analysis
technique to facilitate the parameter-free estimation of SSRT
distributions from the inhibition of an unconstrained motor
sequence (button-pressing on a keyboard, see Figure 1 and
Methods). Six subjects recorded one or more data sets of 525 or
more trials (mean 761 trials, maximum 1575 trials) of the SeqIn
task. One subject recorded two data sets in two distinct settings
for a total of 7 full data sets. Each trial corresponded to one go-
and one stop-period and provided the times of all button presses
including the first button press after the go-signal, as well as the
last button press following the presentation of the stop-signal.

General Properties of Behavior in SeqIn Task
Before moving on to the calculation of the entire SSRT
distribution, we describe some basic properties of the button
press patterns in the SeqIn task. In particular, we addressed three
main points: (1) What is the rate of button presses that the
subjects achieved? (2) Is there any evidence that the subjects
used stereotyped motor patterns? (3) Are parts of the sequence
ballistic or can the motor sequence be interrupted with equal
probability at any point in time? (4) Are there any systematic
changes of SSRT or GoRT over time? All of these analyses are
important to put the results of the following deconvolution
analysis into perspective. The first and third points allow us
to quantify the amount of information that can be gained
from a single SeqIn trial. The second point helps us gauge the
cognitive effort involved in maintaining the motor sequences:
it has been suggested that the generation of truly random
sequences may require significant cognitive effort. Hence, the
use of a stereotyped and presumably automated response pattern
supports the idea that the subjects were free to focus on starting
and stopping demands of the task without being distracted by
the task of maintaining the motor sequence. The fourth point
will help us understand the potential contribution of systematic
changes in SSRT on the results of the deconvolution. Note that
for these analyses we estimate mean SSRT using a more robust
method that does not depend on the deconvolution approach (see
Methods).

Figure 2A shows the button press responses of the subjects
in a raster plot format either aligned to the Go (left panels) or
Stop signal (right panels). By sorting the order of the trials, it
is possible to appreciate the cumulative distribution functions
of the times of the first and last button presses. Figure 2B plots
the density of the inter-response intervals (IRI) averaged across
all instances, and Figure 2C plots the mean IRI as a function
of button press number in each motor sequence. Subjects
achieved mean IRIs around 30ms corresponding to ∼34 button
presses per second. It is important to note that the high rate
of button-presses is essential for our purposes to increase the
information content of each trial. The shorter the average IRI,
the more information each trial carries about the occurrence of
the unobservable stop-process. If the last button press occurred
at 200ms after the stop-signal, then the stop-process must have

finished some time between 200ms and the time at which the
next press would have occurred if it had not been inhibited.
If subjects press a button on average once every 100ms, this
restriction is less strict than if they press on average once every
10ms. Hence, it was essential to allow subjects to use as many
response buttons as possible to increase the rate of button presses
and decrease the average IRI. We have also collected preliminary
data when subjects were only allowed to use a total of two or four
fingers. These preliminary studies revealed similar mean SSRT
values, but required a larger number of trials.

The systematic variation of mean IRI with button press
number indicates that most subjects used stereotyped mini-
sequences. We followed up on this assumption by calculating the
cross-correlation of the mean IRIs for the first 40 button presses.
If subjects use stereotyped mini-sequences, we would expect
cyclic modulation of inter-button-response intervals. Given that
a sequence would likely consist of all 8 fingers from both hands
(subjects were not allowed to use their thumbs), we would expect
the inter-button press intervals to be auto-correlated with a lag
of 8 button-presses. This is indeed what we observed in most
of the subjects (Figure 2D). We further tested if the stereotyped
mini-sequences extend beyond the first couple of button presses.
To that aim, we excluded the first 16 IRIs, expanded the analysis
throughout IRI number 80, and calculated IRI cross-correlations
after subtracting out the mean IRI (Figure 2E). As expected,
the cross-correlation values are significantly smaller due to the
use of single trial IRIs, rather than mean IRIs. Nevertheless, the
analysis indicates cyclic patterns for most of the subjects. Overall,
our analysis suggests the use of a stereotyped and presumably
automated response pattern. This indicates that the subjects were
free to focus on starting and stopping demands of the task
without being distracted by the task of maintaining the motor
sequence.

The results depicted in Figure 2C show a systematic variation
when IRIs are aligned to the last button press of each trial (right
hand side of panels 2C). Given the existence of mini-sequences
outlined above these variations likely arise because the stop-
process is more or less likely to finish between different button-
presses in the mini-sequence. For example, it might be possible
that the motor sequence can only be stopped at the end of a
mini-sequence. This explanation would assume that the hazard
rate for the stop-process changes at different times in the mini-
sequence. If this were the case it would reduce the amount if
information gained from a single trial of the SeqIn task. However,
there is an alternative explanation for the observed variations
that is consistent with the idea that the stop-process is equally
likely to finish at any point in time during the mini-sequence:
Figure 3 shows that we can observe almost identical variations
when IRIs are aligned to the last button press prior to a random
event that is by definition equally likely to occur at any point
during the mini-sequence. In summary, the systematic variations
of IRI arise because the stop-process is more or less likely to
terminate after a particular button press of the mini-sequence.
However, this variation in likelihood is explained by the average
wait-time for the next button press in the mini-sequence, not a
variation of the hazard rate at different points of the sequence
(Figure 3C). Hence, the systematic variations of IRI in Figure 2C
are not only consistent with, but the logical consequence of the
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FIGURE 2 | Motor-sequence patterns the SeqIn task. (A) Left panel:

times of button presses (black dots) aligned to the go-signal. Each line

corresponds to one trial. Trials are sorted according to the time of the first

button press (orange dots). The green line corresponds to the mean GoRT.

Right panel: times of button presses aligned to the Stop Signal. Trials are

sorted according to the time of the last button press (orange dots). The red

line corresponds to the estimated mean SSRT that is calculated as the sum

of the mean of the last button press plus an estimate of the mean of X. (B)

Density of the inter-button-press intervals (IRI or 1i ). (C) Mean IRI as a

function of button press number in a trial, either relative to the first button

press (left side of panel) or the last button press in a trial (right side of panel).

(D) Cross correlation of the mean IRIs. Vertical lines are spaced at multiples

of 8, the number of fingers that subjects can use to generate the sequences.

The cross correlation includes the first 40 IRIs. (E) Mean of single-trial cross

correlation after subtracting the mean IRI that gives rise to the patterns in (D).

The data excludes the first 16 IRIs and extends up to IRI 80. Hence, these

cross-correlograms indicate rhythmic motor sequences that are not

phase-locked to response onset. The star refers to the fact that subject 1

contributed two data sets. The first data set is indicated as S1, the second

one is indicated as S1*.
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FIGURE 3 | Modulation of IRIs prior to last button press. (A) Example of

systematic modulation of IRIs aligned to the last button press in each trial,

i.e., the last button press that could not be inhibited by the stop-process

(black). Almost identical modulations can be observed when IRIs are aligned

to the last button press prior to a random event, in this case the presentation

of the stop-signal (blue). (B) Same plot averaged across the population. (C)

Putative explanation of both phenomena: Subjects employ regular

“mini-sequences” consisting of either 4 or 8 button presses. Cartoon

example depicts a regularly repeating mini-sequence consisting of 4 button

presses executed with digits D1 trough D4 thus giving rise to IRIs 11 trough

14. The assumption is that the stop-process is equally likely to terminate at

any point during the sequence (gray polygon). The likelihood of the last IRI

being sampled e.g., from 11 is identical to the likelihood of the last button

press being D2. This in turn is proportional to the average time between D2

and D3, i.e., 12. Hence, the mix of 1i s that contribute to the last IRI prior to

a random event is not uniform, but proportional to 1(i+1)s. The star refers to

the fact that subject 1 contributed two data sets. The first data set is

indicated as S1, the second one is indicated as S1*.

fact that the stop-process is equally likely to finish at any point
in time of the ongoing mini-sequences. This result is consistent
with Logan’s finding in the complex movement inhibition task
that typing can be aborted with equal probability at any point in
a word or sentence.

The analysis in Figure 3 reveals another potentially interesting
phenomenon: The biggest difference between the two IRI
sequences occurs on the very last IRI. This finding suggests
that the time of the last button press occurs ∼3ms later
than expected. While this effect is small and does not reach
significance after correcting for multiple comparisons, it may
be an indication that the stop-process is not an all-or-
nothing process as suggested by the strict assumptions of the
independent race model. Rather, the finding would be more in
line with the physiologically more realistic interactive race-model
(Boucher et al., 2007).

We then tested if mean SSRT and mean GoRT changed
systematically over the course of the experiment. To that aim
we divided the data from each subject into 10 equally sized
bins (deciles) and calculated mean GoRT and SSRT for each
bin (Figure 4A). GoRT did not significantly vary as a function
of decile. For SSRT, however, there was a significant effect.
Follow-up analyses revealed that this effect depended on one

specific data set (data set 1 of subject 1). This data set can
be considered an outlier for technical reasons: instead of being
collected in small sessions of three blocks divided over multiple
days/experimental sessions, it was collected in two long sessions.
Excluding this data set yields flat SSRT estimates independent of
time in the experiment.

We further tested if mean GoRT and mean SSRT remain
stable over the course of each recording session. To that aim we
calculated GoRT and SSRT for the first, second and third block
of each recording day separately. Figure 4B shows a pronounced
and significant SSRT slowdown over the course of the three
blocks. In contrast, there is no such effect for GoRT. If at all, there
is a small, albeit non-significant, effect in the opposite direction.
We also tested if we can identify a slow-down of SSRT evenwithin
individual blocks of 25 trials. To that aim we divided each block
into 3 sub-sets of trials. Between the first and third sub-set of
trials, we observed a significant SSRT slowdown on the order
of 4ms (Figure 4C). It is noteworthy that we also observed a
significant within-block slowdown of GoRT. The slowdown of
GoRT is less pronounced, but not significantly different from the
one we observed for SSRT.

After establishing the general properties of the button-press
patterns in the task, we then turned to the deconvolution

Frontiers in Computational Neuroscience | www.frontiersin.org 9 July 2015 | Volume 9 | Article 87

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Teichert and Ferrera Non-parametric estimation of SSRT distributions

A B C

FIGURE 4 | Systematic changes of SSRT and GoRT over time. (A) For

each subject, the total number of trials over all recording sessions was

divided into 10 equally sized deciles. GoRT did not significantly vary as a

function decile. For SSRT there was a significant effect. However, this effect

was carried exclusively by one data set. This data set can be considered an

outlier for technical reasons: instead of being collected in small sessions of

three blocks divided over multiple days, it was collected in two long sessions.

Excluding this data set yields flat SSRT estimates independent of time in the

experiment. (B) On each recording day, subjects performed at least 3 blocks

of 25 trials each. Changes of SSRT and RT are plotted as a function of block

number in the recording session. For SSRT, we observe a significant

slowdown over the course of each day. In contrast, no such effect is

observed for GoRT. (C) Slow-down of SSRT (black) and GoRT (gray) as a

function of trial number within each block of 25 trials. For both variables there

is a significant slow-down over the course of a block. The slowdown seems

more pronounced for SSRT, but this difference is not significant.

algorithm to recover the entire SSRT distribution from the times
of the last button press (see Figure 1 and Methods). However, in
order to assure that the findings from the real data were valid,
we first performed simulations where we used the deconvolution
approach to recover a known SSRT distribution.

SSRT Deconvolution of Simulated Data
A series of simulations was conducted to estimate the accuracy
of the deconvolution algorithm to recover the true distribution
of the SSRT. For each simulated trial, a GoRT as well as a SSRT
were drawn from ex-Gauss distributions with known parameters
(see below). In addition, a series of values was drawn from the
distribution of inter-response intervals (see Figure 1) observed
across all subjects in the study. T1 was defined as GoRT and the
subsequent Ti were defined as the cumulative sum of T1 and the
randomly drawn inter-response intervals. The duration of the go-
period was arbitrarily set to 1200ms. TN was defined as the last
button press before the time-point defined by the sum of stop
signal and the simulated SSRT. A data set consisting of N such
simulated trials (N = 100, 250, 500, 1000, 2500, 5000, 10000)
was then analyzed following the same deconvolution routine
used for the actual data. The SSRT values were drawn from
one of three different ex-Gauss distributions (SSRT1 = ex-
Gauss[µ = 190, σ = 0.030, τ = 0.0] sec, SSRT2= ex-Gauss[µ =

0.168, σ = 0.020, τ = 0.022] sec, SSRT3 = ex-Gauss[µ =

0.212, σ = 0.020, τ = −0.022] sec). For negative values of
τ we subtracted the exponential component from the Gaussian
component rather than adding it. The values were chosen to
yield two skewed and one non-skewed distribution of equal mean
(190ms) and standard deviation (30ms). Hence any difference
in the recovered distribution would be attributable the change in
shape of the distribution rather than its position or width.

The simulations show that the deconvolution algorithm
accurately recovers the different shapes of the distributions, in
this case a left-, non- and right-skewed shape. The accuracy

was quantified in two ways. First, we extracted 95% confidence
intervals (mean ± 1.96∗standard deviation) of the estimated
mean, standard deviation and skew. Figure 5 shows the
confidence intervals as a function of trial number. Even for a
relatively low number of ∼750 trials the confidence intervals are
quite small (less than ±4ms for mean and standard deviation,
less than±0.4 for skew).

Note that the confidence intervals of the parameters of the
deconvolved distributions are only a small fraction larger than
the confidence intervals of the parameters of the simulated
sample. This indicates that a large fraction of the variance
is due to variability of the simulated sample around its true
parameters rather than errors introduced by the deconvolution
algorithm. After subtracting the recovered parameters from
those of the underlying simulated sample (rather than the
ones of the theoretical distribution) the confidence intervals are
approximately half as wide (Figure 6). This indicates that the
deconvolution algorithm accurately captures small deviations of
the simulated sample from the theoretical distribution they are
drawn from.

We further quantified the accuracy of the deconvolution
algorithm by comparing it to the accuracy of a parametric
approach based on the fit of an ex-Gauss distribution. Figure 7
shows that the confidence intervals of the parametric approach
are highly similar to the ones obtained with the non-parametric
approach. It is important to keep in mind that in this case the
parametric approach should be particularly effective as it uses the
same parametrization that was used to generate simulated data,
an advantage that is not necessarily true for real data.

Finally we compared the accuracy of the two approaches
using the maximum difference between the recovered and the
smoothed empirical distribution function (Kolmogorv-Smirnov
Statistic, Figure 8). For 750 trials we expect average KS values
of the deconvolution approach is ∼0.02 and on par with the KS
values obtained with the parametric approach.
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FIGURE 5 | Ninety five percent confidence intervals (mean ±

1.96×standard deviation) of recovered mean, standard deviation and

skew of SSRT as a function of numbers of simulated trials N (1000

simulated data sets per confidence interval). The gray bars indicate

mean, standard deviation and skew of the simulated SSRT distributions that

were then used to simulate times of last button presses TN. The original SSRT

distributions were then recovered from the distributions of simulated TN using

the deconvolution algorithm. The black bars indicate the 95% confidence

interval for the deconvolved parameters when SSRTs were drawn from a

non-skewed Gaussian distribution of mean 190ms and standard deviation of

30ms. The red and green bars indicate the corresponding 95% confidence

intervals when SSRTs were drawn from positively and negatively skewed

ex-Gauss distributions of identical mean and variance. Note that the

confidence intervals of the deconvolved distributions are only a small fraction

larger than the confidence intervals of the actual empricial distributions. The

deconvolution algorithm operates on smoothed TN distributions (temporal

filtering with a 16ms Gaussian kernel). Hence, the recovered distributions

reflect properties of the filtered SSRT distribution. Filtering has no effect on the

mean. However, it does affect the standard deviation and the skew. The effect

of filtering can easily be removed from the estimate of standard deviation (note

that the sd estimates of the deconvolved distributions converge to the true

value of 30ms). A similar approach can be taken to recover true skew, but this

operation depends on the assumption that the underlying distributions are

ex-Gaussian. To maintain a model-free approach, we did not use such a

correction here. As a result, both positive (and negative) skew values are

underestimated (see red line). It is important to note, however, that the

recovered skew values matche the true skew value of the ex-Gauss that has

been filtered with the same temporal kernel that was used in the deconvolution

approach.

SSRT-Deconvolution of Real Data
To verify the deconvolution approach on real data, we
empirically convolved the known GoRT distribution with our
estimate of X (see Figure 1 and Methods) and used the same
deconvolution method to recover the known GoRT distribution
(see Methods). Figure 9A shows the recovered normalized
GoRT density function (middle column) as well as the original
smoothed and normalized GoRT density function (left column).

FIGURE 6 | Mean, std.dev. and skew of the simulated SSRTs varies

around the true parameters due to the finite size of the sample. Hence,

the confidence bars in Figure 5 reflect both, the error of the deconvolution

algorithm as well as the random sampling of the empirical distribution upon

which the deconvolution is based. Here we subtract the recovered parameters

of the deconvolved distributions from those of the underlying empirical

distribution. The confidence intervals are substantially smaller, indicating that

the deconvolution algorithm accurately recovers the variability of the empirical

distribution. This is further validated by correlation between the empirical and

recovered mean (ρGauss = 0.77, ρex−Gauss = 0.77), standard deviation

(ρGauss = 0.54, ρex−Gauss = 0.66) and skew (ρGauss = 0.37,

ρex−Gauss = 0.63). These correlations are non-trivial, because the true mean,

standard deviation and skew are constant within the conditions.

The results highlight to ability of the deconvolution method
to recover the original GoRT distribution. The recovered GoRT
densities are noisier, but their specific shape, including the
characteristic rightward skew, was accurately recovered. The
skew of the recovered GoRT distribution is significantly larger
than zero (1.1 ± 0.6, t-test, p < 0.05) and very similar to the
skew of smoothed GoRT distribution (1.2± 0.7).

Using the same approach we deconvolved TN to obtain an
estimate of the SSRT density. Similar to the recovered GoRT
densities, the SSRT densities were significantly right-skewed
(0.9 ± 0.7, t-test, p < 0.05). The rightward skew is visible in the
recovered densities (Figure 9A) as well as the quantile-quantile
plots (Figure 9B).

We then directly compared the first three moments of the
recovered GoRT and SSRT distribution (Figures 10A–C and
Table 1). Mean SSRT (199 ± 23) is 10ms shorter than mean
GoRT (209 ± 15ms). This difference does not reach significance
(paired t-test, df = 6, p = 0.36). Standard deviation of the SSRT
distribution (38 ± 7ms) is 5ms larger than standard deviation
of the GoRT distribution (33 ± 7ms). This difference also does
not reach significance (paired t-test, df = 6, p = 0.21). Mean
skew for the SSRT distribution (0.9 ± 0.7) is ∼20% lower than
the skew of the GoRT distribution (1.1 ± 0.6). This difference
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FIGURE 7 | Comparison of the non-parametric deconvolution

algorithm with a paramtric approach based on ex-Gauss distributions.

Note that both approaches provide estimates of very similar accuracy. The

main advantage of the ex-Gauss approach is that is allows an unbiased

estimation of the skew—the deconvolution algorithm estimates the skew of

the smoothed function which is always deviated toward zero. The main

advantage of the deconvolution approach is that it does not restrict the range

of possible shapes of the distribution—in the current case the simulated

distributions were drawn from the same family of distributions that were used

in the parametric fit. For real data, the underlying distribution is not known and

may not be part of the ex-Gauss family.

does not reach significance (paired t-test, df = 6, p = 0.59).
Similar results were found when using the parametric ex-Gauss
approach (Figures 10D–F and Table 1). In this case, however,
the skew for the SSRT distributions was significantly smaller than
the skew for the GoRTs (paired t-test, df = 6, p = 0.02). We
followed up on this discrepancy between the deconvolution and
ex-Gauss approach and noticed that the differencemanifests itself
in two subjects. The deconvolved SSRT densities of these subjects
have mass in a few long time-bins that could be considered
outliers. In order to be maximally inclusive, the outlier rejection
for the deconvolution approach was very liberal (see Methods).
However, the parametric approach had implicitly classified these
bins as outliers thus yielding substantially smaller skew estimates
for these two subjects. To exclude the impact of these potential
outliers we used Bowley’s more robust quantile-based skew
estimate. For a particular quantile 0 < u < 0.5, the Bowley’s skew
estimate is defined as:

robustSkew (u) =
F−1 (u) + F−1 (1− u) − 2F−1 (0.5)

F−1 (u) + F−1 (1− u)

Setting u to 0.1 yields Kelley’s absolute measure of skewness.
Using Kelley’s quantile-based absolute measure of skewness, we
find a significantly smaller skew for the SSRT distributions

A

B C D

FIGURE 8 | The accuracy of the deconvolution algorithm measured as

the maximum difference between the smoothed empirical distribution

function and the deconvolved distribution (Kolmogorov-Smirnov

statistic). (A) As the number of simulated trials increases, the KS statistic

between the smoothed empirical distribution and the distribution recovered

with the deconvolution algorithm approaches zero. This is true regardless of

the skew of the distribution (red, black, and green color). The gray bars

indicate the same KS statistic for the distribution that was recovered by fitting

the ex-Gauss distribution. (B–D) Three examples for individual simulations with

representative KS-values for either 100, 250, and 750 trials. The black line

indicates the smoothed empirical distribution function, the red line the

recovered distribution. The examples were chosen to have a KS statistic of

0.05, 0.03, and 0.02, respectively. Note that for KS values of 0.03 and 0.02,

the recovered distribution is almost identical to the original distribution.

when using the deconvolution approach (paired t-test, df = 6,
p = 0.04). This reconciles the findings of the parametric and
the non-parametric approaches and identifies smaller positive
skew as one of the main differences between GoRT and SSRT
distributions.

The overall picture conveyed by both methods is that of
strikingly similar SSRT and GoRT distributions. However, our
results suggest that SSRTs are somewhat shorter and have a
wider and less skewed shape. This finding is nicely illustrated
in Figure 9C that directly compares position and shape of the
averaged SSRT andGoRT distributions side by side. Note that the
main difference is the earlier rise of the ascending flank of the
SSRT density function. In contrast, the falling flanks of the two
density functions almost overlay.

Discussion

Response inhibition is a critical aspect of motor and cognitive
control, and is thought to involve prefrontal cortex and basal
ganglia; specifically, the hyperdirect cortico-striatal pathway.
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C

FIGURE 9 | Comparing RT and SSRT distribution. Left column: RT

distributions smoothed with the same Gaussian kernel used for the

deconvolution algorithm. Middle column: RT distributions after empirical

convolution with X and subsequent application of the deconvolution

algorithm. Right column: deconvolved SSRT distributions. Comparison of left

and middle column visualize the modest distortions introduced by the

deconvolution algorithm. Comparison between middle and right column

visualize the difference between response initiation (RT ) and response

inhibition (SSRT ). (A) Normalized (z-transformed) empirical density functions

show significant rightward-skew (t-test, p < 0.05) for all three distributions

(smoothed RT, deconvolved RT and deconvolved SSRT ). (B)

Quantile-quantile plots visualize rightward skew as a concave curvature. (C)

Direct comparison of average GoRT and SSRT density function (left) and

distribution function (right). To account for different mean and standard

deviation, distributions were z-transformed, averaged and transformed back

using average values of mean and standard deviation for SSRT and GoRT,

respectively. The initial normalization allows effective averaging that maintains

the shape of the distributions despite considerable differences in mean and

standard deviation. The back-transformation reintroduces the differences in

mean and standard deviation that were lost in the initial normalization step.

Using a small sample of young healthy control subjects trained
on the task, the current study showcases the feasibility of the
non-parametric method to estimate entire SSRT distributions
from ongoing motor sequences with discrete behavioral output
such as typing. SSRT distributions allow us to study the fine-
scale functional properties of the neural pathways that mediate
inhibitory control with high temporal resolution. The non-
parametric nature of the approach is particularly important and
appealing as it complements a recently developed parametric
approach (Matzke et al., 2013). Previous non-parametric
approaches have never been implemented because they were
estimated to depend on a prohibitively large number of∼250,000
stop signal trials per stop signal delay (SSD) for a total number
of ∼1,000,000 trials for each stop-signal delay to be used in the
experiment (Matzke et al., 2013). Our simulations show that

the current deconvolution approach yields adequate estimates of
entire SSRT distributions (KS statistic ∼0.02) for as little as 750
trials.

This reduction in the number of required trials derives from
the specific design of the SeqIn task. Rather than using a single
discrete motor act, it uses a quasi-continuous motor sequence.
Hence, our approach is related to an SSRT-paradigm developed
by Morein-Zamir and colleagues (the continuous tracking task),
where subjects continuously exert pressure with their index finger
until a stop signal instructs them to stop pressing (Morein-
Zamir et al., 2004, 2006a,b). The continuous tracking task has
the advantage that each trial provides one explicit estimate
of SSRT and hence has a higher information content than
a trial in the countermanding task. However, Morein-Zamir
and colleagues also acknowledge one potential criticism of the
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A B C

D E F

FIGURE 10 | Mean, standard deviation and skew of deconvolved

RT and SSRT distributions. Different colors represent different

subjects. Statistical significance was assessed with two-sided paired

t-tests (*: p < 0.05, **: p < 0.01). (A) Mean of RT and SSRT are

statistically not distinguishable. (B) The standard deviation of the RT

and SSRT distributions are not significantly different from each other.

(C) The skew of the RT and SSRT distributions are not significantly

different from each other. The skew of RT and SSRT distribution are

significantly larger than zero. (D–F) Mean, standard deviation and skew

from the parametric ex-Gauss fit. The parametric fit confirms the same

pattern, i.e., somewhat faster SSRTs with somewhat higher standard

deviation and less rightward skew (paired t-test, p = 0.02).

TABLE 1 | Mean, standard deviation and skew for GoRT, recovered GoRT

and recovered SSRT distributions.

Mean [ms] Std. dev [ms] Skew

Reaction time Raw 208 ± 14 29 ± 7 1.5 ± 0.5

Binned 208 ± 14 29 ± 8 1.7 ± 0.7

Smoothed 208 ± 14 34 ± 7 1.2 ± 0.7

Recovered reaction Deconvolution 208 ±14 33 ± 7 1.1 ± 0.6

time Ex-Gauss Fit 208 ± 14 27 ± 7 1.2 ± 0.4

Recovered SSRT Deconvolution 199 ± 23 38 ± 7 0.9 ± 0.7

Ex-Gauss Fit 199 ± 23 31 ± 6 0.6 ± 0.6

Gray shading indicates conditions that involve either direct or indirect smoothing with a

Gaussian kernel of 16ms. These conditions have by definition larger standard deviations

and skew values deviated toward zero.

continuous tracking task, namely that in this task stopping might
be considered an action (“pull finger upwards”) rather than
the inhibition of an action (“stop pushing finger downwards”)
(Morein-Zamir et al., 2004). Our task addresses this potential
issue by using a dynamic motor sequence that clearly needs
to be inhibited when the stop-signal occurs. At the same time,
it maintains the advantage of higher information content: on
each trial SSRT was too slow to inhibit the last observed
button press (SSRT > TN), yet fast enough to inhibit the next
button press (SSRT < TN+1). Because on average, button presses
occur once every ∼30ms, each trial narrows down SSRT to
a window of ∼30ms. This is substantially more information
than available from individual stop-signal trials of the standard
SSRT task: SSRTs are either longer (failed inhibition) or shorter

(successful inhibition) than a particular value (determined by
SSD and mean RT), and hence the information content is to a
first approximation binary.

A second reason for the substantial reduction in the number
of trials is that in the SeqIn task every trial is a stop-signal trial
that directly contributes to the estimation of SSRT. This is in
contrast to countermanding tasks where only 20–25% of trials
have a stop signal. It is possible to include 100% stop trials in
the SeqIn task because the timing of the stop-signal within each
trial is unpredictable over a range of 3.5 s. However, in terms
of experimental duration (rather than trial count), the benefit of
having a stop-signal on each trial is partially countered by the
fact that each individual trial in the SeqIn task is longer than in
countermanding paradigms. Nevertheless, it is still significantly
faster to collect 750 trials of the SeqIn task, than 1,000,000 trials
of a countermanding paradigm.

The third reason that leads to the reduction of the number
of trials is that the deconvolution approach applies temporal
smoothing to the distributions of the last button presses TN

prior to the deconvolution. Smoothing reduces the number of
trials that are needed to recover meaningful SSRT distributions.
Otherwise, smoothing is not critical because it maintains the
main features of the distribution that are typically present
in lower frequency bands. In fact, even regular reaction-
time distributions are often visualized using either implicit or
explicit smoothing. The effects of smoothing on the shape of
the distribution are known and can be taken into account
either quantitatively (standard deviation) or at least qualitatively
(skew).

Here we used the SeqIn task to recover entire SSRT
distributions for the inhibition of an unconstrained ongoing
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motor sequence (finger tapping). We also measured the GoRT
distributions for the initiation of the same motor sequence.
We find that in the SeqIn task, mean GoRT and mean SSRT
are statistically indistinguishable (GoRT: 208 ± 14ms; SSRT:
199 ± 23ms). The finding of similar values for the two tasks
may seem somewhat surprising because in most other studies
mean RTs are 100–200ms slower than mean SSRTs. However,
this apparent discrepancy is due to the fact that most other
paradigms measure choice RTs whereas the current paradigm
measures “simple” RTs without a choice component. Because
SSRT itself does not have a choice component, the current
approach enables a fair comparison between GoRT and SSRT.
Furthermore, the SeqIn task was specifically designed to facilitate
the comparison between GoRT and SSRT: the Go- and Stop
signals themselves are identical audio-visual events, and waiting
time distributions for the Stop- and Go signal are identical thus
equalizing any anticipation/prediction for both signals. After
thus equating the conditions for the two responses, mean latency
of response initiation is almost identical to the mean latency of
the response inhibition. Note that we are not claiming statistical
equality of latency (or width). In fact, we expect that larger
sample size will reveal significantly shorter SSRT latencies. We
merely point out that the absolute differences between the GoRT
and SSRT distributions (significant or not) will be small relative
their variability. This suggests largely similar (but not necessarily
identical) functional properties of the two neural pathways that
mediate response inhibition and response initiation.

While both SSRT and GoRT have statistically
indistinguishable mean latency and width in this small sample,
SSRT distributions have significantly smaller skew. This is
particularly interesting, because it suggests that while GoRT and
SSRT may be strikingly similar at first glance, there may be subtle
yet meaningful differences. Once confirmed in a larger sample,
these subtle differences can be used to test different mechanistic
models of inhibitory control such as the independent race model
(Boucher et al., 2007) or the Hanes-Carpenter model (Hanes and
Carpenter, 1999) or the so-called special race model (Logan et al.,
2014). The differences in the shape of SSRT could in principle
be mapped to parameters of these models, which in turn may
map onto parts of the direct and hyperdirect cortico-striatal
pathways. Such a mechanistic and parametric approach will
allow us to address a number of interesting questions: Are the
drift rates of the Go and Stop process identical? Are the heights
of the response- and the inhibition bound identical? Can the
same types of model that successfully explain GoRT distributions
provide a satisfactory fit for SSRT? Can SSRTs be explained
in terms of a single mechanism, or do we need to consider
more complex dual-process accounts? Some of these questions
have already begun to be explored in recent studies by Matzke
et al. (2013) and Logan et al. (2014). Because such approaches
necessarily depend on various parametrizations of the SSRT
distribution, it is particularly important to validate the shape
of parametrically recovered distributions with non-parametric
methods.

At this point we want to provide a brief comparison of
our non-parametrically recovered SSRT distributions with the
parametrically recovered ones from the study of Matzke et al.

(2013). Overall, the mean SSRTs in our task (∼200ms) were
somewhat shorter than the ones found by Matzke and colleagues
(∼220–230ms). This difference can most likely be attributed
to our sample that was comprised of young, highly motivated
and experienced psychophysics subjects compared to a more
representative sample examined by Matzke and colleagues.
However, it is important to note that the single-subject range
of SSRTs in our sample is well within the range of SSRTs
of Matzke’s and other SSRT studies. The shape of the SSRT
distribution in our study was narrower and less skewed. To
quantify this difference we compared our mean values of the
parameters of the ex-Gaussian distributions in our study to
the ones estimated from Figure 17 in the paper by Matzke
(mean of Gaussian component: 185 vs. ∼160ms; standard
deviation of Gaussian component: 23 vs. ∼20ms, and lastly
the exponential component: 20 vs. ∼60ms). Hence, the biggest
difference between the two studies is the exponential component
that plays a much bigger role in the data by Matzke. It is
important to note the large inter-individual variability of SSRT
distributions in the sample by Matzke. Some of the subjects have
very narrow and barely skewed SSRT distributions, very much
like the subjects in our sample. Hence, it is possible that the
overall difference of SSRT distributions resembles the stricter
selection criterion of subjects in our study. However, it is also
important to note that Matzke observed a strong dependence
of SSRT distribution on the fraction of stop-signal trials. A data
set with 20% stop trials had significantly wider and more right-
skewed distribution compared to a data set with 40% stop trials.
While our paradigm is somewhat different it has a stop-signal in
100% of the trials. Hence, some of the differences may also be
attributed to the higher ratio of trials with a stop-signal.

Any estimate of SSRT or GoRT distributions implicitly
assumes that the variable in question is stationary during
the data-acquisition period. Hence, we tested if there is any
indication of systematic changes in GoRT and SSRT over
the course of the experiment. Our data indicated that GoRT
and SSRT stayed constant over the course of the experiment.
This suggests that the subjects had enough training and were
performing at ceiling levels during the entire experiment.
However, we also tested whether performance stayed constant
within each behavioral session consisting of 3 blocks of 25 trials.
We observed a significant increase of SSRT over the course
of each behavioral session. GoRTs in contrast, remained stable.
This systematic SSRT slow-down affects the comparison between
GoRT and SSRT distributions that is based on all of the data,
including blocks where SSRTs have already slowed down. In
particular, it may have led to an overestimation of mean SSRT
and the width of the SSRT distribution. In addition it may have
led to an underestimation of the skew of SSRT.

The SSRT slowdown was an incidental finding outside of the
main focus of the study that was aimed at exploring technical
feasibility of the deconvolution algorithm. It is not our intent to
draw conclusions about SSRT slowdown form the small sample
of subjects. Nevertheless, the finding was intriguing enough to
warrant some speculation about its potential origin. In particular
we want to rule out two trivial explanations. (1) The observed
SSRT slowdown can not be explained by a reduction of attention
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or arousal. If so, we would also expect a corresponding reduction
of GoRT. (2) SSRT slowdown cannot be explained by a tradeoff
in the balance between going and stopping: first, the minor
reduction of GoRT does not seem to be consistent with the
substantially larger increase of SSRT. Second, the SeqIn task is
not a dual task (as the countermanding task) where subjects need
to prioritize either one or the other of the tasks.

We want to end the discussion by addressing certain
limitations and anticipating potential criticisms. (1) The analysis
and interpretation of our data depends on the assumption of
independence between the Go and Stop process. Our study
did not allow us to explicitly test this assumption. However,
the assumption of independence is central not only to our
paradigm, but also to all other independent race-models. Studies
using countermanding tasks have (a) indicated that violations
of independence are moderate, and (b) indicated that SSRT
measured in countermanding tasks are reasonably robust against
violations of the assumption of independence. Future studies will
be necessary to test if the same is true for the SeqIn task.

(2) The overwhelmingmajority of studies of inhibitory control
use the countermanding paradigm in which the to-be-inhibited
response is the result of a binary decision process. This type of
task has been extremely useful to study response inhibition in
healthy controls, and response inhibition deficits in a number
of neuro-psychiatric conditions. However, the concept of a
Stop process and SSRT, have been formulated independent of
this particular paradigm. In fact, other paradigms have been
developed in the past, and were shown to correlate with SSRT
measured in the countermanding paradigm. Hence, while terms
like “SSRT” and “Stop process” have been intimately linked with
the countermanding paradigm, their use in the current context is
verymuch within the original definition that does not specify that
the to-be-inhibited action must be the result of a binary decision
process. Nevertheless, we want to caution that the SeqIn task
should not be used as a substitute for established countermanding
paradigms such as the Stop-It, SST or Vink task until it has
formally been shown to measure the same construct. However,
based on the similarity of our task with the complex motion task
by Logan and the continuous tracking task by Morein-Zamir
both of which are believed to measure the same construct we are
confident that a validation study will confirm that the SeqIn task
measures the same construct.

(3) As pointed out above, it is not yet 100% clear if the
SeqIn task measures the same variant of inhibitory control as
countermanding tasks. On the flipside of this argument, it is not
clear if countermanding paradigms measure the same construct
of inhibitory control that is involved in stopping ongoing motor
sequences. Situations in which an ongoing motor sequence needs
to be inhibited are prevalent in real life and constitute an
important area of study. For example, a quarterback may need
to abort a particular play immediately after the snap, right before
the ball leaves his hand, or at any point during the execution of
the complex motor sequence that takes place between the snap

and the pass. In fact, even the standard example of inhibitory
control—a baseball player aborting a swing at a ball outside
the strike-zone—arguably shares more similarity with the SeqIn
than the countermanding task. Similarly, many situations of
inhibitory control of relevance in neuropsychiatric conditions
require the interruption of an ongoing motor sequence, such
as the interruption of perseverative hand washing in obsessive
compulsive disorder. In the most likely scenario, the two types
of inhibitory control involve identical neural mechanisms and
insight from one type of task will be relevant to both types of
scenario. However, it is also theoretically possible that different
neural mechanisms are involved in the two tasks and that insights
from standard SSRT tasks do not extrapolate to the inhibition of
ongoing motor sequences. In this case the SeqIn task will be one
of only very few tasks to measure inhibitory control of ongoing
motor sequences.

(4) Based on the fact that SSRT and GoRT have similar
means (∼200ms), it has been argued by some that the motor
sequence in the SeqIn task may be stopped without the need to
engage inhibitory control. Rather than inhibiting the ongoing
motor sequence it might be sufficient to just refrain from
issuing additional motor commands, or issue a new motor
command (“pull all fingers upwards”) that will override other
motor commands and prevent additional finger taps. However,
this assumption cannot account for the selective slow-down
of SSRT across a session while RT remains stable. Also, it is
important, albeit less obvious, to note that the same argument
can be used to question the involvement of inhibitory control
in the countermanding task: While it may take on average
400–600ms to press the correct button in the choice task,
it will still take only ∼200ms to issue a simple “pull-all-
fingers-upwards” motor command in response to the onset of
the stop-signal. In fact, it has been argued that even in the
countermanding task an explicit stop process is not needed to
explain the behavioral findings (Salinas and Stanford, 2013).
Hence, the selective SSRT slow-down in our task may be one
important piece of behavioral data that supports the presence
of an inhibitory process with distinct properties. In summary,
these arguments clearly refute the idea that the duration of
the GoRT relative to SSRT has any influence on whether
or not the stopping of the motor sequence needs to involve
inhibitory control. However, we also want to acknowledge
that at this point, the SeqIn task has not been performed in
the context of fMRI or single-cell recordings. Hence, there is
currently no neural evidence in favor or against the notion that
the SeqIn task engages the hyper-direct pathway of the basal
ganglia.
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