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    Introduction 
 Glycosylation in the secretory pathway is a complex process in 

which hundreds of glycosyltransferases are involved ( Taniguchi 

et al., 2002 ). Many glycosyltransferases appear in gene families 

specifi ed mainly by the nature of the nucleotide sugar donor 

( Coutinho et al., 2003 ). Within a given family, individual gly-

cosyltransferases differ regarding the recognized acceptor 

structures. To understand and modulate cellular glycosylation 

pathways, it is important to know how this substrate specifi city 

is generated ( de Graffenried and Bertozzi, 2004 ). 

 Important in this respect is the observation that acceptor 

specifi city in many glycosyltransferases is not restricted to rec-

ognition of one or a few specifi cally linked monosaccharides. 

Some protein-specifi c glycosyltransferases obtain additional 

selectivity by recognizing specifi c peptide motifs in the accep-

tor. A classic example is the  N -acetylgalactosaminyltransferase 

(GalNAcT), which modifi es glycoprotein hormones with high 

selectivity ( Smith and Baenziger, 1988 ). 

 Some glycosyltransferases require other proteins that are 

not part of the acceptor structure for their specifi c activity.  � 1,4-

galactosyltransferase ( � 4GalT) acts on terminally positioned 

 N -acetylglucosamine (GlcNAc) residues conjugated to proteins 

or lipids. Its specifi city changes if it builds a complex with 

 � -lactalbumin. In the complex, free glucose is used as an accep-

tor, and lactose is formed ( Brew et al., 1968 ). In the case of core 

1  � 3-galactosyltransferase (C1 � 3GalT), a molecular chaperone 

called Cosmc, with specifi city for this single client, is required 

for folding and transportation to the Golgi ( Ju and Cummings, 

2002 ,  2005 ;  Ju et al., 2008 ). Also, for O-mannosylation, two 

proteins, POMT1 and POMT2, are required ( Manya et al., 

2004 ). However, in this case, a two-protein enzymatic complex 

is proposed. The same is true in heparin sulfate biosynthesis in 

  D
rosophila melanogaster   � 4GalNAcTB mutant fl ies 

revealed that this particular  N -acetylgalactosami-

nyltransferase is predominant in the formation 

of lacdiNAc (GalNAc � 1,4GlcNAc)-modifi ed glycolipids, 

but enzymatic activity could not be confi rmed for the 

cloned enzyme. Using a heterologous expression cloning 

approach, we isolated  � 4GalNAcTB together with  � 4Gal-

NAcTB pilot (GABPI), a multimembrane-spanning protein 

related to Asp-His-His-Cys (DHHC) proteins but lacking 

the DHHC consensus sequence. In the absence of GABPI, 

inactive  � 4GalNAcTB is trapped in the endoplasmic retic-

ulum (ER). Coexpression of  � 4GalNAcTB and GABPI gen-

erates the active enzyme that is localized together with 

GABPI in the Golgi. GABPI associates with  � 4GalNAcTB 

and, when expressed with an ER retention signal, holds 

active  � 4GalNAcTB in the ER. Importantly, treatment 

of isolated membrane vesicles with Triton X-100 dis-

turbs  � 4GalNAcTB activity. This phenomenon occurs with 

multimembrane-spanning glycosyltransferases but is nor-

mally not a property of glycosyltransferases with one 

membrane anchor. In summary, our data provide evi-

dence that GABPI is required for ER export and activity of 

 � 4Ga lNAcTB.
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cells. They lack the Golgi UDP-Gal transporter and, conse-

quently, show drastically reduced incorporation of Gal in gly-

cans ( Deutscher and Hirschberg, 1986 ). A cDNA library was 

constructed from  Drosophila , subdivided into pools, and, in an 

established sibling selection procedure ( Bakker et al., 1997 ), 

used to search for clones that rendered cells positive for lacdi-

NAc. Cell surface lacdiNAc expression was monitored with an-

tibody 259-2A1, which was originally raised from  Schistosoma 
mansoni  – infected mice ( van Remoortere et al., 2000 ). In this 

procedure, it became obvious that two cDNA clones were re-

quired for the expression of the lacdiNAc epitope. Although 

clone one was a member of the  � 1,4GalT family ( van Die et al., 

1997 ), the second clone (fl ybase CG17257) encoded a type III 

membrane protein that was related to a gene family referred to as 

Asp-His-His-Cys (DHHC) proteins ( Mitchell et al., 2006 ). This 

protein was termed  � 4GalNAcTB pilot (GABPI) to describe its 

crucial role in generating a functionally active  � 4GalNAcTB as 

shown in the following experiments. The identifi ed  � 4GalNAcT 

was identical to the inactive  � 4GalNAcTB recently cloned by 

 Haines and Irvine (2005)  in a homology-based approach. In 

agreement with this study, we found no in vivo activity for full-

length  � 4GalNAcTB expressed in mammalian cells. It is re-

markable that expression cloning identifi ed  � 4GalNAcTB and 

not the homologous  � 4GalNAcTA, which was shown in an 

earlier study ( Haines and Irvine, 2005 ) to be an active en-

zyme. To resolve the controversial fi nding,  � 4GalNAcTA was 

cloned by PCR and expressed in comparison with  � 4Gal-

NAcTB – GABPI in CHO and HEK293 cells. These experi-

ments demonstrated that the cell surface lacdiNAc expression 

detected with antibody 259-2A1 as a result of  � 4GalNAcTA was 

much lower than the lacdiNAc formation after the combined ex-

pression of  � 4GalNAcTB and GABPI. Thus, the data demon-

strate the existence of two functionally active  � 4GalNAcTs 

( � 4GalNAcTA and  � 4GalNAcTB) in  Drosophila  of which  � 4Gal-

NAcTB needs the cooperation of GABPI. Because CHO cells 

demonstrated a low tolerance to expression of the  Drosophila  

 N -acetylgalactosamine (GalNAc) transferases and HEK293 cells 

turned out to be a more suitable expression system, subsequent 

experiments were performed exclusively in HEK293 cells. 

  � 4GalNAcTB specifi cally modifi es 
glycolipids 
 Despite elaborated analyses of  Drosophila  glycoproteins ( North 

et al., 2006 ), the lacdiNAc structure has so far only been found 

as a modifi cation of glycolipids ( Seppo et al., 2000 ). With both 

cloned enzymes at hand, we evaluated the question of acceptor 

specifi city. HEK293 cells were transfected with  � 4GalNAcTA, 

 � 4GalNAcTB, or the combination  � 4GalNAcTB – GABPI and 

analyzed for the presence of lipid- and protein-bound lacdiNAc 

using TLC followed by immunooverlay ( Fig. 1 A ) and Western 

blotting ( Fig. 1 B ), respectively. [ID]FIG1[/ID]  In both systems,  Drosophila  S2 

cells, which are naturally positive for the antibody epitope, and 

HEK293 cells transfected with  Caenorhabditis elegans   � 4Gal-

NAcT ( Kawar et al., 2002 ) were used as controls. Although ex-

pression of the  C. elegans  enzyme confi rmed the availability of 

 � 4GalNAcT acceptors on proteins, the absence of specifi c sig-

nals in both HEK293 cells transfected with the  � 4GalNAcTs 

which two different exostosins are required for effi cient bio-

synthesis ( McCormick et al., 2000 ). 

 For several glycosyltransferases involved in glycolipid bio-

synthesis, data indicate that factors other than the enzyme and the 

acceptor substrate play a role. This is the case for  � 4GalT-V and 

-VI, which are homologues of the  � 4GalT mentioned in the pre-

vious paragraph and of  Drosophila   melanogaster   � 4GalNAcTB 

(the subject of this study). Under in vitro conditions,  � 4GalT-V 

and -VI transfer galactose (Gal) into  � 1-4 linkage to terminally 

expressed GlcNAc residues on glycoproteins ( van Die et al., 

1999 ;  Guo et al., 2001 ). However, their involvement in the bio-

synthesis of lactosyl ceramide (Cer) by Gal transfer onto glucosyl 

Cer has been demonstrated as well ( Nomura et al., 1998 ;  Sato 

et al., 2000 ;  Kolmakova and Chatterjee, 2005 ). At least in the case 

of galactosyltransferase V, this latter activity depends on the en-

zyme ’ s anchorage in the membrane ( van Die et al., 1999 ;  Sato 

et al., 2000 ). Other enzymes involved in glycolipid biosynthesis 

have been shown to exhibit very low ( de Vries et al., 1995 ;  Zhu 

et al., 1998 ;  Togayachi et al., 2001 ) or no ( Steffensen et al., 2000 ; 

 Schwientek et al., 2002 ) activity if expressed as soluble proteins. 

In general, very little is known about how lipid acceptors are rec-

ognized by glycosyltransferases. However, it has been suggested 

that a membrane-bound activator protein is required to present 

glycolipid acceptors to the modifying glycosyltransferases 

( Ramakrishnan et al., 2002 ). This hypothesis is substantiated by 

analogy to the lysosomal sphingolipid degradation machinery in 

which the sphingolipid activator protein presents the glycolipid 

substrates to glycosidases ( Kolter and Sandhoff, 2005 ). 

 In this study, we describe a novel mechanism of glycosyl-

transferase maturation and functionalization for the glycolipid-

specifi c  � 4GalNAcTB from  Drosophila . This enzyme, which has 

been described as an inactive homologue of  � 4GalNAcTA in a 

previous study ( Haines and Irvine, 2005 ), is a member of the in-

vertebrate branch of the  � 4GalT family involved in the biosyn-

thesis of the lacdiNAc (GalNAc � 1,4GlcNAc) epitope ( Kawar 

et al., 2002 ;  Vadaie et al., 2002 ;  Haines and Irvine, 2005 ;  Stolz 

et al., 2008 ). Because  � 4GalNAcT had not been cloned when this 

study was started, we searched for the corresponding activity 

using expression cloning ( Bakker et al., 1997 ,  2005 ;  M ü nster 

et al., 1998 ). In a heterologous approach, a cDNA library from 

 Drosophila  was used for expression in CHO cells, whereas for-

mation of the lacdiNAc epitope was monitored with a specifi c 

monoclonal antibody ( van Remoortere et al., 2000 ). As will be 

demonstrated in this study, the expression of two cDNA clones 

was required to install the functionally active enzyme. 

 Results 
 Expression cloning of a  Drosophila  
 � 4GalNAcT 
 Other than in many invertebrates, the lacdiNAc element has been 

identifi ed on only a few glycoconjugates in mammals ( Sato 

et al., 2003 ). We ascertained that CHO cells are negative for lacdi-

NAc. Considering that in mammalian cells terminal GlcNAc resi-

dues are recognized by several galactosyltransferases, we 

additionally hypothesized that signals in the complementation 

cloning approach could be improved by the use of CHO Lec8 
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active enzyme. Microsomal fractions of HEK293 cells trans-

fected with either  � 4GalNAcTB or GABPI were isolated, 

mildly treated with detergent (saponin 0.01%), and functionally 

tested in mixtures. The assay system used to follow  � 4Gal-

NAcT activity was adapted from an established assay ( Palcic 

et al., 1988 ). In this assay system, [ 3 H]UDP-GalNAc is the do-

nor, and GlcNAc –  p -nitrophenyl (pNP) is the acceptor substrate. 

No GalNAc transfer was measured in mixed vesicles ( Fig. 2 A ), 

whereas controls with microsomes of  � 4GalNAcTA –  or  � 4Gal-

NAcTB – GABPI-transfected HEK293 cells were active after 

and in S2 cells confi rmed the earlier observations in fl ies. In con-

trast, immunostaining of the lipid extracts resulted in positive 

signals for S2 cells as well as for HEK293 cells transfected with 

the  � 4GalNAcTB – GABPI pair. Expression of  � 4GalNAcTB 

alone was not suffi cient to produce a signal, whereas faint sig-

nals were reliably obtained with  � 4GalNAcTA. It is important 

to mention that lipid specifi city is preserved, although the 

glycolipid acceptor structures are different in  Drosophila  and 

HEK293 cells. 

 In vitro activity of  � 4GalNAcTB – GABPI 
is detergent sensitive 
 The observations that  � 4GalNAcTB is inactive if it is separately 

expressed in a heterologous cell system or if it is tested as a re-

combinant soluble protein ( Haines and Irvine, 2005 ) encour-

aged further analyses to examine at which step  � 4GalNAcTB 

and GABPI interact with each other in the biosynthesis. In the 

fi rst experiment, it was established that a soluble secreted con-

struct of  � 4GalNAcTB was still inactive when coexpressed 

with GABPI. Subsequently, we wondered whether the two pro-

teins expressed in separate cells have the capacity to form an 

 Figure 1.     Drosophila -derived  � 4GalNAcTs are specifi c for glycolipids.  
(A) Glycolipid extracts from S2 cells and HEK293 cells after transfection 
with empty vector (mock) and GalNAcTs were separated on TLC and immuno-
overlayed with antibody 259-2A1. (B) Protein extracts from cells as de-
scribed in A were analyzed by Western blotting with 259-2A1. A protein 
extract from  S .  mansoni  eggs was loaded as a control.   

 Figure 2.    Activity of  � 4GalNAcTB is disrupted by Triton X-100.  (A) Micro-
somal preparations of HEK293 transfected with  � 4GalNAcTs and GABPI 
as indicated were assayed for activity with GlcNAc-pNP as an acceptor 
and [ 3 H]UDP-GalNAc or [ 3 H]UDP-Gal (endogenous activity as an internal 
control) as donor substrates. Each value represents the mean of three in-
dependent vesicle preparations with standard deviation. GalNAcTB mix 
GABPI indicates that the proteins were expressed separately but mixed af-
terward for assays. (B and C) Microsomal fractions of HEK293 cells trans-
fected with  � 4GalNAcTA (B) or the combination  � 4GalNAcTB – GABPI (C) 
were treated with Triton X-100 and saponin in various concentrations and 
assayed for GalNAcT activity as in A.   
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 Depletion of GABPI in  Drosophila  S2 
cells delocalizes GalNAcTB and reduces 
lacdiNAc-containing glycolipid formation 
 To additionally evaluate the infl uence of GABPI on  � 4Gal-

NAcTB localization in the natural environment, RNAi experi-

ments were performed. S2 cells were transiently transfected 

identical treatment with detergent. [ID]FIG2[/ID]  In accordance with lacdiNAc 

formation in intact cells,  � 4GalNAcTB was not active when ex-

pressed alone, but it showed higher activity than  � 4GalNAcTA 

when expressed in combination with GABPI. 

 In contrast to  � 4GalNAcTA, the  � 4GalNAcTB activity 

strongly depended on the detergent used. Only background 

levels were measured if membranes were treated with Triton 

X-100 ( Fig. 2 B ) or NP-40 (not depicted) at 0.5%, which is rou-

tinely used in glycosyltransferase assays. The milder detergent 

saponin increased activity over a wide concentration range 

( Fig. 2 B ). The rather low activity measured in the absence of 

detergent was probably a result of limited transport of the sub-

strates over the vesicle membranes. As saponin is known to per-

forate and not disrupt membranes ( Schulz, 1990 ), these data 

suggest that the maintenance of protein complexes in intact 

membrane patches is required for  � 4GalNAcTB activity. 

 ER export of  � 4GalNAcTB requires GABPI 
 The data presented so far for the interaction between  � 4Gal-

NAcTB and GABPI are highly reminiscent of the interactions 

between the human C1 � 3GalT generating the T antigen (core 1 

 O -glycan Gal � 1-3GalNAc � 1-Ser/Thr) and its client-specifi c 

molecular chaperone, Cosmc ( Ju and Cummings, 2002 ). Cosmc 

supports functional folding of C1 � 3GalT in the ER but then 

dissociates and releases C1 � 3GalT ( Ju et al., 2002b ;  Ju et al., 

2008 ). Therefore, the following experiments addressed the sub-

cellular localization of GABPI and  � 4GalNAcTs. Flag- � 4Gal-

NAcTs and Myc-GABPI were separately expressed in HEK293 

cells and, after selection of stable clones, were detected by indi-

rect immunofl uorescence. Flag- � 4GalNAcTA and Myc-GABPI 

colocalized with the Golgi marker  � -mannosidase II ( Fig. 3, 

A and C ). [ID]FIG3[/ID]  Only the signal generated by Flag- � 4GalNAcTB over-

lapped with the ER marker calnexin ( Fig. 3 B ). However, when 

GABPI was cotransfected ( Fig. 3, D – F ), the immunofl uores-

cence images showed a clear shift of  � 4GalNAcTB to the Golgi. 

Moreover, as shown in  Fig. 3 F , GABPI and  � 4GalNAcTB co-

localized in this compartment. This experiment demonstrated 

that ER export of  � 4GalNAcTB needs piloting by GABPI, 

which by itself is an autonomous protein fully equipped with 

the information required for folding and transport to the Golgi. 

 As GABPI moves with  � 4GalNAcTB, the question was 

raised whether both proteins remain associated in the Golgi. To 

answer this question, GABPI was tagged with a C-terminal 

KKTN dilysine signal ( Zerangue et al., 2001 ), which retains 

proteins in the ER. GABPI was indeed successfully localized 

in the ER using this approach ( Fig. 3 G ). More importantly, 

 � 4GalNAcTB was also retained in the ER in cells expressing 

KKTN-tagged GABPI ( Fig. 3 H ). In vitro enzymatic activity of 

 � 4GalNAcTB was about two times as high as the nonretained 

construct ( Fig. 2 A , right bars), and cell surface lacdiNAc was 

also detectable in these cells. Although the latter probably re-

quired cycling to the Golgi of at least part of the enzyme, ER 

retention might have allowed a higher protein expression level 

that was enzymatically active in vitro. Together, these data 

demonstrated that the DHHC family – related protein has, in 

contrast to Cosmc, functions that go beyond those of a client-

specifi c chaperone. 

 Figure 3.    The Golgi resident protein GABPI pilots  � 4GalNAcTB to the 
Golgi apparatus.  The subcellular localization of  � 4GalNAcTs and GABPI 
was analyzed with N-terminally tagged proteins expressed in HEK293 
cells. (A – C) Flag- � 4GalNAcTA, -B, and Myc-GABPI were visualized by 
indirect immunofl uorescence (red). Subcellular compartments were labeled 
with anti –  � -mannosidase II (Golgi) or calnexin (ER; green). (D – F) Flag-
 � 4GalNAcTB (red) coexpressed with Myc-GABPI (F, green). (G) Subcel-
lular localization of Myc-GABPI containing an N-terminal KKTN sequence. 
(H) Flag- � 4GalNAcTB (green) coexpressed with Myc-GABPI – KKTN (red). 
Nuclei were stained with Hoechst 33258 (blue).   
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pressed, as shown in the total cell lysates, whereas only Flag-

 � 4GalNAcTB and not Flag- � 4GalNAcTA was precipitated via 

Myc-GABPI – HA. This provided additional evidence for a tight 

interaction between  � 4GalNAcTB and GABPI. 

 The DHHC family – related protein GABPI 
is not an acyltransferase 
 Characterized DHHC protein family members are palmitoyl-

transferases in which the cysteine residue in the conserved DHHC 

motif is essential for activity ( Lobo et al., 2002 ;  Roth et al., 

2002 ;  Valdez-Taubas and Pelham, 2005 ). GABPI, in contrast to 

all mammalian and the other  Drosophila  members in the family, 

has exchanged this motif from DHHC to DHHS. This was al-

ready an argument against its function as acyltransferase. To vali-

date this assumption, a series of mutants was constructed with 

which a potential involvement of the DHHS motif in GABPI 

functions could be tested. The ability of GABPI to install a 

functional  � 4GalNAcTB was not abolished by reconstruction 

of the DHHC motif, by replacement of the serine by alanine, or 

by successive replacement to AAAA (unpublished data). In ad-

dition, the critical cysteine residue (C29) that may serve as acyl 

residue acceptor in  � 4GalNAcTB was mutated. Again, no effect 

on GABPI –  � 4GalNAcTB Golgi localization and activity was 

found (unpublished data). 

 The stem region of  � 4GalNAcTB is needed 
for activation by GABPI 
 Because the  � 4GalNAcTs isolated from  Drosophila  are highly 

homologous proteins, it was of relevance to identify primary 

sequence elements responsible for the strict GABPI dependency 

with N-terminally tagged  � 4GalNAcTs, and localization of the 

enzymes was monitored. As shown in  Fig. 4 A , both  � 4GalNAcTs 

were colocalized in vesicular structures presumed to be the Golgi. [ID]FIG4[/ID]  

 � 4GalNAcTB did not show any overlap with the ER-specifi c 

antibody anti-HDEL ( Fig. 4 B ). Incubation of cells with double-

stranded RNA (dsRNA;  Clemens et al., 2000 ) corresponding 

to a central coding region of GABPI dissected the HA- � 4Gal-

NAcTB signal from Flag- � 4GalNAcTA ( Fig. 4 C ) and shifted 

the signal to structures that are part of the ER ( Fig. 4 D ). 

 To answer whether the RNAi-induced redistribution of 

the enzyme is also followed by a change in activity, a second 

knockdown experiment was performed in which dsRNAs were 

designed to down-regulate  � 4GalNAcTA,  � 4GalNAcTB, or 

GABPI. S2 cells were cultured for 3 d in the absence or pres-

ence of dsRNA, after which the expression of lacdiNAc was 

displayed by immunocytochemistry and matrix-assisted laser 

desorption/ionization (MALDI) time of fl ight (TOF) mass spec-

trometry (MS), as illustrated in  Fig. 5 . [ID]FIG5[/ID]  The intense staining of 

control cells with antibody 259-2A1 was in accordance with 

the detection of lacdiNAc-containing glycolipid structures by 

negative-ion mode MALDI-TOF-MS.  � 4GalNAcTA knock-

down did not change the signal pattern in comparison with con-

trol cells, whereas depletion of either  � 4GalNAcTB or GABPI 

had comparably strong effects on lacdiNAc expression. In the 

negative-ion mode, reduction of glycolipids carrying lacdiNAc 

repeats was accompanied by an enrichment of GlcNAc � ,3Ga

l � ,3GalNAc � ,4GalNAc � ,4(PE-6)GlcNAc � ,3Man � ,4Glc � Cer 

species with a molecular mass of 1,958.4 D, an acceptor struc-

ture for  � 4GalNAcT. The positive-ion mode analyses clearly 

demonstrated the accumulation of a second  � 4GalNAcT accep-

tor structure, GlcNAc � ,3Man � ,4Glc � Cer, having a molecular 

mass of 1,087.6 D. Changes in the glycolipid structures are very 

similar to changes observed in  � 4GalNAcTB knockout fl ies 

( Stolz et al., 2008 ) and thus are not further addressed in this 

paper. In addition, a new glycolipid species carrying lacdiNAc 

repeats with a molecular mass of 1,796.3 D has been identi-

fi ed and characterized by MALDI-TOF/TOF-MS (Table S1 and 

Figs. S1 and S2, available at http://www.jcb.org/cgi/content/

full/jcb.200801071/DC1) as well as two extended species (Table 

S1 and Fig. S3). In summary, the results presented in  Figs. 4 

and 5  allow the conclusions that (a)  � 4GalNAcTB is the major 

lacdiNAc-synthesizing enzyme in S2 cells as it is in the fl y, 

(b) GABPI enables Golgi targeting of  � 4GalNAcTB, and (c) 

 � 4GalNAcTB is essentially required to convey functionality. 

 Pull down of the complex formed between 
 � 4GalNAcTB and GABPI 
 Because the data shown so far consistently argue for the exis-

tence of  � 4GalNAcTB and GABPI as a complex in the Golgi, 

we examined this contact in pull-down experiments. HEK293 

cells transiently transfected with cDNA constructs encoding 

Myc-GABPI – HA and Flag- � 4GalNAcTA and -B were lysed 

with buffer containing 1% NP-40. The anti-HA antibody 12CA5 

coupled to Sepharose beads was used to precipitate Myc-

GABPI – HA. To control the expression of recombinant proteins, 

total cell lysates were analyzed by Western blotting in parallel 

to precipitated proteins ( Fig. 6 ). [ID]FIG6[/ID]  Both proteins were well ex-

 Figure 4.    Knockdown of GABPI in S2 cells interferes with Golgi localization 
of  � 4GalNAcTB.  (A – D) S2 cells after 3 d of culture in the absence (A and B) or 
presence (C and D) of dsRNA directed against GABPI were transiently trans-
fected with Flag- � 4GalNAcTA and HA- � 4GalNAcTB. The Flag and HA epi-
topes were detected 2 d after transfection using respective antibodies, and the 
ER was marked with anti-HDEL. Nuclei were stained with Hoechst 33258.   



JCB • VOLUME 184 • NUMBER 1 • 2009 178

to the cytoplasmic and stem region of  � 4GalNAcTB (construct 

B-B-A;  Fig. 7 E ). This is in agreement with the fact that the cat-

alytic domain of  � 4GalNAcTA can be produced as soluble en-

zyme and, therefore, is an independent active entity. 

 Discussion 
 Using a heterologous expression cloning approach, we isolated 

 � 4GalNAcTB as the major enzyme responsible for the biosyn-

thesis of lacdiNAc structures in  Drosophila . In this study, this 

enzyme was demonstrated to depend on the cooperation of a 

multimembrane-spanning protein related to the DHHC protein 

family. To point out the complexity of its involvement in forming 

a functionally active  � 4GalNAcTB, it was called GABPI. 

GABPI was cloned simultaneously to  � 4GalNAcTB in a classi-

cal expression cloning approach. This demonstrates the power 

of this technique, which exclusively screens for activity. The 

fact that the second  � 4GalNAc transferase in  Drosophila , 

of  � 4GalNAcTB. The aligned primary sequences indicated the 

stem region to be the domain of highest variability. Conse-

quently, hybrids were made by domain swapping, as shown in 

 Fig. 7 . [ID]FIG7[/ID]  The chimera in which cytoplasmic and transmembrane 

domains of  � 4GalNAcTA were added to stem and catalytic re-

gions of  � 4GalNAcTB (hybrid A-B-B) remained GABPI de-

pendent for Golgi localization ( Fig. 7, A and B ) and activity 

(not depicted). However, additional replacement of the stem re-

gion destroyed activation by GABPI. The resulting protein was 

inactive and retained in the ER ( Fig. 7, C and D ). Because the 

stem region in  � 4GalNAcTA is considerably longer than in 

 � 4GalNAcTB, additional constructs were prepared in which 

the size was trimmed from the N and C termini to the exact 

length of the  � 4GalNAcTB stem region. All constructs re-

mained inactive (unpublished data), allowing the conclusion 

that information contained in the stem region of  � 4GalNAcTB 

is essential for its function. In contrast,  � 4GalNAcTA remained 

Golgi localized and active independently of GABPI when fused 

 Figure 5.    Knockdown of GABPI in S2 cells abrogates  � 4GalNAcTB activity.  S2 cells before and after dsRNA down-regulation of  � 4GalNAcTs and GABPI 
as indicated were stained with antibody 259-2A1 to display lacdiNAc structures on the surface. Extracted glycolipid fractions were analyzed by MALDI-
TOF-MS in negative- and positive-ion mode. Glycolipid species carrying multiple lacdiNAc structures that show differential expression are connected by 
dashed red lines. The positive-mode spectra show accumulation of the  � 4GalNAcT trisaccharide precursor.   
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leases an active C1 � 3GalT ( Ju et al., 2002b ,  2008 ). In contrast, 

GABPI moves with  � 4GalNAcTB to the Golgi and retains 

 � 4GalNAcTB in the ER if it is retained itself. This and the fact 

that the proteins can be coimmunoprecipitated argue for a stable 

complex of both. 

 An insertion of the complex in an intact membrane patch 

is indispensable for functionality. Proof of this is provided by 

the fact that  � 4GalNAcTB activity tested with GlcNAc-pNP 

was almost completely abolished after addition of Triton X-100 

or NP-40. Although these are rather mild detergents that normally 

do not dissociate protein complexes, their presence interferes 

with membrane integrity. This in turn may cause de formation of 

associated complexes. In contrast, saponin, which only perfo-

rates membranes, most likely increased activity by allowing the 

substrates to enter the vesicles without disturbing the proper 

embedding of the enzyme in the membrane. Detergent sensi-

tivity is a property of many mannosyltransferases in the ER 

( Schutzbach, 1997 ), including the protein O-mannosyltransferase 

complex (POMT1 and POMT2), which is inactivated by Triton 

X-100 ( Manya et al., 2004 ), and egghead, the mannosyltransfer-

ase acting two steps upstream of  � 4GalNAcTB in  Dro so phila  

glycolipid biosynthesis ( Wandall et al., 2003 ). These enzymes 

are multitransmembrane-spanning proteins. Glycosyltransferases 

of the Golgi containing one transmembrane domain are usually 

not sensitive to detergents. As  � 4GalNAcTB is a typical member 

of the Golgi type II transmembrane glycosyltransferases, the 

observed detergent sensitivity is expected to be conveyed by 

disturbance of GABPI or the GABPI –  � 4GalNAcTB complex. 

 In line with the experiments in HEK293 cells, dsRNA-

induced knockdown of GABPI in  Drosophila  S2 cells separated 

 � 4GalNAcTB from  � 4GalNAcTA, depleted cell surface expres-

sion of the lacdiNAc epitope, and provoked an accumulation of the 

 � 4GalNAcT glycolipid acceptor structures. These effects observed 

at the cellular level were exactly phenocopied in a  Drosophila  mu-

tant with an inactivated  � 4GalNAcTB gene ( Stolz et al., 2008 ). 

 The knowledge that all functionally characterized DHHC 

family proteins are palmitoyltransferases prompted experiments 

designed to determine whether GABPI could function as an 

 � 4GalNAcTA ( Haines and Irvine, 2005 ), was not detected in 

the expression cloning approach is a result of the much lower 

activity of this enzyme, which we confi rmed in in vitro and in 

cellular test systems as well as on the systemic level ( Stolz 

et al., 2008 ). Although  � 4GalNAcTA has been shown to act on 

protein acceptors in vitro ( Sasaki et al., 2007 ), the low activity 

of  � 4GalNAcTA in HEK293 cells observed in this study does 

not allow a conclusion on the nature of the acceptor. Obviously, 

 � 4GalNAcTB is strictly lipid specifi c. This specifi city is re-

markable because glycan structures added to lipid anchors are 

different between mammals and fl ies. This suggests that selec-

tivity is at least partly established through the lipid anchors. 

GABPI might be involved in the lipid specifi city, but  � 4Gal-

NAcTB also requires GABPI for in vitro activity with the syn-

thetic acceptor substrate GlcNAc-pNP. In particular, these types 

of small hydrophobic aglycon-linked monosaccharide accep-

tors usually overcome the restricted specifi city of glycosyltrans-

ferases; even the glycoprotein hormone-specifi c  � 4GalNAcT is 

reactive with such acceptors ( Smith and Baenziger, 1988 ). 

 Trials to assemble an active enzyme by combining vesicle 

preparations containing  � 4GalNAcTB and GABPI separately 

failed. This was also the case for the O-mannosyltransferases 

( Manya et al., 2004 ). This shows that GABPI and  � 4GalNAcTB 

do not act in a sequential reaction mechanism. Combined with 

the experiments in which it was shown that  � 4GalNAcTB re-

mains in the ER in an inactive state if expressed alone and can 

only reach the Golgi in the presence of GABPI, it can be con-

cluded that interaction between  � 4GalNAcTB and GABPI most 

likely starts in the ER and requires coexpression of the two 

proteins. Most importantly, GABPI is an autonomous protein 

equipped with all of the information needed for Golgi destina-

tion. In this respect, GABPI seems to be different from Cosmc, 

the client-specifi c molecular chaperone required to activate 

C1 � 3GalT. A soluble, active form of recombinant C1 � 3GalT 

can be produced ( Ju et al., 2002a ), although Cosmc is not asso-

ciated with this enzyme ( Ju and Cummings, 2002 ). Purifi ed rat 

liver C1 � 3GalT was also devoid of Cosmc ( Ju et al., 2002b ). 

According to the classical defi nition of a chaperone, Cosmc re-

 Figure 6.    Myc-GABPI – HA coprecipitates Flag- � 4GalNAcTB.  HEK293 cells transiently transfected with Myc-GABPI – HA and Flag- � 4GalNAcTA or Flag-
 � 4GalNAcTB as indicated were lysed and precipitated with mouse monoclonal anti-HA (12CA5) coupled to Sepharose A beads. (A – C) Precipitated 
proteins as well as total cell lysates were displayed on Western blots using rabbit anti-HA (A) or mouse anti-Flag antibody (B and C). In spite of similar 
expression levels seen in total cell lysates for the Flag-tagged  � 4GalNAcTs, immunoprecipitation of Myc-GABPI – HA pulled down only Flag- � 4GalNAcTB. 
Arrows indicate the running position of Flag- � 4GalNAcTB and Flag- � 4GalNAcTA in B and C, respectively.   
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synthetic pathways need membrane anchorage and cannot be 

expressed as soluble recombinant proteins ( Amado et al., 1998 ; 

 Steffensen et al., 2000 ;  Schwientek et al., 2002 ). One of these 

enzymes is brainiac ( Schwientek et al., 2002 ), a  � 3GlcNAc 

transferase acting right upstream of  � 4GalNAcTB in glycolipid 

biosynthesis of  Drosophila . The factors determining membrane 

dependency of brainiac are not yet identifi ed. Because we found 

the product of brainiac accumulated in S2 cells treated with 

RNAi against GABPI ( Fig. 5 ), an involvement of GABPI for 

brainiac function in vivo is not likely. However, because mam-

malian lipid-modifying enzymes have been suggested to form 

multienzyme complexes ( Giraudo and Maccioni, 2003 ), GABPI, 

being an essential part of  � 4GalNAcTB, might be an anchor posi-

tion in the pathway without being essential for the activity of all 

enzymes. A striking parallel exists between  � 4GalNAcTB and 

 � 4GalT-V and -VI described in the Introduction. These mam-

malian galactosyltransferases are members of the same gene 

family and are essentially dependent on membrane contact for 

transfer of Gal onto glucosyl Cer ( van Die et al., 1999 ;  Sato et al., 

2000 ). As soluble enzymes,  � 4GalT-V and -VI recognize terminal 

GlcNAc residues instead of glucose. Therefore, it can be specu-

lated that these enzymes require a cofactor similar to GABPI, 

which mediates glycolipid acceptor recognition. Orthologues of 

GABPI are found in arthropod and vertebrate species but not in 

nematodes, indicating that GABPI homologues might play a 

role in higher eukaryotes as well. In summary, it can be con-

cluded that the identifi cation of GABPI reveals a novel mechanism 

to generate specifi city in the complex glycosylation pathway. 

 Materials and methods 
 Expression cloning 
 A cDNA library from  Drosophila  larval poly(A) +  RNA (Clontech Laborato-
ries, Inc.) was constructed in pCMV-Script using the pCMV-ScriptXR cDNA 
library construction kit (Agilent Technologies). The library was divided into 
pools of 10,000 independent clones and used for expression cloning after 
the sibling selection strategy described previously ( Bakker et al., 1997 , 
 2005 ). The CHO cell line Lec8 ( Deutscher and Hirschberg, 1986 ) grown 
in  � -MEM supplemented with 10% FCS (both obtained from Biochrom AG) 
was used as the host. Pools or clones of the cDNA library were transfected 
into Lec8 cells using Metafectane (Biontex). After 2 d, cells grown in 6-well 
plates were fi xed with 1.5% glutaraldehyde, incubated with the anti-
lacdiNAc monoclonal antibody 259-2A1 ( van Remoortere et al., 2000 ) 
followed by HRP-conjugated goat anti – mouse antibody (Jackson Immuno-
Research Laboratories), and detected by tyramide signal amplifi cation us-
ing biotin-tyramide ( Speel et al., 2006 ), streptavidin-AP (Invitrogen), and 
Fast-Red (Sigma-Aldrich) as chromogenic substrate. 

 Plasmid constructs 
 All tagged mammalian expression constructs were made in pcDNA3 (Invitro-
gen). Myc-GABPI (fl ybase gene number CG17257) contains an N-terminal 
Myc tag ( MAQKLISEEDLN LRPLE [antibody-bound sequence underlined]) 
and Myc-GABPI – HA, an additional C-terminal HA tag (SR YPYDVPDY ASL). 
Flag- � 4GalNAcTB (CG14517), Flag- � 4GalNAcTA (CG8536), and  C. el-
egans  GalNAcT ( Kawar et al., 2002 ) contain N-terminal Flag tags 
( MDYKDDDDK GS). The Myc-GABPI – KKTN construct was cloned by PCR 
using Myc-GABPI as a template. For expression in  Drosophila  S2 cells, Flag-
 � 4GalNAcTA and HA- � 4GalNAcTB (N-terminal HA tag; M YPYDVPDY AGS) 
were cloned in pIB/V5-His (Invitrogen). Hybrids of  � 4GalNAcTA and 
 � 4GalNAcTB are identifi ed by a three-letter code, whereby the fi rst letter 
indicates the cytoplasmic plus transmembrane region, the second letter in-
dicates the stem region, and the third letter indicates the catalytic domain 
(e.g., A-B-B). Borders between the three regions are after amino acids 29 
and 135 in  � 4GalNAcTA and after 33 and 65 in  � 4GalNAcTB. Flag- or 
Myc-tagged constructs were used for all experiments unless indicated. 

acyltransferase. All residues critical for a potential acyltransferase 

activity in GABPI ( Mitchell et al., 2006 ) as well as the only cys-

teine residue that may serve as acyl acceptors in  � 4GalNAcTB 

were point mutated. None infl uenced the functionality of GABPI 

or activity of  � 4GalNAcTB. The functionally crucial cysteine in 

the name-giving DHHC motif is exchanged by serine in GABPI, 

which argues against its function as a palmitoyltransferase. 

 In experiments aimed at understanding how  � 4GalNAcTB 

and GABPI interact, we demonstrated that the selectivity with 

which GABPI activates  � 4GalNAcTB and not the highly ho-

mologous  � 4GalNAcTA is attributed to a structural element in 

the stem region. However, this area cannot be the solely respon-

sible element. Additional sequences in the catalytic domain 

must be involved in determining GABPI dependency. 

 The exact function of GABPI in priming activity of 

 � 4GalNAcTB in the Golgi is diffi cult to address. However, several 

glycosyltransferases acting exclusively in the glycolipid bio-

 Figure 7.    Protein domains of  � 4GalNAcTB involved in the interaction 
with GABPI.  Hybrids of Flag- � 4GalNAcTA (red) and -B (blue) were cloned 
by domain swapping of the cytoplasmic (Cyt) and transmembrane do-
main (TMD), stem region, and catalytic domain (Cat) as illustrated and 
expressed in HEK293 with and without GABPI. The intracellular localiza-
tion was analyzed by indirect immunofl uorescence using  � -mannosidase II 
and calnexin as markers for Golgi and ER, respectively.   
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three washings (in PBS, 0.1% BSA, and 0.1% Tween 20), cells were incu-
bated with anti – mouse IgCy3 and anti – rabbit IgG Alexa Fluor 488 for 1 h 
at room temperature. After staining with the nuclear dye (Hoechst 33258; 
Hoechst Pharmaceuticals), the slides were washed with water, mounted 
(Dako), and analyzed under a microscope (Axiovert 200M; Carl Zeiss, 
Inc.) using a Plan Apochromat 63 × /1.40 oil differential interference con-
trast objective (M27; Carl Zeiss, Inc.) at room temperature. Images (1,388  ×  
1,040 pixels) were taken using a camera (AxioCam MRm; Carl Zeiss, Inc.) 
and Axiovision 4.4 software (Carl Zeiss, Inc.). Images taken in an auto-
matic exposure setting with fi lter sets for Hoechst 33258, Alexa Fluor 488, 
and Cy3 were converted in blue, green, and red, respectively; intensities 
were adapted to be equal for the three colors, and images were reduced 
to 600 dots per inch for display in  Figs. 3 and 7 . 

 Knockdown experiments in  Drosophila  S2 cells 
 dsRNA was made using the MEGAscript T7 transcription kit (Applied Biosys-
tems). Each primer used in the PCR contained a 5 �  T7 RNA polymerase – binding 
site followed by sequences specifi c for the target genes: GABPI (5 � -CCG-
GCACCTCCAATTTTCTTTC-3 �  and 5 � -GTCCATATCCCCCACCTCGTCA-3 � ), 
 � 4GalNAcTA (5 � -ATGTACCTCTTCACCAAGGCGA-3 �  and 5 � -ATAACCAA-
TGTTCATCATGGCA-3 � ), and  � 4GalNAcTB (5 � -TCAACTTTTCCTGCCAA-
CAATG-3 �  and 5 � -ACCACGCCGCCGAAAAGACC-3 � ). 

  Drosophila  Schneider (S2) cells were grown in Schneider ’ s  Drosoph-
ila  medium (Invitrogen) supplemented with 10% FCS and 4 mM  L- glutamine 
(Biochrom AG). For RNAi knockdown experiments ( Clemens et al., 2000 ), 
10 6  cells were plated per 6 wells in serum-free medium, and dsRNA of 
 � 4GalNAcTA,  � GalNAcTB, and/or GABPI was added directly to the 
media in a fi nal concentration of 37 nM (15  μ g). After 30 min at room 
temperature, 2 ml of Schneider ’ s medium containing FCS was added, and 
incubation was continued for 3 d at 27 ° C. For the immunocytochemical 
analysis of surface-expressed lacdiNAc structures, the protocol described 
in the Expression cloning section for CHO cells was used. Light micro-
scopic images of  Fig. 5  were taken using the aforementioned microscope 
and software using a camera (AxioCam MRc; Carl Zeiss, Inc.) and a Plan 
Apochromat 10 × /0.45 objective (Ph1M27; Carl Zeiss, Inc.). To determine 
the subcellular localization of  � 4GalNAcTA and  � 4GalNAcTB in GABPI 
dsRNA – treated cells, the N-terminally Flag- and HA-tagged enzymes were 
transiently transfected with Fugene (Roche) into cultures that had been 
treated for 3 d with dsRNA. The day after transfection, cells were washed 
with serum-free medium, and RNAi treatment was repeated with a concen-
tration of 18.5 nM dsRNA. 2 d after transfection, cells were transferred to 
concanavalin A – coated coverslips for 1 h, fi xed in 4% PFA, and further 
processed as described in the previous section for HEK293 cells except 
that 0.1% saponin was kept in all incubation and washing solutions. 
Mouse anti-Flag M5 (Sigma-Aldrich) in combination with rabbit anti-HA 
(Sigma-Aldrich) was used to visualize the tagged  � 4GalNAc transferases, 
whereas the ER was stained with mouse anti-HDEL (Santa Cruz Biotechnol-
ogy, Inc.). Secondary antibodies used were goat anti – mouse, Alexa Fluor 
488, and goat anti – rabbit Cy3. Fluorescent images were made using a 
microscope (Axiovert 200M) as for the aforementioned HEK293 cells ex-
cept that the ApoTome mode was used and fi ve images were averaged. 
 Fig. 4  shows 330  ×  236-pixel sections of the original images. In addition, 
glycosphingolipid extracts (prepared as described in Analyses of glyco-
sphingolipids and proteins…) from S2 cells before and after dsRNA treat-
ment were analyzed by MALDI-TOF-MS in a TOF/TOF mass spectrometer 
(Ultrafl ex II; Bruker Daltonics) as described previously ( Wuhrer and Deelder, 
2005 ;  Stolz et al., 2008 ). 

 Immunoprecipitation 
 Transiently transfected HEK293 cells were lysed for 30 min at 4 ° C using 
750  μ l of lysis buffer (2 mM EDTA, 50 mM Tris-HCl, pH 8.0, 1 mM MgCl 2 , 
and 1% NP-40 supplemented with protease inhibitor mixture). After centrif-
ugation for 30 min at 12,000  g , anti-HA antibody 12CA5 coupled to 
Sepharose A beads was added to supernatants and incubated for 3 h at 
4 ° C on a rotating wheel. Immunocomplexes were pelleted by centrifuga-
tion (300  g  for 5 min) and washed twice with 50 mM Tris-HCl, pH 8.0, 
and 1% NP-40, twice with 50 mM Tris-HCl, pH 8.0, 500 mM NaCl, and 
1% NP-40, and once with the fi rst washing buffer. Immunoprecipitated 
proteins were separated in SDS-PAGE, blotted onto polyvinylidene difl uo-
ride membranes (Waters Corporation), and stained with mouse anti-Flag 
M5 or rat anti-HA antibody. 

 Online supplemental material 
 Table S1 shows newly registered zwitterionic glycosphingolipid species. 
Fig. S1 shows negative-mode MALDI-TOF-MS of S2 cell glycosphingolipids. 

 Preparation of ER and Golgi fractions from transfected HEK293 cells 
 HEK293 cells were grown in DME/HAM ’ s F-12 supplemented with 10% 
FCS (both obtained from Biochrom AG). Cells transiently transfected as de-
scribed in the Expression cloning section for CHO cells were washed with 
PBS and collected by centrifugation (5 min at 1,500  g ). The cell pellets 
from three 175-cm 2  plates (9  ×  10 7  cells) were resuspended in 7 ml of lysis 
buffer (10 mM Hepes-Tris, pH 7.4, 0.8 M sorbitol, and 1 mM EDTA) con-
taining an EDTA-free protease inhibitor mixture (Roche). After 10 strokes in 
a Dounce homogenizer, the lysate was centrifuged (10 min at 1,500  g ). 
The supernatant was collected, and the pellet was subjected to a second 
homogenization/centrifugation round. The ER/Golgi-rich fraction was ob-
tained by centrifugation of the combined supernatants at 100,000  g  for 
1 h. Pelleted vesicles were resuspended in 500  μ l of assay buffer (0.1 M 
MOPS, pH 7.5) and 20- μ l aliquots kept at  � 80 ° C. Protein concentrations 
were determined using a bicinchoninic acid kit (Thermo Fisher Scientifi c). 

 In vitro  � 4GalNAcT assays 
 Standard enzyme assays were performed with 20  μ l of the ER/Golgi 
preparations in 50  μ l of assay buffer (0.1 MOPS, pH 7.5, 20 mM MnCl 2 , 
10 mM ATP, 100 mM GalNAc, 0.1% BSA, and 0.01% saponin). There-
fore, 20- μ l aliquots of the ER/Golgi vesicle preparation were supple-
mented to obtain the appropriate buffer composition and 0.5 mM of the 
radio-labeled nucleotide sugars UDP-6[ 3 H]Gal (specifi c activity of 32 
Bq/nmol; GE Healthcare) or UDP-1[ 3 H]GalNAc (specifi c activity of 36 
Bq/nmol [PerkinElmer]; diluted with cold nucleotide sugars [Sigma-Aldrich]). 
Reactions were started by adding the acceptor substrate GlcNAc-pNP 
(Sigma-Aldrich) at 1 mM and were incubated for 2 h at 28 ° C. Control 
samples were incubated in the absence of GlcNAc- O -pNP and subtracted 
from measured values. Reactions were stopped by addition of 1 ml of 
ice-cold water, and products were isolated on columns (Sep Pak Plus C 18 ; 
Waters Corporation) as described previously ( Palcic et al., 1988 ). The 
elutes were dried and counted in 2 ml of scintillation cocktail (Luma Safe 
Plus; Lumac LSC). Incorporated radioactivity was measured in a counter 
(LS 6500; Beckman Coulter). 

 Analyses of glycosphingolipids and proteins from transfected 
HEK293 cells 
 Transiently transfected HEK293 cells were washed with PBS, scraped off 
the plates, and collected by centrifugation (10 min at 1,500  g ).  Drosophila  
S2 cells were harvested by centrifugation and extracted in the same way. 
The cell pellets (10 7  cells) were resuspended in 300  μ l of water and soni-
cated for 5 min in a bath sonicator. 2-propanol and hexane were added 
to obtain a solvent ratio of 55:25:20 (2-propanol/hexane/water), and the 
mixtures were sonicated again for 5 min. Samples were centrifuged for 
10 min at 1,500  g , and supernatants were dried under nitrogen. The ex-
tracts were resuspended in chloroform/methanol/water (3:47:48) and 
desalted by reverse-phase chromatography (Sep Pak Plus C 18  columns; 
 Williams and McCluer, 1980 ). The eluted glycosphingolipids were dried 
under nitrogen, and one fourth of each sample was spotted onto a TLC 
plate (Nano-Durasil-20; Macherey-Nagel) and developed in running sol-
vent composed of chloroform/methanol/0.25% aqueous KCl (5:4:1). For 
immunostaining, the silica plate was fi xed in 0.1% polyisobutylmethylacry-
late (Sigma-Aldrich) in aceton. The plate was blocked overnight with 1% 
BSA in TBS at 4 ° C followed by incubation with primary antibody (mouse 
antilacdiNAc 259-2A1) for 2 h at room temperature and with secondary 
antibody goat anti – mouse IRDye 800 (LI-COR Biosciences) for 30 min. 
After washing, the plate was analyzed on an infrared imaging system 
(Odyssey; LI-COR Biosciences). 

 Protein samples for Western blotting were isolated from the same 
cells by dissolving 10 7  cells in 750  μ l of lysis buffer (2 mM EDTA, 50 mM 
Tris-HCl, pH 8.0, 1 mM MgCl 2 , and 1% NP-40 supplemented with a prote-
ase inhibitor mixture [Roche]) and analyzing 20  μ l of these samples by 
standard Western blotting techniques. The blot was incubated with the 
same antibodies as the TLC plate and analyzed in the same way. 

 Subcellular localization studies by immunofl uorescence 
 Subcellular localizations of recombinant Flag- � 4GalNAcTA, Flag- � 4GalN-
AcTB, and Myc-GABPI were performed with stably transfected HEK293 
cells (without selecting clones). Therefore, transfected cells were cultured 
for 3 wk in the presence of G-418 (EMD). For staining, cells were seeded 
onto glass coverslips, fi xed in 4% PFA, and permeabilized for 30 min with 
0.1% saponin in PBS containing 0.1% BSA. Samples were incubated with 
the respective primary antibodies (anti-Flag tag M5, anti-Flag tag F7425, 
anti-HA tag 12CA5 or anti-Myc tag 9E10, and rabbit anti –  � -mannosidase 
II or -calnexin as a Golgi or ER marker) for 1.5 h at room temperature. After 
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