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Abstract
Background: Immunotherapeutic approaches have recently emerged as effective 
treatment regimens against various types of cancer. However, the immune-mediated 
mechanisms surrounding papillary renal cell carcinoma (pRCC) remain unclear. This 
study aimed to investigate the tumor microenvironment (TME) and identify the po-
tential immune-related biomarkers for pRCC.
Methods: The CIBERSORT algorithm was used to calculate the abundance ratio of 
immune cells in each pRCC samples. Univariate Cox analysis was used to select the 
prognostic-related tumor-infiltrating immune cells (TIICs). Multivariate Cox regres-
sion analysis was performed to develop a signature based on the selected prognostic-
related TIICs. Then, these pRCC samples were divided into low- and high-risk groups 
according to the obtained signature. Analyses using Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis 
(GSEA) were performed to investigate the biological function of the DEGs (differen-
tially expressed genes) between the high- and low-risk groups. The hub genes were 
identified using a weighted gene co-expression network analysis (WGCNA) and a 
protein-protein interaction (PPI) analysis. The hub genes were subsequently validated 
by multiple clinical traits and databases.
Results: According to our analyses, nine immune cells play a vital role in the TME 
of pRCC. Our analyses also obtained nine potential immune-related biomarkers for 
pRCC, including TOP2A, BUB1B, BUB1, TPX2, PBK, CEP55, ASPM, RRM2, and CENPF.
Conclusion: In this study, our data revealed the crucial TIICs and potential immune-
related biomarkers for pRCC and provided compelling insights into the pathogenesis 
and potential therapeutic targets for pRCC.
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1  |  INTRODUC TION

Renal cell carcinoma (RCC) is a common urologic malignancy and 
has increased incidence in recent years.1 Aside from clear cell renal 
cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC) is the 
most common subtype of RCC and accounts for 10%–15% of all RCC 
cases.2 The histology of pRCC is characterized by a papillary fibrous 
vascular core of tumor cells and is markedly different from that of 
ccRCC.3 There are two main histological subtypes of pRCC, depend-
ing on their characteristics. Compared with type 1 tumors, type 2 tu-
mors have a worse prognosis. There was no significant difference in 
metastatic disease outcomes between pRCC and ccRCC3; however, 
the immune cell infiltration in the tumor microenvironment (TME) 
of pRCC is still unclear, and the elucidation of the different effects 
of immunotherapy is still in its infancy. Therefore, it is necessary to 
more comprehensively explore the pathogenesis of pRCC and its po-
tential immune-related targets.

Due to its excellent efficacy, tumor immunotherapy has gradu-
ally become the fourth most commonly administered type of tumor 
treatment after surgery, radiotherapy, and chemotherapy.4 Effective 
cancer immunotherapy requires overcoming the immunosuppres-
sive TME.5 Immune cells constitute a large fraction of the TME, and 
they function by modulating tumor progression and regulating anti-
tumor immune responses.6 Therefore, the elucidation of the mecha-
nisms of immune cell infiltration in pRCC is crucial to understand the 
dynamics of its TME and to identify potential immunotherapeutic 
targets.

Recently, numerous studies have suggested that the TME 
components are associated with patient survival outcomes.7,8 
Specifically, immune cell composition in the TME is associated with 
survival in patients with RCC.8 McDermott et al.9 demonstrated that 
CD8+ T-cell responses had been associated with survival in patients 
with RCC treated with anti-PD-L1 antibodies. However, most stud-
ies on RCC are limited to ccRCC, so the specific mechanism of the 
immune microenvironment in pRCC remains unclear. In this study, 
we aim to explore the immune-related cellular and genetic targets 
for pRCC therapy and provide a new avenue for further research on 
immunotherapy.

2  |  MATERIAL S AND METHODS

2.1  |  Data sources and technology roadmap

Clinical information and the gene expression information from RNA-
seq data of patients with pRCC were downloaded from the UCSC 
Xena database (https://xenab​rowser.net/datap​ages/), which in-
cludes TCGA data that underwent standardized processing.

The data obtained were normalized count data, including in-
formation from 291 tumor tissues and 32 adjacent normal tis-
sues. The GEO database (https://www.ncbi.nlm.nih.gov/gds/) is 
a shared database for storing chips, second-generation sequenc-
ing, and other high-throughput sequencing data. The GSE26574 

dataset (34 tumor samples and 15 normal samples) and the 
GSE7203 dataset (35 tumor samples and 12 normal samples) were 
downloaded from the GEO database. The technology roadmap is 
shown in Figure 1.

2.2  |  Screening prognostic-related immune cells

CIBERSORT is an approach that primarily characterizes the immune 
cell composition of diverse tissue according to their gene expression 
profiles.10 The CIBERSORT R source code and the LM22 signature 
matrix file, both of which obtain information from a total of 22 im-
mune cell types, were downloaded from a website (https://ciber​sort.
stanf​ord.edu/). The R CIBERSORT algorithm was used to determine 
the abundance ratio of 22 Tumor-infiltrating immune cells (TIICs) (in-
cluding 22 immune cells) in the 291 tumor samples obtained from 
the UCSC Xena database. The “barplot” and “pheatmap”11 functions 
of R software were used to visualize the abundance ratio matrix 
from the data obtained in the previous algorithm. The Pearson cor-
relation coefficients among these TIICs were then calculated using 
the “cor” function of the R package and was visualized using the 
“corrplot” package,12 also in R. Finally, univariate Cox analysis was 
performed to screen the prognostic-related TIICs, with the thresh-
old set at p < 0.05. The “forestplot” R package13 was used to visual-
ize the prognostic-related immune cells.

2.3  |  Identifying the relationship between 
prognostic-related TIICs and clinical traits

A Wilcoxon test with a p-value <0.05 was used to analyze the re-
lationship between prognostic-related TIICs and clinical traits. The 
“boxplot” function of R software was used to visualize the data ob-
tained from this analysis. Kaplan–Meier (KM) survival analysis was 
then implemented using the R package “survival”14 to show the rela-
tionship between the prognostic-related TIICs and OS (overall sur-
vival) in patients with pRCC.

2.4  |  Defining the high- and low-risk groups based 
on the prognostic-related TIICs

The risk score for each pRCC sample was calculated using the re-
gression coefficients derived from the multivariate Cox regression 
analysis for the prognostic-related TIICs. These samples were sepa-
rated into high- and low-risk groups using the median risk score as a 
cutoff. A KM analysis via the log-rank test was performed to assess 
the survival differences between the high-risk and low-risk groups 
using the “survival”14 package in R. A nomogram prediction model 
was then constructed for these TIICs using the R package “rms”.15 A 
time-dependent ROC curve and a corresponding calibration curve 
were derived to assess the predictive significance of the model by 
using the “rms”15 and “timeROC”16 packages in R.

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/gds/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26574
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7203
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
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2.5  |  Identification and functional 
annotation of the differentially expressed genes 
(DEGs) between the high- and low-risk groups

Differential expression analysis between the high-risk and low-risk 
groups was conducted using the “DESeq2”17 package in R, with p-
values <0.05 and |fold change| >1 as the filters to determine whether 
these genes were significantly differentially expressed. Gene 
Ontology (GO, annotating gene products) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG, introducing many metabolic path-
ways and the relationship between them) pathway analyses were 
performed using the “clusterProfiler”18 R package and “org. Hs.eg.
db” to reveal the potential functions of these DEGs, with a p-value 
<0.05  set as the cutoff. Gene Set Enrichment Analysis (GSEA) 
was then performed, also using the “clusterProfiler”18 R package 
and immunologic signature gene set (C7 gene sets) obtained from 
the Molecular Signatures Database (MSigDB, https://www.gsea-
msigdb.org/).

2.6  |  Construction of a weighted gene co-
expression network

A weighted gene co-expression network analysis (WGCNA) is a tool 
typically used for constructing gene co-expression networks. It aims 
to explore the correlation between gene networks and clinical phe-
notypes and identify the core genes in the network. We employed 
the R package “WGCNA” using a soft-thresholding power of 4 and a 
minimum module size of 3019 to construct a co-expression network 
for the DEGs obtained. We then calculated the correlation between 
the modules obtained and clinical traits to identify the core modules.

2.7  |  Constructing a protein-protein interaction 
(PPI) network and determining the hub genes

The STRING database (https://strin​g-db.org/) searches for the 
interaction between known protein and predicted protein and 

F I G U R E  1 Workflow of the selection process for the eligible studies in the analysis. KIRP: kidney renal papillary cell carcinoma. 
CIBERSORT: an algorithm for analysis of immune cell composition of complex tissue from their gene expression. Abbreviations: DEGs, 
differentially expressed genes; GEO, Gene Expression Omnibus; GSEA, Gene Set Enrichment Analysis; IHC, immunohistochemical; PPI, 
protein-protein interaction; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; TIICs, tumor-infiltrating immune cells; 
WGCNA, weighted gene co-expression network analysis
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was used to construct the PPI network of the DEGs in the core 
modules, those with an interaction score >0.4. The five topo-
logical analysis methods in the “cytoHubba” app of Cytoscape 
v3.8.2, including Closeness, Maximal Clique Centrality (MCC), 
Maximum Neighborhood Component (MNC), Degree, and Edge 
Percolated Component (EPC), were utilized to screen the top 
30 genes in the PPI network constructed. The hub genes were 
then identified by intersecting the top 30 genes obtained after 
running the various algorithms in the topological analyses men-
tioned above.

2.8  |  Verification of the clinical significance of the 
hub genes

To further validate the clinical significance of the obtained hub genes, 
we analyzed the relationship between their expression profile and 
the pathological stage of the sample using the “ggpubr”20 R pack-
age. A KM survival analysis and the log-rank test using the R pack-
age “survival”14 were employed to analyze the relationship between 
the hub genes and OS. An ROC curve was obtained to evaluate the 
diagnostic value of the hub genes using the “pROC”21 package in 
R. Moreover, a nomogram prediction model for the hub genes was 
constructed using the “rms”15 package in R. A time-dependent ROC 
and calibration curve were also derived to assess the predictive sig-
nificance of the model using the “rms”15 and “timeROC” packages16 
in R. Finally, to confirm these results, the protein levels of these hub 
genes were verified using immunohistochemistry (IHC) data ob-
tained from the Human Protein Atlas (HPA) database (https://www.
prote​inatl​as.org/), which contains proteomics and transcriptomics 
data. The GSE26574 dataset and GSE7203 dataset served as the 
external validation dataset for these hub genes.

2.9  |  Validation of the correlation between the hub 
genes and infiltrating immune cells

Spearman correlations between the infiltration of all 22 types of 
immune cells and the expression of hub genes were calculated via 
the “psych”22 R package, and the results were visualized using the 
“pheatmap”11 package in R. Meanwhile, the XCELL algorithm in 
Tumor Immune Estimation Resource 2.0 (TIMER2.0)23 was also used 
to perform comprehensive correlation analyses between the im-
mune cell signatures and the obtained hub genes.

2.10  |  Statistical analyses

All statistical analyses were performed using R software (version 
4.1.1). Spearman correlation was performed for correlation analysis. 
The Wilcoxon test was used to determine the relationship between 
immune cells, potential markers, and clinical traits. p < 0.05 was con-
sidered statistically significant.

3  |  RESULTS

3.1  |  Identifying the prognosis-related immune 
cells

The infiltration levels of 22 immune cells in the 291 pRCC samples 
obtained from patients are shown in Figure 2A and 2B. Macrophages 
M2, resting T-cell CD4 memory, and resting mast cells were of higher 
abundance than other immune cells. The correlation among these 
immune cells is shown in Figure  2C. Additionally, we screened the 
nine immune cells associated with OS via univariate Cox analysis, and 
the results were shown in Figure 2D. The immune cells associated 
with OS were follicular helper T cells, macrophages M1, activated 
dendritic cells, regulatory T cells (Tregs), B-cell memory, CD8 T cells, 
macrophages M2, naïve B cells, and CD4 memory-activated T cells.

3.2  |  Clinical significance of prognostic-related 
immune cells

We also analyzed the association of the nine prognostic-related im-
mune cells with various clinical traits, including TNM stage, tumor 
type, pathological stage, and OS. The results of this analysis are 
shown in Figure  3. The degree of infiltration of macrophages M1, 
macrophages M2, CD8T cells, and regulatory T cells (Tregs) differed 
between type 1 and type 2 pRCC (Figure 3A-3D). Macrophage M1, 
macrophages M2, and regulatory T cells (Tregs) were closely related to 
the pathological stage (Figure 3E-3G). Macrophage M1, macrophages 
M2, and regulatory T cells (Tregs) were associated with the TNM stage 
(Figure 3H-3L). Naïve B cells, macrophages M1, and CD4 memory-
activated T cells were related to overall survival (Figure 3M-3O).

3.3  |  Classification of patients into low- and 
high-risk groups and construction of a nomogram 
prediction model

To further investigate immune cell infiltration in pRCC, we constructed 
a risk grouping and prediction model based on the prognostic-related 
TIICs obtained. The risk score of each patient was calculated using the 
regression coefficients of the multivariate Cox regression of the nine 
prognosis-related TIICs. Furthermore, the median risk score cutoff for 
the patients was divided into a low-risk group and a high-risk group 
(Figure 4A). The analysis showed that more patients died in the high-
risk group than in the low-risk group (Figure 4B). The degree of infiltra-
tion of the nine prognosis-related TIICs is shown in Figure 4C. The KM 
survival curves demonstrated that the OS of the high-risk group was 
shorter than that of the low-risk group (p = 0.0028), indicating that 
the grouping based on the risk score was reasonable (Figure 4D). A 
nomogram was then constructed based on a multivariate Cox regres-
sion analysis of the prognosis-related TIICs (Figure 4E). The calibration 
curve (Figure 4F) and the time-dependent ROC analysis (Figure 4G) 
of the nomogram were used to estimate the accuracy of the actual 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26574
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7203
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observed rates with the predicted survival probability. Our results 
show that the nomogram has a good prognostic value, suggesting that 
the nine TIICs are closely associated with OS in pRCC.

3.4  |  Identification and functional 
annotation of the DEGs

In this study, 1157 DEGs (1097 upregulated and 60 downregulated 
genes) were identified between the high-risk and low-risk groups. A 

volcano plot was obtained, and the results of the differential analy-
sis are shown in Figure 5A. GO and KEGG enrichment analysis was 
then performed to investigate the biological functions associated 
with the obtained DEGs. The significantly enriched KEGG path-
ways are shown in Figure 5B (Supplementary Table). The pathways 
related to cytokine-cytokine receptor interactions and the cAMP 
signaling pathway, which play a key role in pRCC, were significantly 
enriched. The significant GO enrichment terms of the upregulated 
and downregulated DEGs are shown in Figure 5D and 5E, respec-
tively. Enriched biological functions related to immunity include 

F I G U R E  2 Identification of nine prognostic immune cells. (A) The landscape of tumor-infiltrating immune cells. (B) Heatmap of the 
fraction of tumor-infiltrating immune cells. (C) The correlation coefficient between the abundance ratios of the distinct immune cells. (D) The 
nine prognostic-related immune cells
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the humoral immune response, IgG receptor activity, and T-cell 
chemotaxis.

Furthermore, GSEA was used to clarify the relationship between 
these DEGs and immunity. The results of the GSEA are shown in 
Figure 5E (Supplementary Table) and showed that regulatory T cells 
and CD8 T cells, which play a crucial role in cancer-related immunity, 
were significantly enriched.

3.5  |  Identification of the core modules via 
WGCNA analysis

We also performed a complete WGCNA analysis on the 1157 DEGs, 
including screening the soft thresholds, constructing a dynamic tree 
cut, and plotting a network heatmap (Figure  6A-6C). The results 
showed that the 1157 DEGs could be divided into six modules (blue, 
brown, green, gray, turquoise, and yellow). There were 496 DEGs 
in the turquoise module, 313 in the blue module, 167 in the brown 
module, 135 in the yellow module, 95 in the green module, and 40 
in the gray module (Figure  6B). Subsequently, we investigated the 

relationship between the six modules and clinical traits (pathologic 
TNM, pathologic stage, and tumor type) and found that the turquoise 
and blue modules were strongly associated with pathological stage 
and T stage (Figure 6D). Both gene significance and module member-
ship were plotted for the blue module (Figure 6E-6F), and the results 
indicated that this module was significantly related to pathological 
stage (cor =0.91, p = 6e-121) and T stage (cor =0.89, p = 4.3e-108). 
Likewise, the gene significance of the turquoise module was also re-
lated to pathological stage (cor =0.83, p = 2.4e-127) and T stage (cor 
=0.81, p = 1.4e-116) (Figure 6G-6H). Hence, the blue and turquoise 
modules were used as core modules for further analyses.

3.6  |  Identification of hub genes via 
multiple algorithms

The 496 genes in the turquoise module and the 313 genes in the blue 
module were analyzed using the STRING database, and a PPI network 
containing 706 nodes and 4261 edges was obtained. The top 30 genes 
in the PPI network were screened using DMNC, MCC, MNC, Degree, 

F I G U R E  3 Relationship between the nine prognostic-related immune cells and clinical traits. (A)–(D) The relationship between immune 
cells and tumor type. (E)–(G) The relationship between immune cells and pathological stage. (H)–(L) The relationship between immune cells 
and TNM stage. (M)–(O) The relationship between immune cells and overall survival
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and EPC (Figure 7A-7E). Based on the five algorithms, the PPI network 
contained nine common hub genes (TOP2A, BUB1B, BUB1, TPX2, PBK, 
CEP55, ASPM, RRM2, and CENPF) (Figure 7F). The detailed information 
regarding these nine hub genes is shown in Table 1.

3.7  |  Verification of the clinical significance of the 
hub genes

The nine hub genes obtained were overexpressed in tumor tissues 
compared with normal tissues (Figure  8A). The expression profile 
of these hub genes varied across different pathological stages and 
tended to increase with an increasing pathological stage (Figure 8B). 
In addition, we analyzed the relationship between the nine hub 
genes and the OS and found that the group with a lower expression 
of these genes had a better prognosis than the group with a high 
expression of these genes (Figure 8C). ROC curves were obtained 
to evaluate the diagnostic value of these genes in pRCC tumors and 
different tumor types (Figure 8D-8E). Results of the analysis indi-
cate that all these genes had a certain accuracy in differentiating 
between type 1 from type 2 pRCC, except TPOX2 (area under the 
curve [AUC] <0.5) (Figure 8D). The AUCs of all the hub genes were 

greater than 0.8, suggesting that they have good diagnostic value in 
differentiating normal tissues from pRCC (Figure 8E).

The results of univariate and multivariate Cox regression anal-
yses of the hub genes are shown in Figure 9A and 9B. The univar-
iate Cox regression analysis results showed that these genes were 
both significantly associated with a shorter OS (Figure 9A). In the 
multivariate Cox regression analysis, ASPM, BUB1B, and TPX2 were 
found to be independent prognostic factors of patients with pRCC 
(Figure 9B). Based on the results of both the univariate and multivar-
iate Cox regression analyses, we further constructed a nomogram 
model of these genes and assessed the predictive significance of the 
model via a time-dependent ROC and calibration curve (Figure 9C-
9E). The nomogram achieved a good area under the ROC curve, be-
tween 0.787 and 0.893, and fitted well with the obtained calibration 
curves, indicating that the model provided good predictability.

The protein expression levels of the hub genes were ver-
ified through the HPA database, and the results are shown in 
Figure 10A-10G. TPX2, TOP2A, CEP55, and CEBPF were confirmed 
to be expressed in renal tumors. External validation for these hub 
genes found that they were consistent with the analyses in TCGA 
(Figure  10H-10J). It should be pointed out that ASPM and CEP55 
were not annotated successfully in GSE2703 dataset (Figure 10J).

F I G U R E  4 Constructing high- and low-risk groups and nomogram based on nine immune cells. (A) The curve of risk score. (B) Survival 
status of the patients. More dead patients in the high group. (C) Heatmap of the expression profiles of the nine prognostic immune cells in 
low- and high-risk groups. (D) Kaplan-Meier survival analysis of the low- and high-risk groups. (E) Nomogram integrated nine survival-related 
cells. (F) The calibration plot of the nomogram for agreement test between 1-, 3-, and 5-year OS prediction and actual outcome in TCGA 
dataset. (G) The time-dependent ROC curves of the nomogram. TCGA: The Cancer Genome Atlas; ROC: receiver operating characteristic
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3.8  |  Validation of the correlation between the hub 
genes and the TIICs

The correlation of the nine hub genes with 22 TIICs was analyzed, 
and the results are shown in Figure 11A. It was observed that mac-
rophages M1 and macrophages M2 were related to OS, and they 
were also significantly associated with the nine hub genes. Moreover, 
the XCELL algorithm was used to verify the correlation between the 
hub genes and immune infiltration of macrophages. The results of 

the correlation analysis as calculated via XCELL were consistent with 
the results obtained using the CIBERSORT algorithm (Figure 11B).

4  |  DISCUSSION

Tumor-infiltrating immune cells are a critical part of the TME. These 
cells regulate tumor growth, invasion, and metastasis by altering the 
immune status of tumor cells. In this study, we evaluated the status 

F I G U R E  5 Identification and functional annotation of DEGs. (A) Volcano plot of the DEGs between low- and high-risk groups. Red 
nodes represent the significantly upregulated genes, and blue nodes represent the significantly downregulated genes. (B) Top 10 of KEGG 
enrichment analysis of DEGs. (C) The significant GO terms of upregulated genes. (D) The significant GO terms of downregulated genes. 
(E) Top 5 of GSEA enrichment analysis of DEGs. Abbreviations: DEGs, differentially expressed genes; GO, Gene Ontology; GSEA, gene set 
enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes
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of the nine TIICs related to OS in 291 patients with pRCC and found 
that patients with high-risk scores had a shorter overall survival 
time. Nine immune-related markers for pRCC were screened out via 
multiple analyses by comparing the differences between the high-
risk and low-risk groups.

In this study, nine TIICs related to OS, including follicular helper 
T cells, macrophages M1, activated dendritic cells, regulatory T cells 
(Tregs), B-cell memory, CD8 T cells, macrophages M2, naïve B cells, 
CD4 memory-activated T cells, and resting T-cell CD4 memory, were 
identified via univariate Cox analysis. Previous studies have shown 
that macrophages are one of the most abundant cell types in the 
tumor microenvironment, contributing to tumor progression.24,25 In 
our study, correlation analysis with clinical traits showed that mac-
rophages affected the tumor type, pathological stage, TNM stage, 
and prognosis of patients with pRCC. Moreover, we found that 
macrophages were also the most abundant cell types in pRCC and 
were significantly associated with the nine hub genes we obtained 

(TOP2A, BUB1B, BUB1, TPX2, PBK, CEP55, ASPM, RRM2, and CENPF). 
Therefore, the results of previous studies are consistent with the 
results obtained in this study.24,25

Functional enrichment analysis showed that the DEGs in the 
high- and low-risk groups were significantly associated with tumor 
cell infiltration-related pathways. Both the cytokine-cytokine re-
ceptor and cAMP signaling pathways were significantly enriched, 
based on our analyses. Cytokines play an important role in cancer-
related immune responses and promote tumor angiogenesis, tumor 
cell invasion, and tumor cell metastasis.26,27 IFN-γ is one of the cy-
tokines necessary in immunomodulation and anticancer immunity, 
which also induces the expression of PD-L1 in most tumor cells.28 
The cAMP signaling pathway is a critical modulator of specific tumor 
cell properties such as proliferation, differentiation, and migration.29 
Dou A-X et al. showed that regulatory T cells might suppress the 
antitumor immune response through the intercellular transport of 
cAMP and the activation of the cAMP-protein kinase A signaling 

F I G U R E  6 Identification of the core modules via constructing a weighted gene co-expression network. (A) Analysis of the scale-free 
topology model fit index for soft threshold powers (β). (B) A cluster dendrogram was built based on the dissimilarity of the topological 
overlap, which presents six gene co-expression modules in these DEGs, the gray module indicates no co-expression between the genes. (C) 
Heatmap of the weighted gene co-expression network. (D) Heatmap of the correlation between module eigengenes and clinical traits of 
pRCC. (E)–(F) The scatterplot of GS for pathologic stage and T stage vs MM in the blue module. (G)–(H) The scatterplot of GS for pathologic 
stage and T stage versus MM in the turquoise module. Abbreviations: DEGs, differentially expressed genes; GS, gene significance; MM, 
module membership; pRCC, papillary renal cell carcinoma
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pathway.30 Furthermore, the GSEA found that regulatory T cells 
were significantly enriched in pRCC, which was consistent with the 
KEGG enrichment results.

The underlying mechanism of the hub genes remains unclear 
in pRCC. Currently, some studies have reported the effect of 
the expression of hub genes, such as TPX2, TOP2A, and BUB1 
in other tumors.31-33 TOP2A cleavage is a broad DNA damage 
mechanism found in oncogenic translocations.34 MiR-139–5 up-
regulates the expression of its target gene TOP2A and promotes 

the progression of ccRCC.35 Downregulation of TPX2 inhibits 
the proliferation and invasion of endometrial cancer cells and 
promotes the apoptosis of EC-derived cells.36 It also suppresses 
the growth of liver cancer by regulating the PI3K/AKT signaling 
pathway.31 A dysregulated expression of BUB1 leads to aberrant 
chromosomal replication and aneuploidy, contributing to the de-
velopment of tumors.32 Previous studies have demonstrated that 
these three genes play an important role in tumorigenesis and 
cancer development.

F I G U R E  7 Identification of hub genes via multiple algorithms. (A)–(E) Screening the top 30 genes in the PPI network of DEGs as central 
genes using five algorithms including Closeness, MCC, MNC, Degree, and EPC. (F) Multiple algorithms obtain a Venn diagram of common 
genes. Abbreviations: DEGs: differentially expressed genes; EPC: edge percolated component; MCC: maximal clique centrality; MNC: 
maximum neighborhood component; PPI: protein-protein interaction

(A) (B) (C)

(D) (E) (F)

Gene Gene ID Full name

TPX2 22974 TPX2 microtubule nucleation factor

TOP2A 7153 DNA topoisomerase II alpha

BUB1B 701 BUB1 mitotic checkpoint serine/threonine 
kinase B

BUB1 699 BUB1 mitotic checkpoint serine/threonine 
kinase

CEP55 55156 centrosomal protein 55

RRM2 6241 ribonucleotide reductase regulatory subunit 
M2

ASPM 259266 assembly factor for spindle microtubules

PBK 55872 PDZ binding kinase

CENPF 1063 centromere protein F

TA B L E  1 The information of nine hub 
genes
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F I G U R E  8 Validation of the hub genes in different clinical traits. (A) The expression difference in the nine hub genes between normal 
and tumor. (B) The relationship between the expression of the nine hub genes and pathologic stage. (C) Kaplan-Meier survival analysis of the 
nine hub genes. (D) Diagnostic value of the nine hub genes in different tumor types. (E) Diagnostic value of the nine hub genes in the tumor
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In addition, we found that these hub genes such as BUB1B, PBK, 
CEP55, ASPM, RRM2, and CENPF strongly correlated with macro-
phages and had clinical significance in pathological staging, survival, 
and diagnostic value. A nomogram obtained containing these hub 
genes had good predictability, suggesting that these genes are sig-
nificantly associated with prognosis. Therefore, these hub genes 
are potential immune-related biomarkers for pRCC. Additionally, 
our conclusions are supported by the results of previous stud-
ies. Mechanistically, it modulates the transcriptional activation of 
the mitotic checkpoint kinase BUB1B, which also promotes tumor 
growth and chemoresistance, leading to poor outcomes for patients 
with lung adenocarcinoma.37 An in vitro study showed that the over-
expression of BUB1B enhanced the proliferation, migration, and 

invasion of prostate cancer cell lines, while the removal of BUB1B 
did not affect these cell functions.38 PBK is a novel serine-threonine 
kinase related to the mitogen-activated protein kinase (MAPK) fam-
ily. It is an important link in many carcinogenic signaling pathways, 
including p38, extracellular signal-regulated kinase 1/2 (ERK1/2), 
and the FAK/Src-MMP signal pathways.33 CEP55 is a key regulatory 
factor of the cytoplasmic split and is associated with genomic in-
stability; genomic instability is a hallmark of cancer.39 Carcinogenic 
CEP55 regulates the proliferation, migration, and invasion of tumor 
cells as mediated by the PI3K/AKT/mTOR pathway and is related to 
poor prognosis.40 The potential role of ASPM on pRCC is still unclear; 
however, it was highly expressed in various cancers such as endome-
trial cancer and lung squamous cell carcinoma and is related to poor 

F I G U R E  9 Construction of the prognostic signature based on hub genes. (A) The forest plot of the nine hub genes via univariate Cox 
regression analysis. (B) The forest plot of the nine hub genes multivariate Cox regression analysis. (C) Nomogram integrated the nine 
immune-related hub genes. (D) The calibration plot of the nomogram for agreement test between 1-, 3-, and 5-year OS prediction and actual 
outcome in TCGA dataset. (E) The time-dependent ROC curves of the nomogram in TCGA dataset. Abbreviations: ROC, receiver operating 
characteristic; TCGA, The Cancer Genome Atlas
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clinical prognosis and an increased risk of cancer recurrence.41,42 
RRM2 is essential for DNA synthesis and repair and is frequently 
overexpressed in various cancers.43 The oncogenic role of RRM2 has 

been linked to the promotion of epithelial-mesenchymal transition 
(EMT) and angiogenesis.43 CENPF is a critical regulator of cancer me-
tabolism, and the silencing of CENPF has been shown to increase the 

F I G U R E  1 0 IHC of hub genes and validation of the hub genes in GEO dataset. (A)–(G) IHC of TPX2, TOP2A, RRM2, PBK, CEP55, CEBPF, 
and ASPM in renal carcinoma. (H) Independent dataset validation of the nine hub genes in GSE26574. (J) Independent dataset validation of 
these hub genes except ASPM and CEP55 in GSE26574. Abbreviations: IHC, immunohistochemistry
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(E) (F) (G)

(H)

(L)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26574
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26574
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expression of inactive forms of pyruvate kinase M2, a rate-limiting 
enzyme indispensable for an irreversible reaction in glycolysis and 
reduces global bio-energetic capacity, acetyl-CoA production, his-
tone acetylation, and lipid metabolism.44 The above analysis mainly 
reveals that the hub genes obtained play an important role in tumor 
development and may be potential therapeutic targets in the treat-
ment of pRCC.

In summary, nine prognostic-related immune cells and nine hub 
genes were identified, providing compelling insights into the patho-
genesis of pRCC and may serve as potential therapeutic targets for 
pRCC. These nine types of immune cells may also provide important 
clues, so we can better understand the immune microenvironment 
in pRCC. The hub genes obtained can be considered as biomarkers 
for the prognosis of pRCC and may also serve as key targets for im-
munotherapy in pRCC. However, it is important to point out that 

the evidence presented in this study was obtained indirectly from 
bioinformatics analyses, which is its major limitation.
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