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Abstract: Combustion synthesis involving metallothermic reduction of MoO3 by dual reductants,
Mg and Al, to enhance the reaction exothermicity was applied for the in situ production of Mo3Si–,
Mo5Si3− and MoSi2–MgAl2O4 composites with a broad compositional range. Reduction of MoO3

by Mg and Al is highly exothermic and produces MgO and Al2O3 as precursors of MgAl2O4.
Molybdenum silicides are synthesized from the reactions of Si with both reduced and elemental Mo.
Experimental evidence indicated that the reaction proceeded as self-propagating high-temperature
synthesis (SHS) and the increase in silicide content weakened the exothermicity of the overall reaction,
and therefore, lowered combustion front temperature and velocity. The XRD analysis indicated that
Mo3Si–, Mo5Si3– and MoSi2–MgAl2O4 composites were well produced with only trivial amounts of
secondary silicides. Based on SEM and EDS examinations, the morphology of synthesized composites
exhibited dense and connecting MgAl2O4 crystals and micro-sized silicide particles, which were
distributed over or embedded in the large MgAl2O4 crystals.

Keywords: molybdenum silicides; MgAl2O4; aluminothermic; magnesiothermic; self-propagating
high-temperature synthesis

1. Introduction

Molybdenum silicides, Mo3Si, Mo5Si3 and MoSi2, are promising intermetallic materi-
als for ultrahigh-temperature structural applications. Besides a high melting point over
2020 ◦C, they possess high strength, excellent oxidation resistance, corrosion resistance,
creep resistance and good compatibility with ceramic reinforcements [1–8]. To improve the
refractory property of transition metal silicides, magnesium aluminate spinel (MgAl2O4)
has been one of the potential additives, because of its unique combination of properties,
including a high melting point (2135 ◦C), relatively low density, chemical inertness, high
hardness, high mechanical strength and good thermal shock resistance [9–12]. However,
preparation of MgAl2O4 via either wet chemical methods or solid-state reactions required
several complicated steps under the long processing time [9–12].

As an alternative, metallothermic reduction reactions (MRRs) of metal oxides with
Mg and Al as reducing agents produce MgO and Al2O3 as precursors for the formation of
MgAl2O4 and such oxidation reactions are highly exothermic [13,14]. When combining
Mg/Al-based MRRs with combustion synthesis, such a fabrication route is effective in pro-
ducing MgAl2O4-containing composites. Moreover, the highly-exothermic MRRs render
reduction-based combustion synthesis fit for self-propagating high-temperature synthesis
(SHS). Many merits such as high energy efficiency, short reaction time, simplicity of opera-
tion and high-purity products have been recognized for the SHS process [15–17]. According
to Horvitz and Gotman [18], reduction-based combustion synthesis using 2TiO2–Mg–4Al
samples was performed to produce TiAl–Ti3Al–MgAl2O4 composites. Omran et al. [19]
conducted co-reduction of WO3 and B2O3 by Mg in the presence of Al2O3 to fabricate the
composites of MgAl2O4–W–W2B. By means of adopting pre-added MgO, Zaki et al. [20]
obtained MgAl2O4 composites with MoSi2 and Mo5Si3 from co-reduction of SiO2 and
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MoO3 by Al in argon at a pressure of 5 MPa. The high Ar pressure was to suppress the
volatilization of MoO3. Recently, Radishevskaya et al. [21] synthesized MgAl2O4 by the
SHS method using the reactant mixtures consisting of MgO and Al2O3, along with Al as the
fuel, Mg(NO3)2·H2O as the oxidizer, and NaCl as the mineralizer. Results indicated that
NaCl of 1 wt.% contributed to the completion of the formation of MgAl2O4 and mechanical
activation of the green mixture for 60 s facilitated the production of MgAl2O4 without
oxide impurities.

By using Mg and Al simultaneously as dual reductants, this work aims at investigat-
ing the in situ production of MgAl2O4-containing molybdenum silicide (Mo3Si, Mo5Si3,
and MoSi2) composites by the SHS process with reducing stages. That is, a solid-state
combustion reaction involves the synthesis of MgAl2O4 from the metallothermic reduction
of MoO3 and the formation of molybdenum silicides from elemental interactions between
Mo and Si. Three different silicide phases were produced and their influence on reaction
exothermicity and combustion wave kinetics was explored. Compositional and microstruc-
tural analyses were performed on the final composites. Moreover, some products were
selected for Vickers hardness and fracture toughness measurements.

2. Materials and Methods

The raw materials utilized by this study include MoO3 (Acros Organics, 99.5%),
Mg (Alfa Aesar, <45 µm, 99.8%), Al (Showa Chemical Co., <45 µm, 99.9%), Mo (Strem
Chemicals, <45 µm, 99.9%), Si (Strem Chemicals, <45 µm, 99.5%), and Al2O3 (Alfa Aesar,
99%). According to different molybdenum silicides, three reaction systems, R(1), R(2), and
R(3), are formulated for the synthesis of Mo3Si–, Mo5Si3–, and MoSi2–MgAl2O4 composites,
respectively.

4
3

MoO3 + Mg + 2Al +
(

3x− 4
3

)
Mo + xSi→ xMo3Si + MgAl2O4 (1)

4
3

MoO3 + Mg + 2Al +
(

5y− 4
3

)
Mo + 3ySi→ yMo5Si3 + MgAl2O4 (2)

13
12

MoO3 + Mg +
3
2

Al +
1
4

Al2O3 +

(
z− 13

12

)
Mo + 2zSi→ zMoSi2 + MgAl2O4 (3)

where stoichiometric coefficients x, y, and z are associated with the quantities of Mo and Si
powders in the green mixtures, and also represent the molar proportion of silicide phase to
MgAl2O4. The same composition of metallothermic reagents of 4/3MoO3 + Mg + 2Al is
adopted in R(1) and R(2), but R(3) has a different metallothermic mixture of 13/12MoO3 +
Mg + 3/2Al because R(3) comprises pre-added Al2O3. Because of metallothermic reduction
of MoO3, the source of Mo for the formation of molybdenum silicides (Mo3Si, Mo5Si3, and
MoSi2) from R(1), R(2), and R(3) included both reduced and elemental Mo.

It has been realized that magnesiothermic and aluminothermic reductions of MoO3
are highly exothermic and have an adiabatic temperature (Tad) exceeding 4200 K [22],
which plays an important role in facilitating self-sustaining combustion for R(1), R(2) and
R(3). When compared with the reduction of MoO3 by Mg and Al, the formation reactions
of Mo3Si, Mo5Si3 and MoSi2 are much less energetic. Among three molybdenum silicides,
MoSi2 is the most exothermic phase to form [23], and therefore, Al2O3 at one-quarter of the
required amount was added in the starting mixture to regulate the degree of violence of
combustion.

Experimental ranges of x, y, and z conducted in this study were determined based
on the reaction exothermicity of R(1), R(2) and R(3), which was assessed by computing
Tad as a function of stoichiometric coefficients according to the following energy balance
equation [24,25] with thermochemical data taken from [23].

∆Hr +
∫ Tad

298
∑ njCp

(
Pj
)
dT + ∑ 298−Tad njL

(
Pj
)
= 0 (4)
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where ∆Hr is the enthalpy of reaction at 298 K, nj is the stoichiometric coefficient, Cp and L
are the specific heat and latent heat, respectively, and Pj refers to the product.

The value of ∆Hr was calculated from the difference in enthalpy of formation (∆Hf)
between the reactants (∆Hf of MoO3: −745 kJ/mol, Al2O3: –1675.7 kJ/mol, and Mg, Al,
Mo, and Si: 0 kJ/mol) and products (∆Hf of Mo3Si: −118.4 kJ/mol, Mo5Si3: −310.6 kJ/mol,
MoSi2: −131.4 kJ/mol, and MgAl2O4: −2299.1 kJ/mol) [23]. The values of Cp of the
products as a function of temperature are expressed as follows [23].

Cp(Mo3Si) = 85.23 + 22.68× 10−3 × T + 0.03× 106 × T−2
(

J·mol−1·K−1
)

(5)

Cp(Mo5Si3) = 183.36 + 35.01× 10−3 × T − 1.2× 106 × T−2
(

J·mol−1·K−1
)

(6)

Cp(MoSi2) = 67.84 + 11.95× 10−3 × T − 0.66× 106 × T−2
(

J·mol−1·K−1
)

(7)

Cp(MgAl2O4) = 146.78 + 35.56× 10−3 × T − 3.68× 106 × T−2
(

J·mol−1·K−1
)

(8)

The SHS experiment was performed in a windowed combustion chamber filled with
high-purity argon (99.99%) at 0.2 MPa. Reactant powders were dry mixed and then were
uniaxially pressed to form cylindrical test specimens with 12 mm in height, 7 mm in
diameter, and 55% in the relative density. In this work, a cylindrical bottle partially filled
with the raw materials and alumina (Al2O3) grinding balls rotated about the longitudinal
axis of a tumbler ball mill machine for 8 h to fully blend the reactant powders. The size of
the alumina ball is 5 mm in diameter. The ball mill operated at 90 rpm. Because Al2O3 is one
of the precursors to form MgAl2O4, no contamination from grinding balls was detected.

The combustion wave propagation velocity (Vf) was determined from the time se-
ries of recorded combustion videos. The combustion temperature was measured by a
125 µm bead-sized thermocouple with an alloy composition of Pt/Pt–13%Rh. Details
of the experimental setup were previously reported [25,26]. Phase components of the
synthesized products were identified by an X-ray diffractometer with CuKα radiation
(Bruker D2 Phaser, Billerica, MA, USA). Analyses of scanning electron microscopy (SEM)
(Hitachi S3000H, Tokyo, Japan) and energy dispersive spectroscopy (EDS) were performed
to examine the fracture surface microstructure and composition ratio of elements of the
final products.

Measurement of Vickers hardness and fracture toughness of the products was per-
formed [27]. For such measurements, only selected experiments under stoichiometric
coefficients of x = y = z = 2 were carried out by placing the sample compact in a stainless-
steel mold. Densification of the product was conducted by a hydraulic compressor. Upon
the completion of the SHS reaction, the burned sample was rapidly pressed when the
product was still hot and plastic, which was held for about 15 s. The product density
after compression reached about 93–95% of theoretical density and then the product sur-
face was polished for the measurement. Microhardness was measured with a Buehler
Micromet microhardness tester at a load of 1000 g and a dwelling time of 10 s. Five in-
dentations were made to obtain the average values of the indentation imprint and crack
length measurements.

In this study, Vickers hardness (Hv) was calculated from the applied load (P) and
the average diagonal impression length (d) in the equation below [28,29]. The fracture
toughness (KIC) was determined by the indentation method using the following equation
proposed by Evans and Charles [29].

Hv = 1.8544
P
d2 (9)

KIC = 0.16Hva1/2
( c

a

)−3/2
(10)
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where a is the half of the average length of two diagonals of the indentation and c the radial
crack length measured from the center of the indentation.

3. Results and Discussion
3.1. Combustion Exothermicity of Reactions

Calculated values of Tad of R(1), R(2) and R(3) as a function of their respective stoichio-
metric coefficients are presented in Figure 1 in order to evaluate combustion exothermicity.
A significant decrease in Tad with increasing silicide content is observed for all three
synthesis reactions, mainly because the formation of molybdenum silicides is much less
exothermic than the metallothermic reduction of MoO3. As revealed in Figure 1, the value
of Tad associated with the formation of Mo3Si–MgAl2O4 composites from R(1) decreases
considerably from 3964 ◦C to 2415 ◦C as the coefficient x increases from 1 to 5. On account
of a large heat capacity for Mo5Si3, R(2) is the weakest exothermic reaction and shows a
decrease in Tad from 3475 ◦C at y = 1 to 2162 ◦C at y = 5. In spite of the dilution effect
of pre-added Al2O3 on combustion, R(3) intended for the synthesis of MoSi2–MgAl2O4
composites is still very energetic with Tad ranging from 3840 ◦C to 2745 ◦C. Figure 1 indi-
cates that R(3) has the highest Tad except for the case of z = 1. According to the analysis
of combustion exothermicity, R(1) and R(3) were conducted in this study with the exper-
imental variables of x = 2–5 and z = 2–5, respectively, and R(2) with y = 1–4 was carried
out. Reactions with x = 1 and z = 1 were avoided, since the resulting combustion was often
violent enough to melt down the powder compact and led to incomplete phase conversion.
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MgAl2O4 of products synthesized from R(1), R(2), and R(3).

3.2. Combustion Wave Velocity and Temperature

A typical sequence of recorded combustion images from R(1) with x = 3 is illustrated in
Figure 2, showing a stable and self-sustaining combustion process. A distinct combustion
front allowed the propagation velocity to be determined. Variations of combustion wave
velocities of R(1), R(2) and R(3) with the molar ratio of silicide to MgAl2O4 are presented
in Figure 3. A declining trend consistent with the adiabatic combustion temperature was
observed. This can be explained by the fact that the combustion wave propagation rate is
essentially governed by layer-by-layer heat transfer from the thin combustion zone to the
unreacted region, and therefore, is subject to the reaction front temperature. Specifically,
Figure 3 points out a decrease in Vf from 5.9 to 2.9 mm/s for R(1) with x from 2 to 5. For
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the similar range of stoichiometry of z = 2–5, R(3) has a faster combustion wave with Vf
ranging from 6.7 to 4.3 mm/s. On the other hand, the combustion front of R(2) has a slower
speed and its Vf decreases from 5.9 mm/s at y = 1 to 2.7 mm/s at y = 4.
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Figure 3. Variations of flame-front propagation velocities with stoichiometric coefficients (x, y, and z)
of R(1), R(2), and R(3).

Figure 4a,b depict combustion temperature profiles measured from R(1), R(2) and R(3)
under equal stoichiometric coefficients of 2 and 4, respectively. A steep rising gradient
followed by a rapid cooling rate is characteristic of the temperature profile of the SHS
reaction. The highest value is considered as the combustion front temperature (Tc). A
comparison of Tc among three synthesis reactions in Figure 4a indicates that R(3) has the
highest Tc of 1637 ◦C (z = 2), R(2) has the lowest 1442 ◦C (y = 2), and R(1) is in-between
at 1574 ◦C (x = 2). A similar ranking of Tc can be seen in Figure 4b, which is associated
with the synthesis of composites with a molar ratio silicide/MgAl2O4 equal to 4. When
compared with Tc shown in Figure 4a, lower values of Tc = 1330 ◦C, 1103 ◦C and 1470 ◦C
are observed in Figure 4b for R(1), R(2) and R(3), respectively. This confirms the decrease
in reaction exothermicity with an increasing fraction of silicide formed in the composite.
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3.3. Composition and Microstructure Analyses of SHS-Derived Products

The XRD spectrum graphs of final products synthesized from R(1) with x = 2 and
4 are plotted in Figure 5a,b, respectively. Besides MgAl2O4, two silicide compounds were
detected with Mo3Si the dominant and Mo5Si3 the minor. Because of the presence of Mo5Si3,
there was a small amount of elemental Mo left in the end product. It should be noted
that the production of MgAl2O4 justifies a combination reaction between in situ formed
Al2O3 and MgO from the metallothermic reduction of MoO3 by dual reductants. Phase
constituents associated with the products of R(2) are identified in Figure 6a,b, indicative
of the Mo5Si3–MgAl2O4 composites with a trivial amount of Mo3Si. Because Mo5Si3
has a homogeneity range from 37.5 to 40 at% Si [20], no remnant Si was found in the
Mo5Si3–MgAl2O4 products even containing some Mo3Si.
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Figure 7a,b shows the XRD spectra of the MoSi2–MgAl2O4 composites produced
from R(3) with z = 2 and 4, respectively. It should be pointed out that MoSi2 formed from
R(3) is α-MoSi2 (the low-temperature phase). This was due to the fact that the reaction
temperature of R(3) was below 1900 ◦C [22], the phase transition temperature from α-MoSi2
to the high-temperature phase of β-MoSi2. As revealed in Figure 7a,b, there are small
amounts of Mo5Si3 and Si in the as-synthesized MoSi2–MgAl2O4 composites.
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When compared with the work of Zaki et al. [20], MgAl2O4 composites with MoSi2
and Mo5Si3 were produced from MoO3, SiO2, Al and MgO powder mixtures by self-
sustaining combustion. They indicated the presence of small amounts of Mo5Si3, Al2SiO5
and free Si in the synthesized MgAl2O4–MoSi2 composites. The impurity Al2SiO5 was
formed via a combination reaction of Al2O3 with SiO2. Moreover, the increase in MgO led
to the formation of the other impurity Mg2SiO4 which was produced from the reaction
between MgO and SiO2. Therefore, it is believed that the formation of Al2SiO5 and
Mg2SiO4 could be due to incomplete reduction of SiO2, since these two phases were not
found in the products of the present study. On the other hand, Zaki et al. [20] obtained
MgAl2O4–Mo5Si3 composites without impurities and secondary silicides, on account of a
larger heat release from combustion and a lesser amount of SiO2 contained in the sample.

In the work of Radishevskaya et al. [21], MgO and Al2O3 were added into a com-
bustible mixture composed of Al, Mg(NO3)2·H2O and NaCl to produce MgAl2O4 through
the SHS scheme. Results showed that the pre-added MgO and Al2O3 failed to be fully
combined into MgAl2O4 unless mechanical activation of initial components in a planetary
mill was conducted. In contrast, MgO and Al2O3 were not detected in the final composites
of R(1), R(2) and R(3). This could be because these two precursors of MgAl2O4 were in situ
produced from metallothermic reduction reactions in the present study.

For the Mo3Si–MgAl2O4 composite of R(1) with x = 3 illustrated in Figure 8, the SEM
image shows the fracture surface microstructure and EDS spectra provide the atomic ratios
of constitution elements. The micrograph exhibits that MgAl2O4 crystals are dense and
continuous and small Mo3Si grains tend to agglomerate into clusters. Moreover, the atomic
ratios of Mo:Si = 76.16:23.84 and Mg:Al:O = 14.83:26.49:58.68 are close to those of Mo3Si
and MgAl2O4.
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The microstructure of the Mo5Si3–MgAl2O4 composite of R(2) with y = 3 in Figure 9
also reveals agglomeration of small Mo5Si3 grains with a particle size of about 2–4 µm.
Most of the large MgAl2O4 crystals are covered with Mo5Si3 grains. The atomic ratios of
Mo:Si = 61.64:38.36 and Mg:Al:O = 13.61:28.36:58.03 confirm the formation of Mo5Si3 and
MgAl2O4. A similar morphology can be seen in Figure 10, unveiling the MoSi2–MgAl2O4
composite of R(3) with z = 3. It is evident that MgAl2O4 crystals are dense and relatively
large. Small MoSi2 grains are distributed over or embedded in MgAl2O4 crystals. Atomic
ratios of Mo:Si = 32.98:67.02 and Mg:Al:O = 13.85:28.86:57.29 were obtained from the
EDS analysis.
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Selected test conditions (x = y = z = 2) were conducted to prepare product samples
for the measurement of hardness and fracture toughness. For the composite of 2Mo3Si–
MgAl2O4 produced from R(1), Vickers hardness of Hv = 1.41 × 104 MPa and fracture
toughness of KIC = 3.3 MPa m1/2 were determined. Values of Hv = 1.42 × 104 MPa and
KIC = 3.1 MPa m1/2 were obtained for 2Mo5Si3–MgAl2O4 synthesized from R(2). For the
product of 2MoSi2–MgAl2O4 from R(3), Hv = 1.48 × 104 MPa and KIC = 2.8 MPa m1/2

were determined. The error of hardness values was estimated as about ±10% and the
error of fracture toughness values was within ±20%. The uncertainty of KIC determi-
nation using the indentation fracture method could result from the residual stresses in-
duced by specimen densification, the existence of pores or cracks, surface finish, and
possible inhomogeneous microstructure. Compared with monolithic Mo3Si, Mo5Si3, and
MoSi2 (Hv ≈ 1.3 × 104 MPa and KIC = 2~3 MPa m1/2) [7,30,31], MgAl2O4 as an additive
improved the hardness and toughness of molybdenum silicides.

4. Conclusions

The in situ fabrication of Mo3Si–, Mo5Si3– and MoSi2–MgAl2O4 composites was inves-
tigated by the SHS process integrating metallothermic reduction of MoO3 with combustion
synthesis. Mg and Al were simultaneously used as dual reductants to produce MgO
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and Al2O3 as precursors of MgAl2O4. Molybdenum silicides were synthesized from the
elemental reactions between Mo and Si. Experimental results showed that the forma-
tion of MoSi2–MgAl2O4 composites was the most exothermic and characterized by the
highest combustion front temperature and fastest combustion velocity, while that of Mo5Si3–
MgAl2O4 composites was the least. Composites with molar ratios of Mo3Si/MgAl2O4 from
2 to 5, Mo5Si3/MgAl2O4 from 1 to 4, and MoSi2/MgAl2O4 from 2 to 5 were synthesized.
An increase in silicide content brought about a decrease in reaction exothermicity because
the formation of molybdenum silicides was much less exothermic than the metallothermic
reduction of MoO3. Based on the XRD patterns, phase conversion from the reactants to
products was essentially completed except for trivial amounts of secondary silicide and
Mo or Si present in the end products. SEM and EDS analyses revealed that MgAl2O4
formed large connecting grains with a dense morphology. Granular Mo3Si, Mo5Si3 and
MoSi2 were relatively small and were distributed over or embedded in MgAl2O4 crystals.
Hardness and fracture toughness of molybdenum silicides were improved by adding
MgAl2O4. This study demonstrated an effective fabrication route adopting dual reductants
to increase combustion exothermicity for the in situ production of Mo3Si–, Mo5Si3– and
MoSi2–MgAl2O4 composites with a broad compositional range.
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