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Abstract: The number of effective therapeutic strategies against biofilms is limited; development of novel
therapies is urgently needed to treat a variety of biofilm-associated infections. Quorum sensing is a special
form of microbial cell-to-cell communication that is responsible for the release of numerous extracellular
molecules, whose concentration is proportional with cell density. Candida-secreted quorum-sensing
molecules (i.e., farnesol and tyrosol) have a pivotal role in morphogenesis, biofilm formation, and virulence.
Farnesol can mediate the hyphae-to-yeast transition, while tyrosol has the opposite effect of inducing
transition from the yeast to hyphal form. A number of questions regarding Candida quorum sensing
remain to be addressed; nevertheless, the literature shows that farnesol and tyrosol possess remarkable
antifungal and anti-biofilm effect at supraphysiological concentration. Furthermore, previous in vitro and
in vivo data suggest that they may have a potent adjuvant effect in combination with certain traditional
antifungal agents. This review discusses the most promising farnesol- and tyrosol-based in vitro and
in vivo results, which may be a foundation for future development of novel therapeutic strategies to
combat Candida biofilms.
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1. Introduction

It has been estimated that there are 2.2 to 3.8 million fungal species worldwide; however,
approximately 300 species have been described to cause human disease [1]. Candida species are
among the most common human fungal pathogens. The annual incidence rate of Candida-associated
bloodstream infections ranged from 9.5 to 14.4 per 100,000 in the United States of America [2]. This value
ranged from 1.4 to 5.7 per 100,000 in Europe, depending on the country [3]. In the last two decades,
the prevalence of resistant fungal infections has been steadily increasing due to the widespread use of
antifungals in agriculture and veterinary and human medicine [4,5]. Global warming and anthropogenic
effects have resulted in the emergence of previously little-known, potentially multi-resistant fungal
pathogens in clinical practice, such as Candida auris, azole-resistant Aspergillus spp., or Lomentospora
prolificans. These emerging pathogens have caused further challenges for therapy [6,7].

Several fungal species can switch their morphology from yeast to hyphal or pseudohyphal forms,
which is coupled with biofilm formation and plays a pivotal role both in fungal virulence and in resistance
to antifungals [8–10]. The increased number of biofilm-associated infections is exacerbated by a paucity
of antifungal agents or therapeutic strategies in development that have unique mechanisms of action or
possess alternative approaches, respectively [11]. Currently, the most promising antifungal agents are
already in Phase 3 including ibrexafungerp [12], rezafungin [13], super bioavailable itraconazole [14],
and VT-1161 [15]. Recently investigated alternative therapeutic approaches involve high-dose therapy with
available antifungal agents [16–18], antifungal lock therapy [19], and combination-based therapies [20,21].
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Based on in vitro and in vivo data, echinocandins and amphotericin B solutions are the most promising
combination-based and/or antifungal lock strategies [19]. Further innovative therapeutic approaches
may be the natural products-based treatments [22,23]. One of the more well-studied compounds is
carbohydrate-derived fulvic acid as a heat stable colloidal material, which has an inhibitory effect on
Candida and bacterial biofilm formation [24]. Moreover, a further alternative approach is the treatments
disrupting quorum sensing. The usage of quorum sensing molecules at supraphysiological concentration
may adversely influence the cell-to-cell communication in biofilms [25–27]. In addition, the quorum-sensing
system can be inactivated, which is generally known as quorum quenching. Quorum quenching can
be triggered by inhibiting the production of quorum sensing molecules, their detection by receptors or
their degradation [28].

In this review, a detailed overview is provided of the recent status of quorum-sensing
molecule-based therapeutic approaches and their potential future perspectives against Candida biofilms.

2. The Medical Importance of Candida Biofilms

Despite their importance, Candida biofilms remain a relatively underappreciated and understudied
area. Therefore, effective therapeutic strategies against these sessile communities remain scarce.
Biofilms are usually found in medical devices such as joint prostheses, pacemakers, urinary and
central venous catheters, dentures, and mechanical heart valves, hindering the eradication of Candida
infections [10]. In addition, several chronic Candida-related diseases are also associated with biofilm
development [29]. Biofilm formation on the vaginal mucosa has been observed in in vivo models
of vulvovaginal candidiasis [30]. Oral- and oesophageal mucosae-associated biofilms are a very
important contributor to oral diseases caused by Candida species; gastrointestinal and urogenital tracts
are also common sites of Candida-associated opportunistic infections [31]. Candida is one of the most
commonly identified fungal genera in wounds whose environment can also promote the formation of
biofilms [32]. A series of recent studies has indicated that strains defective in hyphal formation display
significantly milder symptoms, highlighting the role of biofilm formation in pathogenesis of these
chronic or recurrent infections [30,33].

These sessile communities exhibit five- to eightfold higher resistance to all licenced antifungal
drugs when compared to their planktonic counterparts [10]. This high rate of resistance can be
explained by the increased metabolic activity of cells in the early development phase of biofilm
formation [10]. On the other hand, dormant, non-proliferating persister cells have also been observed,
especially in mature biofilms, that have demonstrated high tolerance to antifungals [34]. Furthermore,
the various Candida species can produce dense extracellular polymeric substances which serve as a
solid barrier to prevent the diffusion of antifungal drugs and account for almost 90% of the biofilm dry
mass [10]. As has been previously reported in the literature, sessile Candida communities exhibit an
altered gene expression profile, including the upregulation of CDR and MDR genes which encode
azole resistance transporter proteins, and pose further challenges for treatment [35].

To date, there is no definitive therapy against Candida biofilms; nevertheless, there are several
promising in vitro, in vivo and clinical results. The increasing number of resistant Candida species and
isolates highlight the need for new molecules with new targets. Alternative therapeutic approaches
against multidrug-resistant fungal biofilms may be the result of a combination of traditional antifungal
agents with quorum-sensing molecules [36].

3. Fungal Quorum Sensing

A major mechanism of microbial communication is a population density-dependent
stimulus-response system called quorum sensing. This process occurs by the continuous release and
monitoring of low molecular weight hormone-like secreted molecules (quorum-sensing molecules),
which are not elementary in the central metabolism but have a variety of biological activities.
The concentration of these quorum-sensing molecules is proportional with the size of population;
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after reaching a critical threshold, a response is triggered leading to the coordinated expression or
repression of quorum sensing-related target genes [37].

In the fungal kingdom, quorum sensing was a relatively unknown phenomenon until
Hornby et al. (2001) described the effect of the isoprenoid farnesol on Candida albicans morphogenesis;
this opened a new branch of science focusing on fungal quorum sensing [38]. At the same time,
quorum sensing has been already reported in Aspergillus spp. [39] and Penicillium spp. [40]. To date,
four main quorum-sensing molecules were described including farnesol, tyrosol, phenylethanol,
and tryptophol, which have a remarkable effect on the regulation of morphogenesis (yeast to hyphae
transition and vice versa), initiation of fungal apoptosis, and virulence [41].

Recently, several authors reported that certain quorum-sensing molecules may generate oxidative
stress, especially at supraphysiological concentrations, which may have an antifungal effect [42–45].
The majority of data concerning fungal quorum sensing molecule-related therapeutic potential derived
from C. albicans experiments, and these results cannot be always directly extrapolated to non-albicans
species. Recently, the number of studies dealing with the effect of quorum-sensing molecules on
non-albicans species has steadily increased, supporting the comprehensive understanding of the in vitro
and in vivo antifungal effects exerted by these molecules.

4. Farnesol

4.1. Physiological Effect of Farnesol in Candida Species

Farnesol (3,7,11-trimethyl-2,6,10-dodecatriene-1-ol) was the first described Candida-derived
quorum sensing molecule; it is released in C. albicans as a side product of the sterol synthetic pathway
by dephosphorylation of farnesol pyrophosphate [38,46]. It is an acyclic sesquiterpene heat-stable
molecule, which is produced primarily under aerobic conditions and it is unaffected by extreme pH and
the type of carbon or nitrogen source [38,47]. Generally, the farnesol concentration is proportional to the
colony-forming unit number [38]. Under physiological conditions, C. albicans isolates secrete a farnesol
concentration with a mean of 35.6 µM (range: 13.7 to 58.5 µM) [48]. This concentration was 35 times
higher than that secreted by non-albicans species, with the exception of Candida dubliniensis, which has
demonstrated a concentration of 8.3 µM (range: 6.0 to 17.5 µM). All other non-albicans species excreted
significantly lower farnesol concentrations, ranging from 0.4 to 1 µM [48]. These differences in excretion
may be explained by the species-specific characteristics in sterol synthesis [49].

Based on a cDNA microarray analysis, a total of 274 genes were identified as responsive in
C. albicans, with 104 genes up-regulated and 170 genes down-regulated [50]. Farnesol has an ability to
influence Candida morphology, biofilm formation, drug efflux pump expression, apoptosis regulation,
phagocytic response, surface hydrophobicity, iron metabolism, and heat-shock-related pathways [50–54].
One of the most prominent farnesol-associated effects is the induction of hypha-to-yeast transition and
the inhibition of biofilm formation in various Candida species. It should be emphasized that 150-fold
more farnesol is needed to block germ-tube formation in the presence of 10% serum, showing that it
can bind to serum proteins at a high rate [55,56].

In view of this diverse role, it is not surprising that this compound influences several
central signalling pathways in different Candida species. One of the best-studied farnesol-related
pathways is the Ras1-cAMP-PKA cascade, where farnesol binds to the cyclase domain of the
adenylyl cyclase Cyr1, influencing the level of intracellular cAMP [57]. Moreover, farnesol
induces the cleavage of the small GTPase Ras1, resulting in a soluble Ras1; soluble Ras1 is a
weak activator of Cyr1 and supports the formation of yeast cells [58]. Furthermore, farnesol can
directly inhibit the cAMP signalling pathway, supporting the hypha-to-yeast transition [59]. It is
noteworthy that farnesol exposure stabilizes the Nrg1 protein, which is the negative regulator of
filamentation [60]. While farnesol was described first in C. albicans, it can inhibit filamentation and
growth in other fungal species [27,61], including Saccharomyces cerevisiae [62], Aspergillus niger [63],
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Aspergillus flavus [64], Aspergillus nidulans [65], Penicillium expansum [66], Fusarium graminearum [67],
and Paracoccidioides brasiliensis [68].

Regarding reactive oxygen species production, the supraphysiological farnesol concentrations
(200–300 µM) are stressful for most fungi, while the physiological concentrations (30–40 µM) protect
them from stress [57]. In addition to the farnesol-related effect on growth in the case of different
microbes, the molecule also has a relevant immunomodulator effect [57,69]. Farnesol can stimulate
both macrophage chemokine synthesis or macrophage recruitment, and trigger activation of neutrophil
granulocytes and monocytes. Farnesol exposure also influences the differentiation of monocytes into
dendritic cells [57,69].

Farnesol has been reported to induce cell growth inhibition and/or apoptosis in tumor cells
where the observed IC50 values varied widely for different tumor types and different cell lines [70].
Farnesol caused 100% cell death at >120µM in A549 and H460 lung cancer cells [71]. Scheper et al. (2008)
observed an IC50 value of 30 to 60 µM for farnesol on the primary human tongue squamous cell
carcinoma cell lines (OSCC9, OSCC 25) [70]. Nagy et al. (2020) evaluated 10 µM, 50 µM, 150 µM,
and 300 µM farnesol concentrations in terms of toxicity to the Caco-2 cell line, where no toxicity was
observed with any concentration tested [45].

4.2. Antimicrobial Activity of Farnesol

At physiological concentrations, farnesol has no significant effect on Candida cells that have
already begun hyphae development or biofilm formation [25,38]. However, prior results suggest
that farnesol can cause biofilm degradation at supraphysiological concentrations, suggesting the
potential use of this compound in biofilm-associated infections [36]. In addition, several authors have
published studies demonstrating contribution of farnesol to reduced azole resistance of Candida cells,
including in biofilms [72]. This phenomenon can be explained by the modulation of Cdr1 efflux pumps,
reactive oxygen species production, or changes in glutathione homeostasis [38,61,72]. Furthermore,
farnesol has an effect on genes connected to ergosterol synthesis [46]. Dižová et al. (2018) observed
that the presence of 200 µM farnesol down-regulated the ERG20, ERG11 and ERG9 genes. However,
this farnesol concentration supplemented with 0.5 mg/L fluconazole restored the original expression
level of ERG20 and ERG11. Interestingly, the physiological farnesol concentration (~30 µM) only
slightly influences the expression of these genes in 48 h-old biofilms [73]. Chen et al. (2018) reported
that CYR1 and PDE2 regulate resistance mechanisms against various antifungals in C. albicans biofilms.
However, farnesol can diminish the resistance of C. albicans biofilms by regulating the expression of
the gene CYR1 and PDE2 [74]. Yu et al. (2012) observed that the sterol biosynthetic pathway may
contribute to the inhibitory effects of farnesol, as the transcription levels of the ERG11, ERG25, ERG6,
ERG3, and ERG1 genes decreased following farnesol exposure [75]. Jabra-Rizk et al. (2006) showed that
farnesol concentrations of 30–50 mM decrease the fluconazole MICs for C. albicans and C. dubliniensis
from resistant values to a susceptible dose-dependent range, while concentrations of 100–300 mM
resulted in fluconazole susceptibility [76].

One of the first major breakthroughs in combination-based experiments with farnesol and
antifungals was published by Katragkou et al. (2015), who found a significant synergy against
C. albicans 48 h-old biofilms between fluconazole, amphotericin B, and micafungin in the presence of
farnesol [26]. The highest synergistic effect was observed in the case of micafungin combined with
farnesol using fractional inhibitory concentration index determination and Bliss independence analysis.
Based on the Bliss model, the observed effects were 39–52% higher compared to the expected efficacy if
the drugs had been acting independently [26]. It should be noted that synergism was observed only
in the case of farnesol/micafungin and farnesol/fluconazole based on calculated fractional inhibitory
concentration indices, suggesting the usage of multiple analytical approaches for investigation of
drug-drug interaction [26].

Regarding non-albicans species, Kovács et al. (2016) showed that farnesol consistently enhanced
the activity of caspofungin and micafungin, as concordantly shown in two independent experimental
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settings (chequerboard dilution and time–kill experiments) [27]. Fernández-Rivero et al. (2017) reported
that a supraphysiological farnesol concentration (300 µM) improved the activity of amphotericin
B against Candida tropicalis biofilms but did not affect anidulafungin [77]. Two recent studies by
Nagy et al. concluded that farnesol significantly enhanced the activity of echinocandins and triazoles
against one-day-old C. auris biofilms in vitro, suggesting an alternative approach to overcome the
previously well-documented azole and echinocandin resistance of C. auris biofilms [45,78].

Animal experiments with farnesol raised several questions in terms of in vivo applicability of this
compound. In one of the first in vivo studies, Navarathna et al. (2007) concluded that the physiological
farnesol production may play a pivotal role as a virulence factor in fungal pathogenesis; furthermore,
exogenous oral and intraperitoneal farnesol administration (20 mM) enhances the mortality of mice in
their systemic mouse model [79]. Contrary to these results, Hisajima et al. (2008) observed a protective
effect against C. albicans in their oral candidiasis mouse model [80]. It should be noted that there was
a 1000-fold difference between the administered farnesol dosages (9 µM/mouse) in the experiments
of Hisajima et al. (2008) [80] compared to experiments performed by Navarathna et al. (2007)
(20 mM/mouse) [79]. In addition, they reported a potential gastrointestinal tract-related farnesol effect
including moderate bodyweight reduction and reduced Candida faeces burden [80]. A cocktail of
Candida-derived regulatory alcohols combined with nanomolar amounts of farnesol was reported to
have a similar protective effect by Martins et al. (2012) in their murine model of disseminated
candidiasis [81]. Bozó et al. (2016) did not find a farnesol-related protective effect against
vaginal C. albicans infection [82], in contrast to the findings of Hisajima et al. (2008) [80]. However,
both administered farnesol regimens enhanced the activity of 5 mg/kg daily fluconazole treatment
against fluconazole-resistant C. albicans strain [82]. Similar fluconazole resistance reversion was
observed in the case of planktonic cells by Jabra-Rizk et al. (2006) [76] and Cordeiro et al. (2013) [83].
Fernandes Costa et al. (2019) used nanoparticles containing farnesol alone or in combination with
miconazole; nanoparticles containing farnesol inhibited yeast-to-hyphae transition at concentrations
greater than or equal to 240 µM [84]. In addition, chitosan nanoparticles containing miconazole
(33 mg/L) and farnesol (2.1 mM) inhibited fungal proliferation and decreased the pathogenicity of
mouse vulvovaginitis infection [84]. Nagy et al. (2020) demonstrated that a daily treatment with 75 µM
farnesol decreased the C. auris kidney burden in their immunocompromised systemic mouse model,
especially when inocula was pre-exposed to farnesol [45].

The farnesol-exerted antifungal activity can be explained by the higher level of reactive oxygen
species, especially in the case of non-albicans species [43,45]. Furthermore, farnesol has an amphiphilic
property which allows for its integration into cell membranes, influencing membrane fluidity
and integrity. In the case of Candida parapsilosis and C. dubliniensis, farnesol affected the cellular
polarization and membrane permeability [61,76,85]. These observations can help further elucidate the
antifungal effect.

Farnesol has a remarkable antibacterial effect alone or in combination with traditional
antibacterial agents as demonstrated by in vitro investigations. Jabra-Rizk et al. (2006) observed
that farnesol treatment (100 µM) increases the activity of gentamicin against Staphylococcus aureus
biofilms [86]. Gomes et al. (2009) showed that farnesol exposure (300 µM) produced a relatively
long post-antimicrobial effect (>8 h) against Staphylococcus epidermidis [87], while Pammi et al. (2011)
observed that farnesol exposure at a concentration of 500 µM significantly inhibited the S. epidermidis
biofilm formation in vitro [88]. A clear synergistic interaction was observed between farnesol and
nafcillin or vancomycin against S. epidermidis sessile cells [88]. Additionally, it potentiates the activity of
beta-lactam antibiotics against antibiotic-resistant bacterium species [89]. Castelo-Branco et al. (2012)
showed a potent antimicrobial effect exerted by exogenous farnesol exposure against mature
Burkholderia pseudomallei biofilms [90]. Additionally, it increased the activity of amoxicillin, ceftazidime,
doxycycline, and sulfamethoxazole-trimethoprim, which are routinely administered for the treatment
of melioidoses [91]. Farnesol also had a synergizing effect against ciprofloxacin-resistant Pseudomonas
aeruginosa biofilms when used in combination with ciprofloxacin [92]. In vivo data also supports the
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antibacterial efficacy of farnesol. It has been observed that 6.7 mM farnesol treatment significantly
decreased the S. epidermidis associated catheter infection and systemic dissemination [88].

Based on several studies, farnesol has a remarkable effect in Candida-bacterium mixed biofilms.
C. albicans-derived farnesol has also been shown to have an effect on the response of S. aureus
to antibiotics in mixed species biofilms. Farnesol exposure results in a significant decrease in
staphyloxantin, which is an important virulence factor of this bacterium [42]. Černáková et al. (2018)
showed that 200 µM farnesol has an inhibitory effect on C. albicans growth in mixed-species biofilms
with Streptococcus mutans [93]. Cugini et al. (2010) examined the C. albicans-P. aeruginosa mixed species
biofilms, where the C. albicans-derived farnesol enhanced P. aeruginosa quinolone signal production in
a LasR-defective strain [94].

5. Tyrosol

5.1. Physiological Effect of Tyrosol in Candida Species

Tyrosol (2-(4-hydoxyphenyl)-ethanol) is a tyrosine-derived molecule which is synthetized via either
tyramine or 4-hydroxyphenylacetaldehyde [95,96]. In the case of C. albicans, it is released into the growth
medium continuously during the exponential growth phase and is capable of decreasing the duration
of the lag phase before cells begin germination. The accumulation of tyrosol in the culture medium is
proportional to the rise of fungal cell number. While the molecule stimulates filamentation, it exclusively
promotes germ tube formation in conditions that normally induce these physiological processes [95,96].
Tyrosol exposure influences cell cycle regulation, DNA replication, and chromosome segregation in
C. albicans [95]. Additionally, it was shown to have an inhibitory effect on neutrophil granulocytes by
interfering with the oxidative stress response of these phagocytes [97,98]. Significantly more tyrosol
was secreted by C. albicans (range: 21.01 ± 0.76 to 53.40 ± 1.73 µM/1.6 × 107–5.3 × 107 cells/mL) and
C. tropicalis (range: 41.21 ± 1.21 to 48.63 ± 3.83 µM/2.6 × 107–2.7 × 107 cells/mL) than by Candida
glabrata (range: 1.3 ± 0.17 to 3.26 ± 0.33 µM/2.7 × 107–5.5 × 107 cells/mL) or C. parapsilosis (range:
1.59 ± 0.29 to 3.04 ± 0.43 µM/1.7× 107–2.3× 107 cells/mL), suggesting a possible link with virulence [99].
Tyrosol plays a pivotal role in biofilm production, where it can stimulate hypha production of C. albicans,
especially between two and six hours of biofilm development. C. albicans biofilms released at least 50%
more tyrosol when compared to planktonic cells [96].

Regarding non-albicans species, tyrosol has been recognized as inducing the biofilm-forming ability
of C. auris to grow as yeast or pseudohyphae [96]. Based on RNA-Seq analysis, tyrosol treatment resulted
in 261 and 181 differentially expressed genes with at least a 1.5-fold increase or decrease in expression in
C. parapsilosis, respectively; however, the initial adherence was not affected by the presence of tyrosol [43].
Interestingly, the ortholog of the C. albicans CZF1 gene, which is a key transcription factor of biofilm
development in C. parapsilosis, was upregulated following tyrosol exposure [43,100]. Nevertheless,
Jakab et al. (2019) did not observe higher rates of biofilm formation in the presence of tyrosol [43].
In C. parapsilosis, tyrosol exposure overexpressed the active efflux pumps and caused an enhanced
oxidative stress response, while inhibiting growth, ribosome biogenesis, and virulence. Surprisingly,
its metabolism was modulated toward glycolysis and ethanol fermentation [43]. Monteiro et al. (2015)
reported that tyrosol exposure did not induce increased adhesion in C. glabrata [101].

Regarding tyrosol related toxic effect, initial cytotoxicity was observed at concentrations of >10 mM,
3 mM, 5 mM and >15 mM for human gingival fibroblasts (GN61), human gingival epithelial cells
(S-G), human salivary gland carcinoma cells (HSG1) and colon adenocarcinomas cell line (Caco-2),
respectively [43,102].

5.2. Antimicrobial Activity of Tyrosol

Tyrosol is a relatively understudied molecule compared to farnesol in terms of potential antifungal
or anti-biofilm activity; despite this, a few studies have examined the potential use of tyrosol in
monotherapy or in combination with traditional antifungal agents against Candida species [36,72].
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Arias et al. (2016) showed that tyrosol treatment at concentrations ranging from 100 to 200 mM
exerted a significant reduction in metabolic activity against C. albicans and C. glabrata two-day-old oral
biofilms, which was proportional to a reduction in cell number [103]. Do Vale et al. (2017) showed that
tyrosol alone at concentrations of 50 and 90 mM demonstrated inhibition of the planktonic growth
of C. albicans and C. glabrata cells, respectively [104]. However, tyrosol does not significantly reduce
metabolic activity or the number of cells for one-day-old oral biofilms; in addition, the nature of
interaction of tyrosol with chlorohexidine gluconate was indifferent. Nevertheless, 1.25 mM tyrosol
with 0.00725 mM chlorhexidine gluconate showed a synergistic interaction in reducing the number
of hyphae formed [104]. A combination of tyrosol and farnesol has been explored for oral Candida
isolates for both planktonic and sessile growth. This combination showed synergy against C. glabrata,
indicating that this combination may contribute to the development of oral care products against
Candida species [105].

In another study, tyrosol showed anti-biofilm activity against denture-derived C. albicans isolates.
However, it has been shown that the single use of tyrosol cannot decrease hydrolytic enzymes on oral
C. albicans [106]. Shanmughapriya et al. (2014) observed that tyrosol treatment caused a 25% and a
50% reduction in intrauterine device-derived Candida krusei and C. tropicalis biofilm production at
concentrations of 40 µM and 80 µM, respectively [107]. In addition, amphotericin B combined with
tyrosol showed a remarkable inhibitory effect against these non-albicans biofilms. A concentration
of 4 mg/L amphotericin B in the presence of 80 µM tyrosol exerted approximately 90% inhibition
in biofilm formation [107]. Cordeiro et al. (2015) showed that the addition of tyrosol significantly
reduced the MICs for amphotericin B, fluconazole, and itraconazole against planktonic C. albicans and
C. tropicalis [108]. Furthermore, exogenous tyrosol alone was able to significantly reduce the biofilm
formation of these species at concentrations ranging from 125 to 250 mM. At these concentrations,
tyrosol decreased the metabolic activity of growing biofilms by approximately 24 and 30% for C. albicans
and C. tropicalis, respectively. Reduction of metabolic activity was more pronounced when tyrosol was
combined with traditional antifungal drugs including amphotericin B, fluconazole, and itraconazole.
It should be noted that application of amphotericin B with tyrosol markedly decreased the metabolic
activity of mature biofilms (35%) [108]. Kovács et al. (2017) reported that tyrosol may be used as an
adjuvant agent with caspofungin or micafungin in alternative treatment strategies [109]. Regarding the
in vivo antifungal effect of tyrosol, Jakab et al. (2019) reported that daily treatment with 15 mM tyrosol
decreased the fungal tissue burden in their immunocompromised mouse model [43]. In this study,
the expression of ALS6, which has a pivotal role in adhesion, was significantly reduced by tyrosol
treatment. Furthermore, downregulation of the expression of FAD2 and FAD3 may also contribute
to decreased virulence and kidney fungal burden. The well-documented antifungal effects exerted
by tyrosol may be explained by the enhanced oxidative stress and the inhibition of virulence-related
genes, growth, and ribosome biogenesis. In addition, tyrosol can alter the metabolism of Candida cells
toward fermentation [43].

Data on the potential antibacterial effects of tyrosol remain scarce. Arias et al. (2016) found a
potential anti-biofilm activity of tyrosol against S. mutans in single and mixed species biofilms with
C. albicans or C. glabrata developed on acrylic resin and hydroxyapatite surfaces [103]. Their results may
contribute to the development of innovative topical therapies focusing on biofilm-associated oral diseases.
Abdel-Rhman et al. (2016) reported substantial antibacterial activity of tyrosol against S. aureus; moreover,
tyrosol increased susceptibility to gentamicin, amikacin, and ciprofloxacin at subinhibitory concentrations
ranging from 3.5 to 14.3 mM [110]. Tyrosol treatment can also influence S. aureus virulence, decreasing the
production of protease and lipase enzymes and limiting the ability to form biofilms [110]. In the case of
P. aeruginosa, tyrosol strongly inhibited haemolysin and protease production [111].

6. Future Remarks

Paradoxically, medical advancement has resulted in an increasing number of immunocompromised
individuals susceptible to Candida infections. The incidence and mortality rate related to systemic
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Candida infections has remained unchanged, despite the advances in the field of antifungal therapy.
Based on recent comprehensive epidemiological studies, the high incidence and mortality may
be attributed to sessile Candida populations, namely biofilms, which show high resistance against
environmental factors, immune responses, and traditional antifungal therapy. Although there is no
definitive solution or highly effective therapeutic recommendation against Candida biofilms, there are
many promising therapeutic strategies including antifungal “lock” therapy, photodynamic inactivation,
and the use of natural products or synthetic peptides with antifungal activity. A further solution may
be the utilization of quorum-sensing molecules alone or in combination with traditional antifungal
agents; however, there are numerous open questions as to their exact action or the interaction between
quorum-sensing molecules and the host. In addition, the full understanding of quorum sensing in
non-albicans species has remained unelucidated. In this review, we provided an overview on the current
status of studies focusing on anti-biofilm activity of farnesol and tyrosol. Hopefully, these in vitro and
in vivo results can be implemented in therapeutic practice as soon as possible to overcome Candida
biofilm-related infections.
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