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Abstract

Bacterial strains of the same species collected from different hosts frequently exhibit differ-

ences in gene content. In the ubiquitous plant pathogen Pseudomonas syringae, more than

30% of genes encoded by each strain are not conserved among strains colonizing other

host species. Although they are often implicated in host specificity, the role of this large frac-

tion of the genome in host-specific adaptation is largely unexplored. Here, we sought to

relate variation in gene content between strains infecting different species to variation that

persists between strains on the same host. We fully sequenced a collection of P. syringae

strains collected from wild Arabidopsis thaliana populations in the Midwestern United

States. We then compared patterns of variation observed in gene content within these A.

thaliana-isolated strains to previously published P. syringae sequence from strains collected

on a diversity of crop species. We find that strains collected from the same host, A. thaliana,

differ in gene content by 21%, 2/3 the level of gene content variation observed across strains

collected from different hosts. Furthermore, the frequency with which specific genes are

present among strains collected within the same host and among strains collected from dif-

ferent hosts is highly correlated. This implies that most gene content variation is maintained

irrespective of host association. At the same time, we identify specific genes whose pres-

ence is important for P. syringae’s ability to flourish within A. thaliana. Specifically, the A.

thaliana strains uniquely share a genomic island encoding toxins active against plants and

surrounding microbes, suggesting a role for microbe-microbe interactions in dictating the

abundance within this host. Overall, our results demonstrate that while variation in the pres-

ence of specific genes can affect the success of a pathogen within its host, the majority of

gene content variation is not strongly associated with patterns of host use.
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Introduction

Many microbial species colonize diverse biotic and abiotic ecological niches [1,2]. The traits

that allow a microbe to survive in these varied environments are of wide ecological, clinical

and agricultural relevance. For example, many pathogenic bacteria exhibit increased virulence

in their host of isolation [3,4]. There is thus widespread interest in understanding the evolu-

tionary and genetic mechanisms that allow strains to flourish in specific environments while

perishing in others.

The plethora of bacterial genome sequences that are publicly available provides broad

insight into the genes that are potentially adaptive for specific hosts and environments.

Numerous studies have revealed that strains of the same species collected from disparate envi-

ronments differ extensively in gene content [5–9], varying in the presence of dozens to even

thousands of genes. At least a fraction of this variability underlies environment-specific adap-

tations, and the challenge has now become determining which genes are adaptive for which

environments.

It is particularly important to understand the adaptive significance of gene content diversity

in the ubiquitous plant pathogen P. syringae. P. syringae is a genetically diverse bacterial species

complex encompassing lineages with both pathogenic and non-pathogenic lifestyles [2,10,11].

Particular strains of P. syringae are especially pathogenic on specific host species [12–15], and

can cause extensive damage to crop populations [12,16]. Several of these strains have been clas-

sified as pathovars, or lineages with specific unifying pathogenicity characteristics that special-

ize them on specific hosts. Previous genome comparisons of host-specific P. syringae strains

showed that over 30% of genes within a strain’s genome are either unique to a single strain or

are rare among other strains [7]. To date, however, only a few dozen of the thousands of vari-

able genes have been shown to be adaptive in an environmentally specific manner [7,17,18].

P. syringae not only infects crop plant populations but also non-agricultural plant popula-

tions, including those of A. thaliana. Indeed, P. syringae is among the most abundant bacterial

pathogens in A. thaliana leaves [19,20], causing reductions in fitness upon infection [21]. In-

terestingly, the evolution of P. syringae in A. thaliana populations appears to differ from that of

P. syringae in crop populations. While crop-infecting strains frequently exhibit clonal, geneti-

cally monomorphic expansions and obvious disease symptoms [12,14,22], those P. syringae
isolated from A. thaliana to date exhibit less obvious symptoms and more extensive genetic

diversity [23], a diversity that is maintained even at a regional scale. The reason for this con-

trast in pathogenic genetic diversity between crops and a non-agricultural plant is unknown

(though it is easy to speculate [24]). What is evident is that P. syringae colonizes A. thaliana
populations successfully and frequently, and reduces yield [19,21,25].

The success and abundance of P. syringae in A. thaliana provides the opportunity to deter-

mine the evolution of P. syringae gene content within a single host species (A. thaliana) and to

contrast this diversity with that observed among host species. Here, we begin to characterize

gene content variability by genotyping 76 strains of P. syringae that reside on the same host

species in the same geographical region of the Midwestern United States, and then fully se-

quencing 18 of these strains. We find that strains of P. syringae collected from A. thaliana,

some from the same host population, exhibit variation in gene content similar to that observed

between P. syringae strains collected from different crop host species. At the same time, the P.

syringae strains collected from A. thaliana uniquely share a genomic island that encodes toxins

active against a broad range of microbes, raising the possibility that these strains gain an ad-

vantage by suppressing other microbes. Combined, our findings reveal both extensive genetic

turnover and a conserved genomic island that suggests the importance of microbe-microbe

interactions in the evolution of a pathogen in natural plant populations.

The role of the bacterial pan genome of Pseudomonas syringae in host specificity
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Results

A specific lineage of P. syringae infects A. thaliana

To study the gene content diversity of P. syringae in Midwestern USA populations of A. thali-
ana, we first sought to characterize P. syringae phylogenetic diversity in this area. P. syringae is

both abundant and pathogenic within these A. thaliana populations, inducing a fitness cost in

infected individuals of up to 25% [19,21]. We first determined the phylogenetic distribution of

the P. syringae that colonize A. thaliana by performing Multilocus sequencing analysis (MLSA)

of six loci [26] in 99 strains. The MLSA indicated that P. syringae isolates from A. thaliana clus-

ter nearly exclusively within one specific lineage of P. syringae (group II as represented in Fig

1A, despite the fact that pathogenic P. syringae is abundant in several other phylogenetic line-

ages). Note, however, that those lineages collected from A. thaliana are not genetically identical,

and instead, several crop strains from phylogenetic group II are more closely related to several

A. thaliana lineages than are other A. thaliana lineages (Figs 1A and 2B).

While this result suggests the preferential colonization of group II in A. thaliana, it is also

possible that the skewed phylogenetic distribution is the result of population structure of P.

syringae within the Midwestern USA. However, previous studies reveal the genetic diversity of

P. syringae in the Midwest [28,29] to be higher than that maintained on A. thaliana [23]. To

explicitly test whether P. syringae in the Midwestern USA are from only this one lineage, we

sampled Pseudomonas from both A. thaliana populations and nearby agricultural tomato

crops in the Midwestern USA in the fall of 2013. Through high-throughput genotyping of the

Fig 1. Composition of P. syringae in A. thaliana in the Midwestern USA. (a) Majority rule consensus tree based on six MLSA loci in P.

syringae. Blue circles represent P. syringae strains collected from A. thaliana plants. Orange circles represent strains collected from crop plants.

The names of select crop strains are provided next to the corresponding node along with the host of isolation in bold. The A. thaliana strains are

restricted to group II while the crop strains span the P. syringae phylogenetic tree. (b) & (c) Geographic distribution of strains whose genomes

were analyzed in this study.

https://doi.org/10.1371/journal.pone.0184195.g001
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gyrb gene, we confirmed that group II [7,26,30] dominates within A. thaliana (Fig 1) yet

another clade dominates within tomato crops (Fig 2A). The samples were collected within two

weeks of one another, reducing the probability that differences in composition are due to tem-

poral changes in microbial communities. These results suggest that a specific subset of P. syrin-
gae belonging to group II preferentially proliferates in A. thaliana populations.

P. syringae on A. thaliana exhibit variation in gene content

To assess gene content diversity in A. thaliana P. syringae strains, we sequenced the genomes

of 18 randomly selected strains of P. syringae on A. thaliana [25] (Fig 2B) and compared them

Fig 2. P. syringae from A. thaliana are genetically diverse, but are derived from one phylogenetic clade. (a)

Pseudomonad composition of leaves of A. thaliana and tomato collected from the Midwestern USA was assessed via

phylotyping of gyrb. The composition of Pseudomonads was significantly different between the leaves of tomato and

A. thaliana (P = 0.008, Wilcoxon-rank-sum test), with the tomato leaves composed primarily of strains resembling the

abundant tomato strains. (b) Maximum likelihood phylogeny of strains sequenced in this study based on 492

conserved genes. The scale bar indicates 2% sequence divergence. A. thaliana strains were primarily derived from

phylogenetic group II, a result recapitulated in the wider MLSA (Fig 1). Group IIc lacks a canonical T3SS [27].

https://doi.org/10.1371/journal.pone.0184195.g002
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to the genomes of 22 largely host-specific crop strains from diverse geographical locations (Fig

1B and 1C). Previous genome comparisons of P. syringae isolated from diverse crop species

found that more than 30% of genes within a genome are unique or rare among crop strains

[7]. In this study, we re-annotated all genomes for consistency of annotation methodology

between studies and relaxed the definitions of conservation to accommodate differences in

assembly qualities between strains and studies. We also verified that differences in assembly

quality did not significantly influence the number of genes annotated per genome (S1 Fig).

Our findings support the previous findings of diversity, observing that an average of 32% of

the genes within a crop strain’s genome (1710/5378 genes) varies in presence across crop

strains. Although such large-scale differences in gene content have frequently been thought to

result from host-specific adaptations [31] our analysis also revealed high levels of gene content

variation among A. thaliana strains (Fig 3A). An analysis of the gene-frequency-spectrum of P.

syringae within A. thaliana host populations revealed that the frequency distribution of genes

among A. thaliana isolates closely resembles the gene-frequency-spectrum of P. syringae across

diverse crop hosts: a similar number of genes are conserved across strains and a similar num-

ber of genes are distributed at intermediate frequency. An average of 79% of the genome of an

A. thaliana strain is conserved (found in more than 90% of strains) across A. thaliana isolated

strains (4014/5098 genes). Stated differently, 21% of an A. thaliana strain genome on average

is not conserved across A. thaliana strains in comparison to the 32% that is not conserved

across crop strains.

Crop strains encode more strain-specific genes

Perhaps the most prominent observable difference between the frequency spectrum of genes

between A. thaliana and crop stains is that the pan genome of the crop strains contains an

increased number of singleton genes (roughly three times more strain specific genes per crop

strain with an average of 311 vs. 110 strain specific genes per crop and A. thaliana strain respec-

tively), present in only a single sequenced strain (Fig 3A). Such increased numbers of singletons

could reflect host-specific adaptations (but see [8] and discussion in Methods section for alter-

natives). An alternative hypothesis for this excess of singletons is the greater phylogenetic dis-

tance among crop strains. It has been shown that gene content differences frequently correlate

with phylogenetic relatedness [32]. Sampling of more closely related strains (such as A. thaliana
strains) may result in deeper sampling of rare genes making the identification of singletons less

likely. To explore this possibility, we tested the relationship between nucleotide divergence

between strains and the number of singletons observed (Fig 3C and 3D). When we considered

only those crop strains that were as closely related to other strains as are the A. thaliana strains,

we still found a significantly higher number of strain-specific genes per crop strain (Fig 3D)

(Wilcoxon-rank-sum test, P = 0.003). These results suggest that the increased number of single-

tons in crop strains is not fully explained by phylogenetic distance.

Whether most singletons are functional and, furthermore, whether they are adaptive is

unclear. We could not detect any functional differences between the genes that exist as single-

tons in our two populations: in a comparison of gene functions for these singletons, we found

significant enrichment only for genes of unknown function (Fisher’s exact test q-value<0.01,

[33]) but not for any other functional category.

The overlap of pan genomes between and within hosts

When considering particular genes that are variable in their presence, we find the frequency of

a gene’s presence in strains collected from different hosts to be a good predictor of its fre-

quency in co-occurring strains in A. thaliana populations (Fig 3B; Pearson correlation

The role of the bacterial pan genome of Pseudomonas syringae in host specificity
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r = 0.94, P < 0.001). That is, the same genes are variable within and between host species. This

result suggests that the molecular and/or evolutionary processes that generate and maintain

presence/absence polymorphisms are recapitulated within and between hosts and geographic

regions. This result is robust to the exclusion of core genes (Pearson correlation r = 0.50,

P< 0.001).

The similarity of the within and between host core genomes

The core genome of a microbial taxon group, defined as those genes conserved across isolates

of that group, is comprised primarily of genes that have been vertically inherited. The core

Fig 3. Extensive gene content variation in A. thaliana strains mirrors variation between strains from

different hosts. (a) The frequency of genes among the 18 A. thaliana strains was compared to the frequency of

genes across 22 strains collected from different host species, in different locations. Values were binned at 0.1

frequency increments with the number on the x-axis denoting the frequency of a gene across strains. A. thaliana

and crop strains have a similar number of fixed and high frequency genes, suggesting that both groups have similar

numbers of genes important for survival. However, crop strains have significantly more singleton genes (Welch’s t-

test, P = 0.003). (b) Correlation between the frequency of a gene among crop strains and the frequency of the gene

among A. thaliana strains. Results are shown as the mean +/ the standard error. (c) Correlation between sequence

divergence between a strain and its closest relative with the number of strain-specific genes in that strain (d) The

effect observed in (c) is significant also when comparing only those crops strains with divergences similar to those of

A. thaliana strains (P = 0.003, Wilcoxon-rank-sum test). Results are presented as a box plot, with the mean, 5,25,75

and 95th percentiles illustrated.

https://doi.org/10.1371/journal.pone.0184195.g003
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genome is therefore thought to be enriched for genes essential for survival [34]. The core

genome of A. thaliana and crop strains is similar in gene number (4014 genes vs. 3665 genes

respectively, defining core genes to be those that are present in>90% of strains within each

group). Furthermore, largely the same genes are found in the core genomes of the A. thaliana
and crop strains of P. syringae; 88% (3551 genes) of the core for A. thaliana strains overlap

with the core for all crop strains. This suggests that the majority of genes fundamental to sur-

vival within the relatively constrained Midwestern USA A. thaliana environment are the same

as those required for survival across multiple host species and geographic locations.

A genomic island encoding toxins active against plants and microbes is

enriched in A. thaliana strains

While patterns of gene-content variation are similar between strains associated with the same

and different hosts, 436 genes are specifically conserved among A. thaliana strains (and vary in

presence across crop strains). This host-specific conservation could be the result of host spe-

cific adaptive conservation. Comparison of the gene functions enriched in the A. thaliana-spe-

cific suite of genes to those genes conserved across all strains reveals substantial enrichment

for functions associated with phytotoxin production (S2 Fig) (322-fold enrichment, Fisher’s

exact test q-value<0.001 [33]) and minor enrichment for transcriptional regulation (2-fold,

Fisher’s exact test q-value<0.001). Included in the enriched genes associated with phytotoxin

production are those encoding the biosynthetic pathway for syringomycin and syringopeptin,

toxins which exhibit broad host-range plant virulence and antifungal properties [35]. Numer-

ous studies have demonstrated that syringomycin and related non-ribosomal lipodepsipep-

tides can suppress other microbes and increase growth of the pathogen within agricultural

plant species [35,36].

The relevance of syringomycin-syringopeptin biosynthesis to A. thaliana-associated success

is further supported by the phylogenetic distribution of toxin-associated genes. Because A.

thaliana isolates derive almost exclusively from a single phylogenetic clade, phylogenetic

group II (Figs 1 and 2), we aimed to identify genomic regions specific to this clade. We filtered

gene content for those genes that were both unique to, and at high frequency (>90%) within,

phylogenetic group II. Fifty-six genes met these criteria (Fig 4A, S2 Table), 29.0% (16/56) of

which lie in the gene cluster that encodes the proteins necessary for syringomycin-syringopep-

tin biosynthesis (Fig 4A) [17,35]. Indeed, functional tests of phylogenetic group II strains have

confirmed their fungal-suppressive capacity [26]. The remaining phylogenetic group II specific

genes are distributed throughout the genome (S2 Table).

Both the functional enrichments and the phylogenetic distribution reveal the tight correla-

tion between strain abundance in A. thaliana and the presence of the syringomycin-syringo-

peptin biosynthetic cluster. Future functional work should investigate whether these broad

host-range toxins are necessary for P. syringae persistence in A. thaliana populations as well as

natural plant populations more generally.

A. thaliana-associated P. syringae encode few effectors

The Type-III secretion system (T3SS) and its related effectors are prime a priori candidates for

involvement in adaptation to different host environments. Effectors and the T3SS are central

to the capacity of P. syringae to infect plants, and the presence or absence of specific effectors

can dictate the success of an infection [37]. Effector composition differs between crop strains,

and is not tightly correlated with phylogeny, suggesting the rapid gain and loss of these genes

[7]. Through computational annotation of the effector content in our P. syringae strains, we

found that the effector composition of A. thaliana-associated P. syringae strains also varied,

The role of the bacterial pan genome of Pseudomonas syringae in host specificity
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with each strain containing homologous sequence to an average of 6.8 effectors. Note that we

consider all homologous sequences (50% identity over 50% of the length), including effectors

that may also be truncated. The crop P. syringae genomes contain an average number of effec-

tors more than four times higher (29.4) than the stains associated with A. thaliana. Five of the

sequenced A. thaliana-associated strains lack a canonical T3SS entirely and encode 0–1 effec-

tors, with only hopAH2 found in these strains (S3 Fig). Note that the classification of hopAH2

as an effector has recently been questioned, due to the absence of the hrp box, or the N-termi-

nus of the T3SS translocator.

The dearth of effectors in the phylogenetic group II that encompasses A. thaliana strains

was previously noted [7], and postulated to be the result of a physiological trade-off between

effector and toxin- mediated interactions with the host [38]. The A. thaliana-associated strains

may, however, encode other effectors that have yet to be identified in P. syringae.

Genes involved in biotic interactions are more likely to exhibit presence/

absence polymorphisms

Many of the genes at the interface of host-pathogen interactions evolve quickly, exhibiting

both presence/absence and nucleotide variability [7,26]. We determined the gene ontology

classifications most frequently found in the variable vs. core genomes for the A. thaliana P. syr-
ingae sequences. As expected, the core genome is significantly enriched for basic cellular func-

tions such as cell division and translation (Fig 4B). In contrast, the variable genome exhibits

Fig 4. Genes involved in biotic interactions evolve quickly amongst A. thaliana strains. The genomes of P.

syringae from A. thaliana contain genes whose products have the ability to suppress a diversity of microbes. (a) A view

of gene content conservation surrounding the syringomycin-syringopeptin genomic island. The x-axis denotes the

position of the gene in the P. syringae strain B728a. The y-axis shows the percent conservation across crop and A.

thaliana P. syringae. A genomic island encoding the syringomycin biosynthetic cluster is conserved across strains of P.

syringae from phylogenetic group II. The genes responsible for synthesis of syringomycin and syringopeptin are

colored cranberry and pink, respectively. The genes annotated within the orange arrow are involved in the regulation of

both toxins. (b) Fold enrichment of gene functions in the conserved and variable portions of the P. syringae genome.

Only gene categories that were significantly enriched in either the conserved or variable gene sets were included in this

figure. Significance was assessed via Fisher’s exact test, and a false discovery rate significance level of 0.01.

https://doi.org/10.1371/journal.pone.0184195.g004
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more than a 60-fold enrichment of genes involved in specific plant-microbe interactions (e.g.,

T3SS and pilus) and genes involved in microbe-microbe interactions (the type six secretion

system) (Fig 4B). Virulence factors such as the T3SS and its myriad effectors frequently cluster

in genomic islands that exhibit presence/absence polymorphisms (S4 Fig). Phage and insertion

sequence (IS) elements are also enriched in the variable component of the genome (Fig 4B).

These results indicate that those genes involved in biotic interactions exhibit among the high-

est rates of gain and loss and also reflect the clade-specific distribution of the syringomycin-

syringopeptin synthesis. Whether this increased rate of acquisition and loss is the result of

selection, or the result of particular molecular mechanisms (such as heightened rates of uptake

and excisions [39,40]) is currently unknown.

Discussion

Horizontal gene transfer and gene loss enable bacterial species to evolve rapidly. A conse-

quence of this genetic malleability is that different strains of the same species can quickly

become divergent in the genes they encode. Numerous studies have demonstrated that strains

that have likely diverged phenotypically (such as those collected from different hosts) differ

extensively in gene content. Whether this variation in gene content is the result of genome-

wide adaptation to the colonization of specific environments remains a largely unanswered

question. A key to identifying environment-specific genetic adaptations is determining gene

content variation both within and between environments.

Here we characterized the extent of gene content diversity present in co-occurring strains

of the ubiquitous plant pathogen P. syringae. Our comparison of whole genome sequences of

P. syringae resident on a single host, A. thaliana, has revealed patterns of gene content varia-

tion very similar to patterns found for crop strains that specialize on diverse host species

from diverse geographic locations. Specifically, gene content variation of strains collected

from A. thaliana is 2/3 that of the variation of strains collected from disparate hosts. This var-

iable portion of the genome consists of genes strongly enriched for microbe-host and

microbe-microbe interactions. This raises the possibility that the majority of the variable

genome may not be the result of adaptation to alternative hosts but, rather, a more general

armament to survive in dynamic and variable host environments. The excess of strain-spe-

cific genes among crop strains is an intriguing observation, albeit with several possible expla-

nations. Future work should characterize the function of candidate strain-specific genes in in
planta survival.

There are also several plausible explanations for the maintenance of gene content diversity

within co-occurring strains of P. syringae. A. thaliana is an annual weedy species, found at rela-

tively low densities among several other plant species [41]. P. syringae that propagate in A.

thaliana can do so only for a portion of the year (due to plant senescence), and must then dis-

perse to other host species or non-host environments [2,25]. This variation in host occupation

is likely to differ from the strains isolated from crops, several of which have evolved to special-

ize on their host of isolation [12,24,42]. The strains isolated from crops have repeatedly if not

continuously infected crop host populations [12]

While P. syringae on A. thaliana may propagate in hosts other than A. thaliana, there is no

evidence that these P. syringae predictably colonizes any other host. The extensive diversity of

P. syringae strains in non-host environments suggests that many P. syringae opportunistically

colonize a diversity of environments. It is also likely that the “A. thaliana” strains colonize

other hosts, though at present we do not have evidence to support this. The different composi-

tion of strains infecting A. thaliana could be the result of differences in selective pressures in

alternative non-host and host environments.
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Another possibility is that genetic diversity observed between A. thaliana strains is a conse-

quence of intraspecific differences in A. thaliana plants. The genes underlying the detection

and response to microbes are among the most variable in A. thaliana populations [43], and dif-

ferences in resistance traits could drive the diversification of pathogen genomes. Intraspecific

differences in the host environment extend beyond host genetics. A. thaliana leaves and roots

harbour thousands of microbial species [44–46]. These microbial communities differ between

plants of the same genotype, plants of different genotypes and plants in different soils. Conse-

quently, plant-associated P. syringae evolve both in response to interactions with the host, but

also in response to interactions with other microbial species. The rapid turnover of genes

involved in interactions with other microbes (such as the secretion systems) suggests that

microbe-microbe interactions contribute to gene content variation within host populations.

It is important to consider the possibility that we observe similar levels of variation

among A. thaliana strains and among strains collected from various crop hosts because

novel genes do not drive adaptation to particular host environments [32,47–49]. That is, it is

possible that there exists a pool of genes that will be more readily lost independent of envi-

ronment, because their maintenance is not strongly favored in any environment [49]. It is

also possible that there are genes that, across environments, are more readily acquired via

HGT. This, in turn, may lead to the observed pattern by which most genes will be found at

similar frequencies within and between environments. Indeed, our finding that the fre-

quency of genes tends to be similar within and between hosts highlights the caution that

should be taken when attributing the absence or presence of specific genes to the occupation

of specific environments.

Despite the extensive gene content variation we observe among strains residing within A.

thaliana, these resident strains of P. syringae are nevertheless characterized by the presence of

a genomic island that encodes for the production of two toxins, syringomycin and syringopep-

tin. While the full breadth of their toxicities is not well characterized, they are effective against

fungi, plants, and gram positive bacteria, pointing towards a potential ability of the A. thaliana
P. syringae strains to suppress and outcompete other microbes and to infect diverse plant host

species.

P. syringae in Midwestern populations of A. thaliana do not show evidence of specific adap-

tation to A. thaliana and instead exhibit features suggestive of a generalist lifestyle [50]. Per-

haps as a consequence of this generalist lifestyle, the A. thaliana P. syringae employ novel

tactics to promote their success. The lack of a T3SS in one third of the P. syringae that colonize

A. thaliana allows them to avoid detection, although these strains pay a penalty in terms of vir-

ulence when T3SS+ pathogens are not present [23]. Indeed, in a broad GWAS analysis of the

host factors shaping microbial communities, there is only a modest contribution from plant R
genes, the genes classically suspected of engaging in arms races [45]. Clearly, an understanding

of microbe-microbe interactions is essential for understanding the structure and distribution

of microbial communities in planta, as well as the spread of disease.

Materials and methods

Description of strains

P. syringae strains genotyped and sequenced in this study were originally isolated from A.

thaliana populations in the Midwestern USA between 2000 and 2014. The 18 P. syringae
strains that underwent full genome sequencing were isolated from nine A. thaliana popula-

tions residing in agricultural fields in Northwestern Indiana and Southwestern Michigan,

USA. These populations are separated by an average distance of 28km and a maximum dis-

tance of 98km. The 22 crop strains were isolated from 22 distinct locations, separated by an
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average distance of 9648km (Fig 1, S1 Table). The 18 strains isolated from A. thaliana span the

genetic diversity of strains from the A. thaliana environment, encompassing groups IIa-c [25].

Genomic DNA extraction, DNA sequencing, assembly and annotation

Total DNA was extracted using the Puregene (Illumina) extraction kit from a single colony

that was picked and grown overnight in 5mL of King’s B media. Colonies were diluted 1:10 in

the morning after 12-16hrs, and grown 2–6 hours to an OD600>0.1, which was then followed

by DNA extraction. Mate-pair libraries were constructed at Argonne National laboratories

and paired end libraries constructed at Beijing Institute for Genomics.

100-base pair reads were generated from the sequencing of mate-pair libraries for 18 A.

thaliana strains on a Genome Analyzer II (Illumina). 75-bp un-paired reads were also gener-

ated for each of the strains. De novo assembly was performed using Velvet 1.1.05 [51]. Mini-

mus2 from the Amos package [52] was used to merge contigs generated from the different

sequencing methods. The genomes were annotated with Rapid Annotation using Subsystem

Technology (RAST) server [53]. The 22 previously annotated crop strains were re-annotated

using the RAST server for consistency in annotation between all strains. The draft genomes

used in this study consisted of single up to thousands of contigs. Due to unavoidable errors in

contig assembly, multiple contigs may overlap the same genomic region, resulting in the dupli-

cation of genomic regions in an assembly. In consideration of this possibility, duplicate genes

(100% identity) within a genome were removed from the annotated dataset, and not consid-

ered in the analyses. The genome assembly statistics are presented in Table 1.

Phylogeny construction

To determine the phylogenetic relationship between the strains isolated from A. thaliana we

performed multi-locus-sequencing-analysis (MLSA). The MLSA-based phylogeny evaluating

the relationship between 76 strains of P. syringae isolated from A. thaliana, 22 crop strains, and

a Pseudomonas fluorescens outgroup was constructed from six housekeeping genes [54] cts, cgi,
gyrb, can, gap A and rpoD using ClonalFrame, a software optimized for estimating phylogenies

in the face of bacterial recombination. ClonalFrame [55] was run for 10000 burn-in iterations,

10000 post-burn in iterations, with sampling on every 10th generation. The phylogeny pre-

sented represents the 50% majority rule consensus tree. To corroborate the division on the

tree, we also constructed a maximum-likelihood phylogeny from the concatenated MLSA

sequences. This phylogeny supported the restriction of A. thaliana strains to phylogenetic

group II. The phylogeny for the 40 genomes used for calculations of sequence divergence in

this study was constructed using dnaml [56]. Two hundred sixty four genes that were recipro-

cal best hits were concatenated and used in the dnaml analysis. Orthologs used for phyloge-

netic analyses were defined as those genes that were reciprocal best hits, and aligned across

100% of the sequence in a global alignment comparison using fasta36 [57]. We use this strin-

gent criterion for determining orthologs when estimating the species phylogeny because we

aim to minimize the possible effects of horizontal gene transfer (HGT) on the phylogenetic

tree we generate. Highly conserved genes, both in presence and in sequence length are more

likely to be vertically inherited than those genes that vary between strains. The 436 genes that

met the described criteria and that were observed in all 40 P. syringae strains and the outgroup

P. fluorescens Pfo-1 strain were concatenated for each strain, and a maximum-likelihood tree

for concatenated genes was determined using dnaml [56,58]. While it is possible that some of

these 436 conserved genes have been subject to HGT in some of the studied strains, the signal

these relatively rare HGT events introduce should be weak considering most concatenated

genes are likely to have been inherited vertically along the tree.
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Determining Pseudomonad composition of Midwestern tomato and A.

thaliana leaves

Leaves from tomato and A. thaliana in agricultural and natural populations respectively were

collected in November 2013. Single leaves were removed from tomato plants irrespective of

plant disease state and frozen immediately in liquid Nitrogen. Whole A. thaliana rosettes were

Table 1. Assembly information for strains analyzed. The N50 for the strains sequenced in this study is for unscaffolded contigs. Several of the previously

sequenced assembled genomes are scaffolded, however, increasing the N50 for these genomes.

Strain Gene Num. Num. Contigs Size (bp) N50

Pph1448a 5454 3 6112448 Complete

PsyB728a 5254 1 6093698 Complete

PtoDC3000 5661 3 6538260 Complete

PtoMax13 5525 349 6105073 62407

PtoNCPPB1108 5482 304 6082048 47802

Pmp 5327 969 6039297 15161

Pla107 6248 791 6759945 22550

Pmo 5693 3414 6392728 5634

Pja 5674 4661 6380619 4021

PpiR6 5872 5099 6520586 3003

Pma 5474 878 6221751 17222

Psa 5245 941 5849032 14086

Pla106 5293 798 5895184 15738

Ptt 5262 3776 6243278 4753

Pac 5498 1179 6183769 12409

Pta 5541 1613 6158837 16098

PgyB076 5652 104 6236653 202511

PgyR4 5355 108 5905212 3723

Pae 5308 915 5960467 16806

T1 5587 122 6145942 150139

K40 5557 582 6153658 26013

Por1-6 5290 2855 6704257 10037

DM2.1.12.02a 5180 157 5914114 88439

LMC.P10 5226 172 6238204 83072

LMC.P80 5136 137 6189597 120774

LMC.P91 5374 243 6324900 59429

KN2.a.3 5201 133 5804868 120373

Knox623a 5391 554 5946364 22175

Knox652c 5071 160 5905380 95163

NL.P123 5030 220 5855665 61758

NP29.1a 5088 208 6088841 76982

LP217a 5242 382 6224113 47360

LP221b 4967 122 5939644 95628

LP868.1a 5153 123 5907756 111176

RM.P66 5290 70 7081112 284403

RMX.24.a.1 5367 224 6271973 69103

RM.P20 5153 159 6229891 99197

RMX815.1a 5077 167 5565846 67363

ME812.2b 4888 334 5636659 56761

LP205a 4964 478 5698429 30345

https://doi.org/10.1371/journal.pone.0184195.t001
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collected, and frozen immediately in liquid Nitrogen. A. thaliana roots were removed from the

rosette after which A. thaliana and tomato leaves were processed identically. The plant mate-

rial was lyophilized overnight until complete dehydration. The powerplant pro DNA extrac-

tion was then used to extract DNA from the lyophilized material. Two sequential extractions

were performed on the tomato tissue to remove residual secondary metabolite contamination,

which inhibited subsequent polymerase-chain reactions. Bar-coded PCR amplification of the

different extractions was then performed to amplify a fragment of gyrase b using primers mod-

ified from [26] to be able to anneal to an Illumina flow cell. The barcoded samples were then

sequenced on the MiSeq using a 500 cycle kit. Fifty samples, 25 from A. thaliana and 25 from

tomato produced viable reads mapping to gyrase b. The resulting reads were then clustered

with the usearch-global algorithm to a library of gyrase b sequences generated from sequences

within the PAMDB [59]. Those clusters that mapped with 75% identity were considered for

further analysis.

Identification of conserved vs. variable genes

The pan genome of A. thaliana strains and all 40 strains for which full genome sequence data

were available were determined using a method similar to that described in [7] but with slight

amendments including the alignment algorithm used, and the parameters for determining

homologs. In brief, we determined the presence and absence of genes within a genome using

an iterative global alignment with the software fasta36 [57]. We compared the translated

sequences using a cutoff of 50% homology over 50% the length of one of the two genes. Start-

ing with the ORFs in Pph1448a as the initial pan genome, we compared the translated ORFs of

each subsequent draft genome to the pan genome, and determined which genes in the draft

genome had not been observed in the compiled pan genome. These unique genes were then

added to the pan genome for the next iteration of sequence comparison with the next draft

genome. After these iterations had been completed for all 40 strains, we compared the ORFs of

each genome to the completed pan genome. This step was necessary to properly incorporate

information for genes that were homologous to more than one gene in the pan genome. This

method for characterizing the content of the pan genome scores a gene as present if homology

is exhibited over either of the genes in a comparison, fragmented coding sequences will align

with the intact ortholog, and these fragments will not inflate the number of genes in the pan

genome as described [8].

Calculation of sequence divergence

For the calculation of sequence divergence between two strains, we considered only those

genes that were found in all P. syringae strains, that were reciprocal best hits, and that aligned

across 100% of their sequence (fasta36 [57]). These 436 genes were concatenated for each

strain and sequence divergence was calculated using the method of [56].

Identification of effector repertoire

Annotations of previously identified P. syringae effectors were obtained from [7]. These anno-

tations included 79 effectors, with several effectors represented with more than one allele. The

presence of an effector in the A. thaliana- associated P. syringae genomes was assessed by

using tblastn [60] to identify protein homologs in the genomes. A homolog was considered to

be present if it matched the previous annotation with 50% identity at the protein level over

50% of the protein. Seven effectors are found in more than 50% of the group II strains. Three

of these lie in the conserved effector locus cluster (avrE, hopA1, hopM1) and three lie in

another operon (hopAH1, hopAG1, hopAI1). Interestingly, a homolog of hopAH2 is found in
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every P. syringae genome (except RMX815.1a) in every phylogenetic clade, including the P.

syringae strains that lack the canonical T3SS. hopAH2 lacks a hrp box, and its status as an effec-

tor has come into question (http://www.pseudomonas-syringae.org/). It is important to note

that in this study we identified only effectors that had previously been annotated, and that our

results do not preclude the presence in these strains of effectors that have yet to be annotated

as such.

Determining functional enrichments

A recent study [61] manually annotated the gene functions of a P. syringae strain closely

related to the strains we sequenced here, annotating genes as one of 63 functional categories.

These annotations, while not covering the entire genome, are more specific than those pro-

vided by RAST and other automated annotation method. Two-thousand eight hundred and

fifty genes were included in the enrichment annotations. We classified 2404 of these genes as

conserved (present in at least 17 of the 18 genomes or 94.4% of the genomes), and 446 as vari-

able. Using the 63 categories of annotation, we determined enrichments for functions within

the conserved and variable categories. Statistical significance was assessed using fisher’s exact

test, and a False Discovery Rate of 0.01 [33].

Comparisons of the functional enrichments of the strain specific genes were performed

using the functional annotations of all genomes generated in the RAST pipeline [53]. Subsys-

tem annotations were compared across genomes with the R package ‘TopGO’ (created by

Adrian Alexa and Jorg Rahnenfuhrer), and significant enrichment was assessed using fisher’s

exact test, and a False Discovery Rate of 0.01 [33].

Supporting information

S1 Fig. Relationship between genome assembly N50 and number of genes identified per

genome. The relationship between genome assembly quality and the number of genes (non-

duplicates) annotated per genome is not significantly different from zero (linear regression,

P = 0.291). The opaque gray shows the 95% confidence interval for the predicted relationship.

(PDF)

S2 Fig. Fold enrichment of gene functions enriched among genes conserved specifically in

A. thaliana strains in comparison to genes conserved across all strains. Only gene categories

that were significantly enriched in either the conserved or variable gene sets were included in

this figure. Significance was assessed via Fisher’s exact test, and a false discovery rate of 0.01.

(PDF)

S3 Fig. A. thaliana associated strains encode few canonical P. syringae effectors. The x-axis

details the 79 effectors (or alleles of effectors) that were identified previously in P. syringae
genomes [7]. The y-axis shows the 18 genomes sequenced in this study, and whether an ortho-

logue of these effectors was identified (dark blue indicates presence in genome).

(PDF)

S4 Fig. Gene content variation at the conserved effector locus. Conservation of genes along

the conserved effector locus (shaded in red). Approximately one third of strains collected from

A. thaliana lack the canonical T3SS [23].

(PDF)

S1 Table. Location of isolation for strains analyzed in this study. Information was not avail-

able for several strains (listed as "NA"). When non-specific isolation information was provided

by collector (such as country of origin), the latitude of country is provided. LMC is an
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abbreviation for Lake Michigan College.

(PDF)

S2 Table. Genes unique to and conserved in group II. This table shows the position in the

B728a genome of each of the genes unique to group II. Fifty-six genes were conserved in 90%

or more of the strains in group II, but absent outside group II. 29% of these genes lie in the syr-

ingomycin/syringopeptin biosynthetic cluster, highlighted in Cyan.

(PDF)
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