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Purpose: The purpose of this study was to explore the application of

18F-fluorodeoxyglucose positron emission tomography/computed tomography

(18F-FDG PET/CT) image radiomics in the identification of spine multiple myeloma (MM)

and bone metastasis (BM), and whether this method could improve the classification

diagnosis performance compared with traditional methods.

Methods: This retrospective study collected a total of 184 lesions from 131

patients between January 2017 and January 2021. All images were visually evaluated

independently by two physicians with 20 years of experience through the double-blind

method, while the maximum standardized uptake value (SUVmax) of each lesion

was recorded. A total of 279 radiomics features were extracted from the region of

interest (ROI) of CT and PET images of each lesion separately by manual method.

After the reliability test, the least absolute shrinkage and selection operator (LASSO)

regression and 10-fold cross-validation were used to perform dimensionality reduction

and screening of features. Two classification models of CT and PET were derived from

CT images and PET images, respectively and constructed using the multivariate logistic

regression algorithm. In addition, the ComModel was constructed by combining the

PET model and the conventional parameter SUVmax. The performance of the three

classification diagnostic models, as well as the human experts and SUVmax, were

evaluated and compared, respectively.

Results: A total of 8 and 10 features were selected from CT and PET images

for the construction of radiomics models, respectively. Satisfactory performance of

the three radiomics models was achieved in both the training and the validation

groups (Training: AUC: CT: 0.909, PET: 0.949, ComModel: 0.973; Validation: AUC:

CT: 0.897, PET: 0.929, ComModel: 0.948). Moreover, the PET model and ComModel

showed significant improvement in diagnostic performance between the two groups

compared to the human expert (Training: P = 0.01 and P = 0.001; Validation:

P = 0.018 and P = 0.033), and no statistical difference was observed between

the CT model and human experts (P = 0.187 and P = 0.229, respectively).

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.874847
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.874847&domain=pdf&date_stamp=2022-04-18
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m18810016346@163.com
mailto:yujing_2020@dmu.edu.cn
https://doi.org/10.3389/fmed.2022.874847
https://www.frontiersin.org/articles/10.3389/fmed.2022.874847/full


Jin et al. PET/CT Radiomics

Conclusion: The radiomics model constructed based on 18F-FDG PET/CT images

achieved satisfactory diagnostic performance for the classification of MM and

bone metastases. In addition, the radiomics model showed significant improvement

in diagnostic performance compared to human experts and PET conventional

parameter SUVmax.

Keywords: radiomics, multiple myeloma, bone metastases, 18F-FDG PET-CT, SUVmax

1. INTRODUCTION

Multiple myeloma (MM) was a malignant clonal cell tumor
that originated from bone marrow plasma cells. MM extensively
invades bone marrow, bones, and extramedullary organs, leading
to prime syndromes such as bone pain, anemia, infection,
fractures, and kidney damage (1). Bone metastasis(BM) was a
common event in tumor progression. The common primary
tumors were lung cancer, breast cancer, and prostate cancer
(2). The spine contained a rich blood supply and was also the
most frequent site to be involved. MM and BM had different
pathogenesis, but the site of occurrence, clinical manifestations,
and imaging features were similar, which makes it difficult
to distinguish. Lesions that were difficult to characterize were
often misdiagnosed as other orthopedic diseases, especially
for MM and bone metastases with unknown primary lesions.
Misclassifications will significantly affect the quality of patient
survival and survival rates due to the variability of treatment
options (3, 4). Therefore, it was particularly important to improve
the diagnostic accuracy of MM and BM.

Previous studies had considered serologic markers such
as serum creatinine, serum globulin, and serum alkaline
phosphatase as crucial information for differentiating MM from
BM. However, some patients with light chain secretory, low,
and non-secretory myeloma may have low or normal levels
of these serologic markers, and such examinations were often
used for preliminary screening (5, 6). 18F-fluorodeoxyglucose
positron emission tomography/computed tomography (18F-
FDG PET/CT) images combined anatomical and metabolic
information to provide relatively high sensitivity and specificity
to assess bone damage and detect extramedullary lesions (7,
8). In patients with early MM, up to 40% of patients could
detect additional lesions by PET/CT examination to guide
individualized treatment plans (9). The International Myeloma
Working Group had reached a consensus and recommended
18F-FDG PET/CT as one of the best imaging methods for

the examination of MM and other plasma cell diseases (10).
However, there still exist lesions that were difficult to identify
even for experienced physicians in clinical work, especially

osteolytic lesions (11, 12).
Radiomics converted texture, intensity, density, and other

features extracted from medical images into mineable high-
dimensional data through automated or semi-automated
methods, which could be used as a non-invasive assessment of
spatial heterogeneity of tumors and facilitate personalized patient
treatment (13, 14). The performance of radiomics analysis had
been demonstrated in previous studies to identify cancer types,

predict treatment efficacy, and predict disease progression
(15–17). In addition, radiomics had shown unique advantages in
molecular areas such as prediction of cancer gene expression and
lymph node metastasis (18, 19). However, previous radiomics
mostly focused on CT and MRI, and the diagnostic value of
radiomics combined with 18F-FDG PET/CT for MM and BM
was still unclear (20, 21).

The purpose of this study was to explore the feasibility
of radiomics based on 18F-FDG PET/CT images in
the identification of MM and BM and whether it
could improve the diagnostic performance of these two
diseases.

2. MATERIALS AND METHODS

2.1. Patients
Participants between January 2017 and January 2021 were
enrolled in this study according to the following inclusion
criteria: (1) The diagnosis of MM meets the standards of the
International Myeloma Working Group (22); (2) BM were
confirmed by pathological biopsy, imaging follow-up, and
clinical course; (3) Complete pathology, imaging, and clinical
follow-up results; (4) Abnormal uptake of radioactive tracer in
the spine and the lesion was larger than 1 cm. In addition,
the exclusion criteria included the following: (1) Patients who
have received radiotherapy or chemotherapy; (2) Poor image
quality, difficulty to delineate the edge of the lesion; (3)
Primary bone tumor. The enrolled patients were randomly
divided into training groups and validation groups according
to the ratio of 7:3 for subsequent model construction. This
retrospective study was approved by the hospital’s ethical review,
and the patient’s informed consent requirement was waived. The
enrollment criteria of the patients in this study were shown
in Figure 1.

2.2. Image Protocol
All the image acquisition procedures in this study were
completed in the PET/CT(Philips Ingenuity TF). The radioactive
tracer 18F-FDG was automatically synthesized by the cyclotron
(Sumitomo, Japan) and the 18F-FDG chemical synthesis module
(Sumitomo, Japan), and the radioactive tracer purity was
guaranteed to be >95%. The patient fasted for at least 6 h
before the examination, and the glucose level lower than 11.1
mmol/L was ensured by routine measurement of the blood
samples before the PET/CT examination. Patients were injected
with 18F-FDG(5.55 MBq/kg) intravenously in a quiet state
and were placed in a room with dim light for 40–60 min,
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FIGURE 1 | The enrollment criteria of the patients in this study.

and then underwent PET/CT after emptying the bladder. The
scanning process includes a low-dose CT scan and PET scan
from the top of the skull to the upper thigh. CT acquisition
parameters were as follows: tube current tube voltage was
automatically generated according to the positioning image,
tube rotation time: 0.35 s, output voltage: 70–140 KV, output
current: 20–450 mA, layer thickness: 0.7 mm, reconstruction
time: 40 frames/s, reconstruction matrix: 512×512, number
of detector rows: 64, pitch: 0.15–1.5. After standardizing all
parameters of the patient’s PET/CT images, the window width
and window level of the CT images were set to 350 and
50, respectively, and the PET data were reconstructed by
attenuation correction and iterative method (Ordered Subsets
Expectation Maximization, OSEM), and then transmitted to the
MedEx workstation together with the CT images for fusion
imaging. The maximum standardized uptake value (SUVmax)
was automatically generated by the workstation based on the
information of the subject’s weight, injection dose, and time. The
region of interest (ROI) was outlined along with the extent of
the lesion at the level where the concentration of the radioactive
tracer was most obvious, and the workstation automatically
calculates the SUVmax.

2.3. Confirmation of Lesions and Huamn
Expert’s Qualitative Classification
Considering that detailed pathological examination was not
available in all patients, we determined the diagnosis of the
lesions on the basis of pathological biopsy, imaging follow-up,
and clinical course of the disease. Independent visual analysis of
lesions was evaluated by two physicians (TAJ and JY) with 20
years of diagnostic experience using the double-blind method,
physicians were not informed of the patient’s clinical information
and pathology but were told that the lesion was either MM
or BM. The weighted kappa analysis was used to determine
the interobserver agreement. Kappa coefficients of 0–0.20, 0.21–
0.40, 0.41–0.60, 0.61–0.80, and 0.81–1 were considered to be
slight, fair, moderate, good, and almost perfect agreement,
respectively (23).

2.4. Segmentation and Feature Extraction
Segmentation of the lesions was also performed by double-blind
methods with physicians who had 10 years of experience (CMY
and ZJN) in diagnostic work. All features were extracted in
MaZda software, which has been proven in previous studies
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FIGURE 2 | Clinical cases PET/CT images of multiple myeloma (MM) (A,B) and the delineation of the region of interest (ROI) (C,D).

for radiomics, and all radiomics features extracted were in
accordance with Image Biomarker Standardization Initiative
(IBSI) standards (24, 25). The source images were extracted
from the hospital PACS workstation and saved in BMP format.
The object of this study was the largest cross-sectional area
of the vertebral lesion, and the features were extracted by the
2D mode of Mazda software. Before the image was applied to
MaZda software for feature extraction, uniform and standardized
pre-processing of the image was performed by the method of
µ ± 3σ to make the features more reproducible and verifiable.
The abnormal uptake of radioactive tracer on the image was
used as the initial ROI, and the physician carefully identified
the edges of the lesion and progressively outlined the ROI on
the PET and CT images along the edge of the lesion. Because
of the long examination time, the physician could make minor
adjustments to determine the lesion of interest outlined and
eliminate the effects of patient movement or expiratory motion.
An example of the ROI outline was illustrated in Figure 2.

A total of 279 features were extracted for each ROI, which

were included in the following six common categories: gray-
level histogram (HSLM), gray-level absolute gradient (GRM),

gray-level run-length matrix (GLRLM), gray-level co-occurrence

matrix (GLCM), autoregressive model (ARM), and wavelet. The
interpretation of the features is described in detail in the previous
study (26).

2.5. Reliability Analysis
To ensure the stability and reproducibility of the extracted
features, a reliability test was performed. Another physician with
10 years of diagnostic experience repeated the outlining of the
above ROI by randomly selecting 30 lesions. The reliability of
the ROI outlined by the two physicians was assessed by the
class correlation coefficient. Class correlation coefficients greater
than 0.75 for radiomic features were considered to have good
stability and reproducibility and were used for subsequent feature
screening and model construction.

2.6. Dimensionality Reduction and Model
Establishment
Before the feature screening, the normalization of the features
was performed by the Z-score method, which aims to avoid the
training of the model with too small weights, causing numerical
instability, and to improve the comparability of the data, while
enabling the parameter optimization to converge at a faster
rate. After the reliability test, the training group was subjected
to the least absolute shrinkage and selection operator (LASSO)
regression for further data selection. LASSO regression was
performed by fitting a generalized linear model with variable
selection and complexity adjustment regularization. The filtering
features were validated by 10-fold cross-validation based on
the bias minimization criterion. Finally, for the final selected
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TABLE 1 | Basic information for patients in the training and validation cohorts.

The training cohort The validation cohort

BM MM P BM MM P

Gender 0.171 0.079

Female 22 16 11 8

Male 38 15 15 6

Age 63.58 ± 12.07 58.71 ± 10.08 0.470 60.88 ± 11.15 57.79 ± 13.20 0.521

Range 33–90 43–75 37–86 34–77

Lesion form 0.057 0.101

Osteolytic 52 37 22 18

Osteoblastic 15 2 6 0

Mixed 13 10 6 3

ISS stage

I - 10 - 3

II - 23 - 13

III - 16 - 5

Extramedullary mass 27 19 0.604 11 7 0.778

SUVmax 6.84 ± 3.32 4.06 ± 1.61 <0.001 6.79 ± 3.31 4.38 ± 1.60 0.001

Osteoporosis 0.001 0.007

Postive 17 33 8 13

Negative 63 16 24 8

Confirmation 0.001 0.001

Biopsy 29 49 14 21

Follow-up 51 0 18 0

P < 0.05 was considered to be statistically significant; BM, bone metastases; MM, multiple myeloma; Extramedullary mass, Extramedullary soft tissue mass; ISS stage, International

Staging System classification.

non-zero features, a classificationmodel was built by multivariate
logistic regression. CT models and PET models were constructed
based on the final selected features (features were derived from
CT and PET images, respectively). In order to better evaluate the
performance of radiomics, a combined model (ComModel) was
constructed by adding the PET conventional parameter SUVmax
combined with PET radiomics features.

2.7. Model Comparison
The performance of all classification diagnostic models was
evaluated by comparing the area under the receiver operating
characteristic (ROC) curve (AUC), accuracy, sensitivity,
specificity, negative predictive value (NPV), and positive
predictive value (PPV), while 95% CI of AUC were calculated.
The DeLong test was used to compare the diagnostic effects
between the models, and P < 0.05 was considered to be
statistically different. In addition, calibration curves and Brier
scores were used to evaluate the predictive ability and goodness
of fit of the classification models to observe the agreement
between the actual and predicted probabilities of the models.
Decision curve analysis (DCA) was used to visualize and evaluate
the clinical net benefit and clinical utility of the classification
prediction model by the graphical presentation.

2.8. Statistical Analysis
Independent samples t-test or Mann—Whitney U-test was used
to compare continuous variables with normal or non-normal

distribution in the MM and BM groups. Categorical variables
between the two groups were assessed using the chi-square
test or Fisher test and weighted Kappa statistics were used
to assess interobserver agreement. The processing of features
screen, model construction, and comparison of the diagnostic
performance of the models were performed in R software
(version 4.1.1) and Python (version 3.8.1). IBM SPSS (version
21.0) and MedCalc software (version 20.0) were used for other
clinical data analysis and ROC curve plotting. Probability values
of P < 0.05 were considered statistically significant.

3. RESULTS

3.1. Basic Patient Information
According to the inclusion and exclusion criteria, a total of 131
patients were enrolled, including 86 patients who were diagnosed
with bone metastases (BM), and the remaining 45 patients
were confirmed as MM. The statistics and comparison of basic
information of the patients were shown in Table 1. According
to the diagnostic criteria of the International Myeloma Working
Group, the stages of MM(ISS standard) were as follows: stage I:
n = 10; stage II: n = 19; stage III: n = 16. The primary tumor of
patients diagnosed with BM were as follows: lung cancer: n = 24;
breast cancer: n = 17; prostate cancer: n = 14; pancreatic cancer:
n = 4; kidney cancer: n = 3; ureteral cancer: n = 3; stomach cancer:
n = 3; thyroid cancer: n = 3; liver cancer: n = 2; bladder cancer:
n = 2; colon cancer: n = 2; parotid cancer: n = 2; gallbladder
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FIGURE 3 | (A–D) Demonstrated the specific process of least absolute shrinkage and selection operator (LASSO) regression analysis screening features for CT model

and PET model, respectively. (A,C) Showed process of features selection. The vertical green line was plotted at the optimal λ of 0.030 and 0.023 for CT and PET

model, respectively. Ten and eight features with non-zero coefficients were finally selected for CT and PET model, respectively. (B,D) Showed that features selection

performed by 10-fold cross-validation with the criterion of minimum deviance.

cancer: n = 2: fallopian tube cancer: n = 2; uroepithelial cancer:
n = 1; esophagus cancer: n = 1; cervical cancer: n = 1. A total
of 184 lesions were obtained and randomly divided into training
and validation groups according to the ratio of 7:3 (The training
group: BM: n = 80,MM: n = 49: The validation group: BM: n = 34,
MM: n = 21).

3.2. Feature Selection, Model
Establishment, and Validation
After reliability testing and excluding features with ICC
coefficients less than 0.75, 223 and 234 radiomics features
were extracted from CT and PET in the training group,
respectively. Then, 10 and 8 texture features were obtained
from CT and PET after LASSO regression and 10-fold cross-
validation, respectively. The LASSO regression screening process
was described in detail in Figure 3, and the final filtered
feature information in the training and validation groups of
the MM group and BM group was illustrated in the heat
map in Supplementary Figures S1–S4, which the differences
in feature expression between the MM and BM groups were
clearly seen. Furthermore, the selected features of CT and
PET coefficients were also described in Supplementary Table A.
In the training group, all models achieved very high AUC
values and the classification diagnostic performance of the
ComModel (AUC:0.973; CI95%:0.928–0.993) was significantly

improved compared to the CT (AUC:0.909; CI95%:0.846–0.952)
and PET models (AUC:0.949; CI95%:0.896–0.980) (P = 0.013
and P = 0.024, respectively), while the PET model did not
show a statistical difference in the DeLong test although it had
a higher diagnostic performance compared to the CT model
(P = 0.131). In the validation group, the ComModel (AUC:
0.948; CI95%: 0.853-0.990) and the PET model (AUC:0.929;
CI95%: 0.826–0.981) achieved similar diagnostic performance
and outperformed the CT model (AUC:0.897; CI95%: 0.785–
0.963), and the DeLong test suggested no statistical difference
between the three models (P = 0.309, P = 0.466, and P = 0.496,
respectively).

3.3. Diagnostic Performance Between the
CT Model, PET Model, ComModel, Human
Experts, and SUVmax
Human experts’ classification diagnostic of lesions was estimated
by the kappa coefficient, and in this study, the weighted
k-value for the interobserver agreement was 0.832, which
indicates a relatively reliable agreement. In the training and
validation groups, the AUC values of human experts for
the classification and diagnosis performance of MM and
BM were 0.835 (CI95%:0.760–0.895) and 0.840 (CI95%:0.717–
0.925), respectively. while the AUC values of SUVmax between
the two groups were 0.802 (CI95%:0.723–0.867) and 0.810
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(CI95%:0.681–0.903), respectively. Both the ComModel and the
PET model showed significant differences in the classification
diagnosis of MM and BM compared to human experts in both
the training (P = 0.001 and P = 0.01, respectively) and validation
groups (P = 0.033 and P = 0.018, respectively). The CT model
was not statistically different between the two groups compared
to the human experts (P = 0.187 and P = 0.299, respectively).
The ComModel and the PETmodel also showed great superiority
compared to SUVmax between the two groups (Training group:
P < 0.001 and P = 0.001; Validation group: P = 0.019, P =
0.045). No statistical difference was observed that the human
expert compared to SUVmax between the two groups (P = 0.036
and P = 0.732). The classification diagnostic performance of all
models was described and illustrated in Table 2, and the ROC
curves of all classification models were illustrated in Figure 4,
in addition, the detailed results of the DeLong test were also
recorded in Figure 4.

3.4. Clinical Use and Calibration
According to the calibration curves, all the radiomics models
were closer to the ideal curve, implying a good categorical
diagnostic performance. In addition, the ComModel had a
better fitness compared to the PET and CT models because
of the smaller Brier scores (Brier scores were 0.070, 0.088,
and 0.119, respectively), the calibration curve was shown in
Figure 5. In terms of the net clinical gain of the models, both
the ComModel and the PET model achieved good net clinical
gain and outperformed the other models, the decision curve was
shown in Figure 6.

4. DISCUSSION

Both myeloma and metastases were common malignant lesions
of the spine. When patients only present with lumbar pain and
no previous history of tumor, the clinical symptoms and imaging

manifestations of both were similar. However, the treatment
and prognosis of them were significantly different. Although
bone biopsy was the gold standard for identifying benign and
malignant lesions, there were limitations in clinical diagnosis
due to its invasive examination. Radiomics provided a non-
invasive assessment of the lesion and its microenvironment and
allow quantification of the spatial heterogeneity of the lesion,
which allows identification and evaluates the prognosis. In this
study, we constructed and validated a radiomics model based on
18F-FDG PET-CT images and achieved excellent performance
in classifying and diagnosing BM and MM. Furthermore, the
radiomics model showed unique superiority and clinical utility
compared to human experts as well as PET conventional
parameter SUVmax. This will play a decisive role as a non-
invasive and easy-to-use method in the diagnosis, staging, and
re-staging of diseases and even in the selection of treatment
strategies for diseases.

Previous studies had pointed out that the traditional imaging
features of bone destruction inmyeloma involved a series of small
focal-like, worm-like, and broad bone destruction, especially
for the imaging features such as chisel-like changes in the
skull and broad bone destruction in the ribs were specific
(27, 28). In addition, most patients with MM showed different
degrees of osteoporosis and rarely osteoblastic bone changes. The
imaging of bone metastases was characterized by the tendency
to invade the pedicle rather than the vertebral body and lack
of involvement of extremity bones (29). Mutlu et al. suggest
that features such as more sclerotic margins around BM lesions
and sharper margins around MM lesions may also be used to
differentiate among them (12). Although these studies indicate
that these features may be crucial information to identify them,
there were still exist similar imaging presentations of bone
metastases or atypical lesions in clinical work. Moreover, MM
and BM cannot be discriminated simply from bone destruction.
In this study, physicians successfully identified all osteoblastic

TABLE 2 | The diagnostic ability of each model for discriminating vertebral multiple myeloma (MM) from bone metastasis (BM).

AUC Accuracy Sensitivity Specificity PPV NPV

CT model

training cohort 0.909(0.846–0.952) 0.829 0.875 0.796 0.889 0.735

validation cohort 0.897(0.785–0.963) 0.836 0.882 0.857 0.882 0.762

PET model

training cohort 0.949(0.896–0.980) 0.884 0.937 0.837 0.900 0.857

validation cohort 0.929(0.826–0.981) 0.873 0.824 0.952 0.882 0.857

ComModel

training cohort 0.973(0.928–0.993) 0.915 0.925 0.898 0.925 0.898

validation cohort 0.948(0.853–0.990) 0.891 0.971 0.857 0.912 0.857

Human experts

training cohort 0.835(0.760–0.895) 0.845 0.875 0.796 0.875 0.796

validation cohort 0.840(0.717–0.925) 0.836 0.824 0.857 0.824 0.857

SUVmax

training cohort 0.802(0.723–0.867) 0.729 0.875 0.571 0.775 0.653

validation cohort 0.810(0.681–0.903) 0.745 0.912 0.571 0.794 0.667

AUC, the area under the ROC curve; PPV, postive predictive value; NPV, negative predictive value.
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FIGURE 4 | Comparison of the diagnostic performance of different models; (A,B) Show the ROC curves for each model in detail while also recording the value of

AUC. (C,D) Indicate the results of the DeLong test for the training group and validation group, respectively. AUC, area under the curve; *P< 0.05; **P < 0.01.

lesions in both the training and validation cohort of the BM
group. However, 17.1% (22/129) of the lesions were incorrectly
identified in the classification of osteolytic lesions. Physician
identification of lesions on conventional imaging mainly was
attributed to subjective visual assessment as well as diagnostic
experience. Still, this approach was undoubtedly challenging for
younger physicians with less diagnostic experience. Accurate
classification of BM and MM was crucial as it relates to the
plan of individualized treatment, reduction of complications, and
improvement of prognosis.

Maximum standardized uptake value as the conventional
parameter of PET/CT was used in past studies to determine
the treatment sensitivity and prognostic value of malignant
lymphoma in the early and intermediate stages (30, 31). On the
other hand, the study of Polat et al. confirmed the predictive
value of SUVmax for grading and staging of renal clear cell
carcinoma and the risk of stratification (32, 33). In our study,
SUVmax in the MM group (SUVmax: 4.06 ± 1.61) compared

to the BM (SUVmax: 6.84 ± 3.22) group showed a significant
decrease in both the training and validation groups, and similar
results had been reported several times in the past studies
(34, 35). However, the SUVmax for MM and BM in study Li
et al. was (1.6 ± 0.7 and 5.5 ± 2.7), respectively, and this
variability may be due to the subjects of that study being derived
from 334 patients with 8,896 lesions throughout the body,
whereas our study focused on the spine and maximum of two
lesions per case (5). There are no clear diagnostic thresholds
for SUVmax to identify MM and BM. Furthermore, the AUC
values of SUVmax for discriminating the BM and MM in the
training and validation groups in our study were 0.802 and
0.810, and the accuracy were 0.729 and 0.745, respectively,
which achieved only moderate diagnostic efficacy and were not
sufficient to make accurate predictions for the classification of
lesions. Furthermore, it was difficult for SUVmax to provide
a comprehensive description of the heterogeneity and spatial
consistency of lesions.
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FIGURE 5 | Comparison of the calibration curve and Brier score of different models. All three model’s calibration curves were closed to ideal curves, indicating that the

models had good fitness and predictive ability. The ComModel had better goodness of fit compared to the PET and CT models because of the smaller Brier scores

(Brier scores were 0.070, 0.088, and 0.119, respectively). The following figure shows the distribution of the probability of diagnosis for different models.

Radiomics could transcend subjective visual assessment to
provide an objective evaluation of lesion and tissue heterogeneity,
which served as a new tool to provide valuable information
about the microenvironment of lesions that cannot be observed
by the human eyes. PET/CT radiomics was demonstrated
several times in past studies to play an essential role in the
diagnosis and prognosis of diseases and performing assessment
of therapeutic efficacy. In our research, the radiomics models
constructed based on PET/CT images had high diagnostic
efficacy in discriminating MM and BM not only in the training
group, with AUC values of 0.909, 0.949, and 0.973 for the
CT model, PET model, and ComModel, respectively, but also
in the validation group, with AUC values of 0.897, 0.929,
and 0.948 for the CT model, PET model, and ComModel,
respectively. In addition, the diagnostic performance and clinical
utility of the radiomics model were superior to those of

the human expert and SUVmax, with incremental value for
differential and diagnostic purposes, especially the PET andCOM
models. It should note that a proportion of patients incorrectly
staged by human experts (10.9%) and SUVmax (23.9%) were
correctly diagnosed by our radiomics model, indicating that
the radiomics model could complement the current staging
scheme. More importantly, our findings suggest that the PET
model had a higher value than conventional CT radiomics in
discriminating MM from BM. Although there was no statistical
difference in the Delong test, the AUC, Accuracy, Sensitivity,
and Specificity of the PET model were significantly improved
compared with the CT model. This may be due to the fact that
PET images represent radioactive tracer uptake and metabolic
information of the lesion. At the same time, PET/CT radiomics
reflected the quantification of tumor uptake heterogeneity and
earlier detection of lesions compared to conventional imaging,
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FIGURE 6 | The clinical practicability of the models in this study was evaluated and compared, which indicated that the PET model and the ComModel had better net

clinical benefit than the other models.

which brings additional value for lesion and tissue specificity
identification.

Our results show that Perc.01% and Vertl_RLNonUni were
the most representative features in identifying MM and BM,
as they appeared in both CT and PET models. The radiomics
parameter Perc.01% derived from HSLM reflected the brightness
value of the area where it was located and the number of
pixels, which further confirmed the excellent performance of
the radiomic model since these parameters were closely related
to bone density in CT images and radioactive tracer uptake in
PET images, as well as to the osteoporosis exhibited by patients
with myeloma (36). The radiomics parameter Vertl_RLNonUni
derived from the GLRLM reflects the heterogeneity of the
images in different directions, and the Vertl_RLNonUni had been
demonstrated in previous studies as a reliable indicator that could
be used to predict the grading and staging of clear cell renal
cell carcinoma and to perform risk stratification (37). In our
study, it was hypothesized that this may be due to the different
pathological mechanisms of MM and BM, as well as the fact that
BM was an infiltrative lesion while MM was a diffuse lesion (38).

Our findings were highly reproducible because we applied
rigorous subject screening and reliability testing of lesion
segmentation during the study. The LASSO regression algorithm
has been applied and validated many times in the past to have
good utility in screening the feature parameters. Our radiomics
model has been validated by methods such as the Calibration
curve and DCA curve, and has good fitness and is very close
to the ideal curve. It was worth noting that we performed the

outline of ROI in 2D mode rather than 3D mode, and the
radiomic features generated by different mode outlines may be
different. Still, past studies had demonstrated that the models
constructed in 2D or 3D mode achieved similar classification
diagnostic performance (39). In this study, we compared the
bone metastases of different malignant with MM, it is unclear
whether the characteristic parameters of bone metastases caused
by different malignancies are the same, Xiong et al. have
tried to distinguish the BM characteristics of lung cancer
and other cancers, and their results achieved only moderate
diagnostic results in distinguishing them (20). In addition,
patients with BM and MM may have altered images after
chemotherapy or radiotherapy, such as focal radiotracer uptake
and SUV measurements. Post-treatment lesions exhibiting flare
phenomena and osteogenic-type responses may also introduce
changes to the features extraction. Therefore, we strictly screened
the enrolled patients to eliminate the effect of treatment on
the images and ensure the rigor of this study. Finally, the use
of pre-treatment images to construct radiomic models had the
potential to help clinicians physicians to determine the sensitivity
of patients to radiotherapy or chemotherapy and, thus, better
stratify patients to determine more appropriate individualized
treatment plans.

There were still exist some limitations in our study. First, as a
single-center study, this study may be biased in terms of patient
selection, and thus, the results may hardly represent generalizable
findings. In addition, there was a lack of external validation
data from the multicenter association. Therefore, all aspects still
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need to be adjusted and optimized before applying to the clinic.
Second, retrospective studies may have selection bias related
to study data collection. Third, not all patients enrolled had
pathological findings, and we combined pathological findings
and follow-up results to determine the classification of lesions
under strict adherence to inclusion and exclusion criteria.

5. CONCLUSION

The radiomics model constructed based on 18F-FDG PET/CT
images achieved satisfactory diagnostic performance for the
classification of MM and bone metastases. In addition, the
radiomics model showed a significant improvement in diagnostic
performance compared to human experts and PET conventional
parameter SUVmax. This non-invasive method could be used as
a complement to traditional diagnostic methods. Furthermore,
it had the potential to help clinicians physicians to develop
individualized treatment plans, avoid adverse risks, and improve
treatment outcomes.
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